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Abstract In this study, three different neural network

algorithms (feed forward back propagation, FFBP; radial

basis function; generalized regression neural network) and

wavelet transformation were used for daily precipitation

predictions. Different input combinations were tested for

the precipitation estimation. As a result, the most appro-

priate neural network model was determined for each sta-

tion. Also linear regression model performance is

compared with the wavelet neural networks models. It was

seen that the wavelet FFBP method provided the best

performance evaluation criteria. The results indicate that

coupling wavelet transforms with neural network can

provide significant advantages for estimation process. In

addition, global wavelet spectrum provides considerable

information about the structure of the physical process to

be modeled.

Keywords Wavelet transformation � Artificial neural
networks � Linear regression � Precipitation � Estimation

1 Introduction

Precipitation pattern is one of the most important variables

for hydrologic and meteorological studies. Intense pre-

cipitation events can cause some important floods resulted

in property economic damages or loss of life. On the other

hand, drought is a common problem at local or regional

scales. So, accurate prediction of precipitations is very

important for hydrologists and meteorologists. However,

accurate precipitation prediction is hard because of the

complexity of the physical processes involved and highly

dependent on small scale processes (Kulligowski and

Barros 1998). Numerical weather forecasting has been used

for rainfall estimation by meteorologists for many years

(Bustamante et al. 1999; Olson et al. 1995, 2004). How-

ever, they are basically dependent inaccurate initial con-

ditions, parameterization schemes of subscale phenomena,

and limited spatial resolution (Ramirez et al. 2005).

Artificial neural networks (ANN) are a useful tool to

solve to predicting problem. ANN has been successfully

used in the hydrological sciences during recent years

(Applequist et al. 2002; Silverman and Dracup 2000; Ci-

gizoglu 2003; Kumar et al. 2005; Ramirez et al. 2005;

Freiwan and Cigizoglu 2005; Kisi 2006; Jain and Kumar

2007; Sreekanth et al. 2009; Gao et al. 2009). In the

mentioned studies, the feed forward back propagation

(FFBP) neural network algorithm which is the most pop-

ular ANN architectures was employed. However, RBF and

generalized regression neural network (GRNN) has com-

paratively fewer applications in the water resources prob-

lems (Sudheer et al. 2002; Cigizoglu and Alp 2004, 2006;

Jayawardena and Fernando 1998). Cigizoglu (2005) in-

vestigated that the performance of the GRNN are to be

superior to FFBP for daily river-flow forecasting. Kerma-

nia et al. 2013) studied RBF and feed forward neural net-

works performance for daily runoff predicting. They

investigated feed forward neural network model using

Levenberg–Marquardt algorithm (LMNN) is superior to

the RBF network for base and high flow. However, the

RBF model is superior to the LMNN model for simulating

flood events.
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Wavelet transformation provides considerable informa-

tion about the structure of the physical process to be mod-

eled. So, using together wavelet and neural networks

provides considerable advantages. Hybrid models combines

wavelet transformation and neural networks have been im-

proved for predicting at last years (Kim and Valdes 2003;

Wang and Ding 2003; Anctil and Tape 2004; Partal 2009;

Adamovski and Chan 2011; Kisi 2011; Mishra et al. 2011).

Ramana et al. (2013) studied to predict the monthly rainfall

series using wavelet neural network (WNN) model. They

used back propagation neural network algorithm. Their re-

sults indicate that the performances of WNN models are

more effective than the classical neural network models.

Partal and Cigizoglu (2009) predict the daily precipitations

from meteorological data of Turkey using the wavelet–

neural network method (combines two methods: discrete

wavelet transformation and feed forward neural networks).

At results, the WNN model had a noticeably high positive

effect on the performance evaluation criteria. Shoaib et al.

(2014) compared to two different neural network models

(RBF and multilayer perceptron neural network) with dif-

ferent main wavelets for rainfall–runoff modeling. They

found that the discrete wavelet transform multilayer per-

ceptron neural network and the discrete wavelet transform

radial basis function (RBF) models at with the db8 main

wavelet function has the best performance.

The objective of this research is to study the potential of

wavelet and different neural networks structures for daily

precipitation modeling from the meteorological data. Em-

ployment of the wavelet-FFBP is compared with the wavelet-

GRNN and the wavelet-RBF performances. Some drawbacks

of the FFBP algorithm necessitates the investigation of other

ANN algorithms. For example, the training simulation per-

formance of the FFBP is dependent on the different random

weight assignment in the beginning of each training simula-

tion. Therefore excessive FFBP simulations are needed to

select the best FFBP performance. The RBF network learns

faster than FFBP networks and has fewer parameters

(Jayawardena and Fernando 1998).As different from the back

propagation algorithm, the RBF network has the nonlinearity

embedded in the basin functions of its hidden layer neurons,

making the optimization of tunable parameters a linear search

(Sudheer and Jain 2003). Besides, the wavelet-RBF and the

wavelet-GRNN have comparatively fewer applications in the

precipitation predicting problem. So, this paper investigates

performance of the three different neural network algorithms

and wavelet transformation. Also, the linear regressionmodel

and conventional neural networks performance is compared

with the WNNs methods. The global wavelet spectrums

(GWS) of the precipitation datawere studied to investigate the

effective periodic characteristic of the observeddata.Theused

daily meteorological data employed were that of Turkish

meteorological stations (selected as randomly distributed

throughout the country). This data was found to be homoge-

neous for study period (Partal and Cigizoglu 2009).

2 Description of the data

The predicting described herein was employed on stations

from the DMI (Turkish State of Meteorological services) all

over Turkey (Fig. 1). The used stations are assumed to reflect

different regional hydro-climatic conditions over Turkey.

Turkey’s general climate characteristic is Mediterranean

climate regime. However, Turkey is affected by the polar and

tropical weather regimes in accordance with its geographical

location. A general description of the climate conditions

prevailing over Turkey is available in Unal et al. (2004) and

Tatlı et al. (2004).
Data quality was controlled based on homogeneity and

ensure that the stations have good quality. The record

length is 5479 days covering a time period for the interval

between January 1987 and December 2001. The meteoro-

logical variables which are the daily mean temperature

(Tmean), daily maximum temperature (Tmax), daily mini-

mum temperature (Tmin), daily total specific humidity (H),

daily total evaporation (E), and daily total precipitation

(P) have influence on the precipitation process.

Some parameters of the data are presented in Table 1.

The highest maximum daily precipitation value was ob-

served at the Muğla station (Xmax = 155.6 mm, Table 1).

The lowest maximum daily precipitation was measured at

the Afyon station (Its value is 60.3 mm). The precipitation

series have quite high skewness values (csx = 5.48 for the

Muğla station; Table 1). This is valuable to say because of

the high skewness values decrease the estimation accuracy

of the neural networks (Altun et al. 2007). The lag-1 auto-

correlation of the precipitation records has a significant

value whereas lag-2 and lag-3 auto-correlations are close to

zero. Also, Lag 0 and Lag 1 cross-correlations between the

meteorological data and precipitation data were computed

and presented in Table 2. Table 2 shows that the correla-

tions between the relative humidity and the precipitation

data are quite significant.

3 Methods

3.1 The feed forward back propagation

The FFBP is the most known and used ANN method in

water resources literature. An FFBP network structure has

one input layer, one output layer and the least one hidden

layers with hidden neurons. The connections between

neurons in different layers are supplied by adjustment

weights values. Each neuron is connected only with
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neurons in following layers (Cigizoglu 2004). Each neuron

sums its inputs and later produces its output by activation

function. In this study, tangent sigmoid function is used as

neuron transfer function. The hidden layer node numbers of

each model were determined after trying various network

structures. For avoid overfitting in ANNs, ‘‘Early stop-

ping’’ technique was considered. So, the FFBP networks

training were stopped after 200 iterations.

Predicted output values are always different from ob-

served values. The weight of connections is modified based

on the differences between the computed values and ob-

served values at the output layer. This is the back-

propagation process. After that, feed forward process is

again formed until an aimed total error or number of pre-

scribed iterations is reached (Kisi 2006). The performance

of the FFBP algorithm is very sensitive to the proper set-

ting of the learning rate. The learning rate is made re-

sponsive to the complexity of the local error. At each epoch

new weights and biases are calculated using the current

learning rate. New outputs and errors are then calculated. If

Fig. 1 The used meteorological

stations

Table 1 Station informations and some statistical parameters of the daily precipitation data (xmean, xmax, csx, r1, r2, r3 denote mean, maximum,

skewness, lag-1, lag-2 and lag-3 autocorrelation coefficients, respectively)

Stations Some parameters of the precipitation

Station number Latitude Longitude xmean (mm) xmax (mm) csx r1 r2 r3

Balıkesir 17210 39.40 27.52 1.5 112 6.16 0.214 0.071 0.034

Afyon 17190 38.45 30.32 1.1 60.3 5.17 0.159 0.053 0.019

Muğla 17292 37.13 28.12 3.1 155.6 5.48 0.298 0.127 0.090

Adıyaman 17265 37.45 38.17 1.9 80.1 4.92 0.317 0.127 0.094

Siirt 17210 37.55 41.57 1.9 71.4 4.50 0.304 0.139 0.104

Table 2 Lag 0 and Lag 1 cross-correlations between the meteorological data and the precipitation data

Station Mean temp. Max. temp. Min. temp. Rel. humidity Evaporation

Tmean,t/Pt Tmean,t-1/Pt Tmax,t/Pt Tmax,t-1/Pt Tmin,t/Pt Tmin,t-1/Pt Ht/Pt Ht-1/Pt Et/Pt Et-1/Pt

Balıkesir -0.19 -0.13 -0.20 -0.15 -0.09 -0.06 0.28 0.27 -0.19 -0.17

Afyon -0.16 -0.11 -0.19 -0.13 -0.07 -0.02 0.28 0.31 -0.14 -0.10

Muğla -0.24 -0.22 -0.29 -0.28 -0.15 -0.13 0.34 0.41 -0.24 -0.23

Adıyaman -0.28 -0.27 -0.31 -0.32 -0.22 -0.20 0.40 0.47 -0.27 -0.25

Siirt -0.28 -0.25 -0.30 -0.28 -0.23 -0.19 0.42 0.43 -0.26 -0.25
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the new error is less than the old error, the learning rate is

increased. So, the network can learn without large error

increases. More details on neural networks can be seen in

Cigizoglu (2003).

3.2 The radial basis function-based neural networks

RBF neural networks were firstly developed by Bromhead

and Lowe (1988). The RBF neural network model is in-

spired by the locally turned response observed in biological

neurons. Theoretically, RBF is similar to FFBP network.

RBF network use radial symmetric transfer function on

hidden layer. Radial symmetric transaction consists of

centers (l) and spread (r) parameters. Synaptic weights

(wij) are only between hidden and output layers (Sudheer

and Jain 2003). For the Xj input pattern, the response of the

jth node in hidden layer (zj) is below;

zj ¼ exp
X � lj
�
�

�
�

r2j

( )

ð1Þ

where, |.| is Euclidean Norm. The output of the network at

the jth output is given by

yL ¼
XL

j¼1

zjwij ð2Þ

Different spread constants were tried in the study. The

theoretical basis of the RBF approach lies in the field of

interpolation of multivariate functions (Cigizoglu 2004).

The solution of the exact interpolating RBF mapping

passes through every data point. More details on neural

networks can be seen in Cigizoglu (2004).

3.3 The generalized regression neural networks

The GRNN, doesn’t need a training procedure as in the

back-propagation method, has four layers (input layer,

pattern layer, summation layer and output layer). In the first

layer, there are input parameters and completely connected

to the second layer which pattern layer. The pattern units

are connected to in the summation layer. The spread pa-

rameter (s) of transaction function is determined by trial

and error (Cigizoglu and Alp 2004). The GRNN defines

any arbitrary function between input and output nodes. The

GRNN is more useful for the estimation of continuous

variables, as in standard regression techniques. It is based

on a standard statistical technique called kernel regression

(Cigizoglu 2005). The performance of the GRNN model

applications as functions of the spread parameter for

GRNN algorithm was evaluate. If spread parameter is

larger, the function will be the smoother (Cigizoglu and

Alp 2004). So, different spread parameter has been

evaluated. More details on GRNN networks can be seen in

Cigizoglu (2005).

3.4 Discrete wavelet transform (DWT)

The decomposition of data into periodic components al-

lows the knowledge of the dominant mode of variability

(Coulibaly and Burn 2004). This can be done by using

DWT. The wavelet transform is a strong mathematical tool

that provides a time–frequency representation of an ana-

lyzed signal in the time domain (Smith et al. 1998;

Dabechies 1990).

Assuming a continuous time series x(t), t [ [?, -?], a

wavelet function w(g) that depends on a non-dimensional

time parameter g can be written as

w gð Þ ¼ w s; sð Þ ¼ s�1=2w
t � s
s

� �

ð2Þ

where t stands for time; s for the time step in which the

window function is iterated; s [ [0, ?] for the wavelet

scale. w(g) must have zero mean and be localized in both

the time and the Fourier space (Meyer 1993).

Computing the wavelet coefficients at every possible

scale is a fair amount of work, and it generates a lot of data.

If one chooses scales and positions based on the powers of

two (dyadic scales and positions) then the analysis will be

much more efficient as well as accurate. This transform is

called DWT, and has the form as

wm;n

t � s
s

� �

¼ s
�m=2
0 w

t � ns0sm0
sm0

� �

ð3Þ

where m and n are integers that control respectively the

wavelet dilation (scale) and the translation (time); s0 is a

specified fixed dilation step greater than 1; and t0 is the

location parameter and must be greater than zero. From this

equation, it can be seen that the translation step, ns0sm0 ,
depends on the dilation, sm0 . The most common (and sim-

plest) choice for the parameters s0 and s0 is 2 and 1 (time

steps), respectively. This power of –two logarithmic scal-

ing of the translations and dilations is known as dyadic grid

arrangement and is the simplest and most efficient case for

practical purpose (Mallat 1989). For a discrete time series

xi, where xi occurs at discrete time i (i.e., here integer time

steps are used), the DWT becomes

Wm;n ¼ 2�m=2
XN�1

i¼0

xiwð2�mi� nÞ ð4Þ

where Wm,n is wavelet coefficient for the discrete wavelet

of scale s = 2m and location s = 2mn. The Haar wavelet as

the mother wavelet was selected in this study. It is one of

the most suitable mother wavelets for hydrological fore-

casting applications (Belayneh et al. 2014).
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Fig. 2 The wavelet components series of the Balıkesir precipitation data
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3.5 The global wavelet spectrum

Considering a vertical slice through a wavelet plot as a

measure of the local spectrum, the time-averaged wavelet

spectrum over all the certain periods or all the local

wavelet spectra is then expressed as

W2 sð Þ ¼ 1

T

XT�1

t¼0

Wt sð Þj j2 ð5Þ

where T is the number of the points in the time series. The

time-averaged wavelet spectrum is generally called GWS

(Torrence and Compo 1997). The smoothed Fourier

Fig. 3 Global wavelet

spectrums of the Balıkesir
meteorological data

Table 3 The correlation coefficients between the periodic components and the original precipitation data for the Balıkesir station

Discrete wavelet components T (mean) T (max) T (min) H E

D1 (2 days) 20.115 -0.081 0.023 0.041 -0.009

D2 (4 days) -0.088 20.110 0.093 0.199 20.048

D3 (8 days) 20.047 20.074 0.067 0.168 20.082

D4 (16 days) 20.037 20.056 0.017 0.117 20.079

D5 (32 days) 20.007 20.028 0.034 0.080 20.049

D6 (64 days) 20.002 20.025 0.036 0.069 20.051

D7 (128 days) 20.125 20.124 20.099 0.134 20.122

D8 (256 days) 20.162 20.163 20.160 0.159 20.160

D9 (512 days) 20.093 20.099 20.056 0.057 20.079

D10 (1024 days) 20.015 20.021 0.001 0.019 20.026

Approx. 0.03 20.007 0.013 20.002 20.00

The new summed series D1 ? D7 ? D8 D2 ? D7 ? D8 D8 D2 ? D3 ? D4 ? D7 ? D8 D7 ? D8
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spectrum approaches the GWS when the amount of the

necessary smoothing decreases with the increasing scale.

Hence, GWS provides an unbiased and consistent estima-

tion of the true power spectrum which is a useful tool for

the analysis of the non-stationary time series analysis. The

global spectrum is compatible with a power (Fourier)

spectrum. Spectral components are defined as the fre-

quency in a power spectrum, periodic components are

Table 5 The wavelet-FFBP network structures in terms of the best performance criteria

Stations Model

structures

Wavelet-FFBP model inputs Training Testing

MSE

(mm2)

R2 MSE

(mm2)

R2

Balıkesir 12,5,1 Tmean, Tmax, Tmin, E, H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 4.11 0.799 5.91 0.762

Afyon 11,5,1 Tmean, Tmax, H, Ht-1, Ht-2, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 2.01 0.884 2.49 0.849

Muğla 13,5,1 Tmean, Tmax, Tmin, H, Ht-1, Ht-2, E, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 8.45 0.901 9.31 0.886

Adıyaman 13,5,1 Tmean, Tmax, Tmin, E, H, Ht-1, Ht-2, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 4.60 0.849 4.71 0.848

Siirt 12,5,1 Tmean, Tmax, Tmin, E, H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 2.08 0.903 2.40 0.896

Table 6 The wavelet-RBF network structures in terms of the best performance criteria

Stations Model

structures

Wavelet-RBF model inputs Spread

param.

Training Testing

MSE

(mm2)

R2 MSE

(mm2)

R2

Balıkesir 12,1 Tmean, Tmax, Tmin, E, H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5,

Pt-6

0.85 8.21 0.617 9.86 0.603

Afyon 11,1 Tmean, Tmax, H, Ht-1, Ht-2, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5,

Pt-6

0.85 4.12 0.774 4.31 0.736

Muğla 13,1 Tmean, Tmax, Tmin, H, Ht-1, Ht-2, E, Pt-1, Pt-2, Pt-3, Pt-4,

Pt-5, Pt-6

0.85 27.46 0.595 33.38 0.587

Adıyaman 13,1 Tmean, Tmax, Tmin, E, H, Ht-1, Ht-2, Pt-1, Pt-2, Pt-3, Pt-4,

Pt-5, Pt-6

1.20 12.69 0.677 12.55 0.675

Siirt 12,1 Tmean, Tmax, Tmin, E, H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5,

Pt-6

0.85 5.09 0.765 6.22 0.740

Table 4 Correlation between t-i time (i = 1, 2,….,7 days) D series of its and t time observed precipitation for the Balıkesir station

Discrete wavelet

components

t-1 t-2 t-3 t-4 t-5 t-6 t-7

D1 (2 days) -0.369 -0.032 0.085 0.000 -0.008 0.002 -0.007

D2 (4 days) 0.221 -0.346 -0.350 -0.047 0.98 0.098 0.091

D3 (8 days) 0.405 0.178 -0.088 -0.285 -0.345 -0.285 -0.318

D4 (16 days) 0.349 0.293 0.209 0.109 0.004 -0.094 0.000

D5 (32 days) 0.255 0.243 0.227 0.206 0.181 0.152 0.108

D6 (64 days) 0.211 0.204 0.201 0.196 0.191 0.185 0.111

D7 (128 days) 0.185 0.183 0.182 0.181 0.179 0.178 0.054

D8 (256 days) 0.188 0.188 0.188 0.188 0.188 0.188 0.106

D9 (512 days) 0.084 0.084 0.084 0.084 0.084 0.084 0.044

D10 (1024 days) 0.047 0.047 0.047 0.047 0.047 0.047 0.037

Approx. 0.011 0.011 0.011 0.011 0.011 0.011 0.006

The new summed

series

D2 ? D3 ?

D4 ? D5 ? D6

? D7 ? D8

D3 ? D4 ?

D5 ? D6 ?

D7 ? D8

D4 ? D5 ?

D6 ? D7 ?

D8

D4 ? D5 ?

D6 ? D7 ?

D8

D4 ? D5 ?

D6 ? D7 ? D8

D4 ? D5

? D6 ? D7 ? D8
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Table 7 The wavelet-GRNN network structures in terms of the best performance criteria

Stations Model

structures

Wavelet-GRNN model inputs Spread

param.

Training Testing

MSE

(mm2)

R2 MSE

(mm2)

R2

Balıkesir 12,1 Tmean, Tmax, Tmin, E, H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 0.08 10.44 0.550 12.69 0.494

Afyon 11,1 Tmean, Tmax, H, Ht-1, Ht-2, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 0.08 10.01 0.399 10.26 0.378

Muğla 13,1 Tmean, Tmax, Tmin, H, Ht-1, Ht-2, E, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 0.08 27.01 0.602 35.90 0.571

Adıyaman 13,1 Tmean, Tmax, Tmin, E, H, Ht-1, Ht-2, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 0.09 21.57 0.435 21.61 0.433

Siirt 12,1 Tmean, Tmax, Tmin, E, H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6 0.06 9.95 0.561 10.84 0.512

Table 8 The results of the

conventional ANN methods and

the MLR in terms of the best

performance criteria for the

testing periods

Stations FFBP RBF GRNN MLR

MSE (mm2) R2 MSE (mm2) R2 MSE (mm2) R2 MSE (mm2) R2

Balıkesir 18.22 0.287 18.64 0.266 21.05 0.171 21.43 0.144

Afyon 12.73 0.226 12.53 0.245 12.86 0.225 13.64 0.172

Muğla 41.51 0.484 48.81 0.400 50.44 0.384 57.84 0.281

Adıyaman 24.70 0.367 21.80 0.427 23.66 0.395 30.35 0.204

Siirt 15.33 0.303 14.57 0.355 17.39 0.261 17.44 0.208

y = 0,913x + 1,2406
R2 = 0,897

0

20

40

60

0 20 40 60
Observed precipitation (mm)

Fo
re

ca
st

ed
 p

re
ci

pi
ta

tio
n 

(m
m

) 

0

20

40

60

0 100 200 300 400 500 600 700 800 900 1000
Time (day)

P
re

ci
pi

ta
tio

n 
(m

m
)

y = 0,7324x + 0,4134
R2 = 0,762

0

20

40

60

0 20 40 60 80
Observed precipitation (mm)

Fo
re

ca
st

ed
 p

re
ci

pi
ta

tio
n 

(m
m

) 

_ _ _ _    Observed   ________   Wavelet -FFBP network

_ _ _ _  Observed  ________ Wavelet -FFBP network

0

20

40

60

0 100 200 300 400 500 600 700 800 900 1000
Time (day)

P
re

ci
pi

ta
tio

n 
(m

m
)

(a)

(b)

Fig. 4 Daily precipitation estimations by the wavelet-FFBP network model for the Balıkesir station (a), and Siirt station (b)—for the testing

period
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ordered according to the period scales in a GWS. A global

spectrum is computed via the continuous spectrum; there-

fore the initial and final time of the periodic components

can be also determined.

4 Wavelet decomposition and global wavelet
spectrum of the time series

DWT provides decomposed components at determined

scales. This enable to study of the components at different

scale or periods. For this aim, the time series is decom-

posed into series of an approximation and details (D) fol-

lowing the Mallat’s algorithm. The process consists of a

number of successive filtering steps. The original signal is

firstly decomposed into an approximation and accompa-

nying detail. The decomposition process is then iterated,

with successive approximations being decomposed in turn,

so that the original signal is broken down into many lower-

resolution components (Mallat 1989). As results, the

wavelet coefficients of the meteorological data was ob-

tained by the DWT. The time series were decomposed into

an approximation and ten details components. The de-

composed wavelet components for the Balıkesir pre-

cipitation data are presented in Fig. 2. The decomposed

components of the data present variations on the different

periodic scale. For example, the D8 component shows

variations of nearly annual mode of the daily precipitation

series. The observed extreme precipitations (especially in

1990 year) are clearly seen on the periodic components.

Figure 3 presents the GWS of the Balıkesir meteoro-

logical data. The GWS provide useful information about

the selection of the model inputs and show the dominant D

components. This help to determine the effective periodical

components. The annual periodicities (256–512 days) of

the meteorological pattern except precipitation have strong

magnitudes (Fig. 3). Besides, the short term periodicities,

such 2–4–8–16 daily modes, for the mean and minimum

temperatures can be seen clearly from the Fig. 3. The

precipitation pattern shows high magnitudes in the annual

and shorter time periods. Namely, the annual mode (refer

to the D8) is significant for the all meteorological data

while the annual and shorter time periods are significant for

the precipitation data according to the GWS. The GWS
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presents the general periodic structure of the data with

information about the physical structure of the observed

data. This helps to select the D components for the model

inputs. However, GWS is not enough just to determine

effective components. Because of this, the correlations

between the components and the observed precipitations

are computed and presented in Table 3 for the Balıkesir
station. For the temperature and evaporation, the correla-

tion with the D8, which is nearly the annual component,

has the highest magnitude. This marks that the annual

dominant periodicities of the temperature and evaporation

is the most influencing characteristic on the precipitation.

In addition to this, the D7 components show slightly higher

correlations compared with the other D components. On

the other hand, the correlations between the D2, D3 com-

ponents (4 and 8 daily modes) of the humidity and the

observed precipitation are higher with respect to the annual

components. This marks to dominant short term period-

icities on the relative humidity data. The correlations be-

tween 1-day preceding precipitation wavelet series and the

observed precipitation are presented in Table 4. The results

shows that the correlations for the D2–D8 are higher with

respect the remaining D components. In presented study,

the correlations in the long term period such 512 and

1024 day mode are insignificant. The correlations deter-

mined herein provide information for the determination of

the effective wavelet components on the precipitation

prediction and for the input selection of the model. The

results of correlation analysis are parallel to the results of

the GWS. According to the correlations analysis results,

the suitable components were selected as the model inputs.

The number of the selected components is actually de-

pendent on the user’s preference. However, the determi-

nation of a limit correlation value may be quite helpful for

this aim. The limit correlation value for selecting the

dominant D components was accepted as 0.10. As results,

the D1, D7 and D8 for the mean temperature, the D2, D7

and D8 for the maximum temperature, the D8 for the

minimum temperature, the D7 and D8 for the evaporation,

the D2–D4, D7 and D8 for the relative humidity were se-

lected as the input components in the predicting model at

the Balıkesir station (Table 3). The D2–D8 for 1-previous

day precipitations were selected (Table 4). Instead of using

each D component individually, the employment of the

summed D components is more convenient and useful. The

use of wavelet components separately as input is not op-

timal for a block-box estimation model such as neural

network. So, the new summed series, obtained by adding
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Fig. 6 Daily precipitation estimations by the wavelet-GRNN model for the Balıkesir station (a), and Siirt station (b)—for the testing period

1326 Stoch Environ Res Risk Assess (2015) 29:1317–1329

123



the selected D components to each other were used as input

for the hybrid models. This process is the most significant

and effective part on the network predicting performance.

The selected wavelet components are presented in Table 3

and 4. In here, the components having the higher correla-

tion than the limit correlation value can be seen as bold

values.

5 The results of the hybrid models

The using of the WNN hybrid model aims the estimation of

the daily precipitations using wavelet components of the

meteorological patterns. In previous section, the meteoro-

logical patterns were decomposed by the DWT in the

various periodicities. Then, the suitable components were

determined as input nodes for the predicting model. The

new summed series determined instead of the original data

were employed as inputs of the wavelet networks.

The input and output data is divided into two parts as the

training and the testing periods. The first 4383 values

(1.1.1987–31.12.1998) have been used for the training of

ANN network simulation. The last 1096 values

(1.1.1999–31.12.2001) are employed for the testing purpose.

Before applying, the selected input data were normalized in

the range [0; 1] by its extreme values. The best spread pa-

rameter of each RBF and GRNN simulation is found simply

by trial and error. MATLAB codes were written for three

different ANN methods (FFBP, RBF, GRNN).

The wavelet-neural networks structures providing the

best performance criteria values for different input com-

binations in terms of MSE and R2 are presented in

Tables 5, 6 and 7. For the Balıkesir station, the wavelet-

FFBP structure (12,5,1), consists of 12 input nodes (Tmean,

Tmax, Tmin, E, H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6)

and five hidden nodes, have the best performance criteria

(MSE = 5.91 mm2; R2 = 0.762). The Wavelet-RBF

model (12,1, s = 0.85) with 12 inputs (Tmean, Tmax, Tmin, E,

H, Ht-1, Pt-1, Pt-2, Pt-3, Pt-4, Pt-5, Pt-6) showed best

performance (R2 = 0.603; MSE = 9.86 mm2) for this

station. Here the best spread parameter was taken equal to

0.85. While the R2 value obtained by the wavelet-RBF

method are to 0.603, with the wavelet-FFBP model these

values is increased to 0.762 for this station. On the other
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Fig. 7 Daily precipitation estimations by the MLR model for the Balıkesir station (a), and Siirt station (b)—for the testing period
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hand, for the wavelet-GRNN model, the determination

coefficient was founded as 0.494 (model structure: 12,1,

s = 0.08) at the Balıkesir station. Generally, the GRNN

models have the lowest R2 and the highest mean square

error values. For instance, while the wavelet-GRNN model

show 0.571 R2 value, the wavelet-RBF model show 0.587

R2 value at the Muğla station. Table 5 shows that the best

wavelet-FFBP model was founded at the Siirt station in

terms of performance criteria (MSE = 2.40 mm2;

R2 = 0.896). At the same station, while the wavelet-GRNN

model shows 0.512 R2 value, the wavelet-RBF model

shows 0.740 R2 value, here it is obviously seen that, the

wavelet-FFBP model shows the best performance in terms

of evaluation criteria for precipitation predicting, although

it has some drawbacks. The success of the FFBP algorithm

is dependent on the complexity of the learning rate in the

back propagation process. As a consequence of the non-

linearity process in the operation of the back propagation,

the feed forward neural network is enabled to deal suc-

cessfully with complex undefined relations between the

inputs and the output. On the other hand, the RBF and

GRNN techniques learn in one pass through the data and

can generalize from examples as soon as they are stored

(Cigizoglu 2005). It is valuable to note that the models

having all of the meteorological variables in the input layer

provided better performance.

The results were also compared with the multi linear

regression models (MLR) and ANN methods. The test re-

sults for the testing stage are summarized in Table 8 in

terms of MSE and R2. Table 8 indicates that the WNN

model performs much better than the conventional ANN

and the MLR model according to various performance

criteria. The R2 values computed by the ANN method is in

the region of 0.2–0.4, whereas the WNN model with the

wavelet components as inputs provided noticeably higher

performance criteria in the region of 0.6–0.9. Meaning, the

predicting with the new series has significantly positive

effect on the regression model performance.

Figures 4, 5 and 6 presents the hydrograph and scatter

plots for the Balıkesir and Siirt stations. These stations

belong to the western and southeastern parts of Turkey,

respectively. The model estimations approximate the gen-

eral behavior of the observed data. For hydrologists, the

extreme precipitation forecasting is important due to being

the main cause for the flood. The drought days and the

extremes in the testing period were estimated satisfactorily

by the wavelet-FFBP. The performance of the wavelet-

FFBP model in estimating the extreme values is sig-

nificantly superior to the wavelet-RBF and the wavelet-

GRNN models. On the other hand, the MLR forecasts are

not approximate the general behavior of the observed data.

Besides, the extreme precipitations could not be estimated

closely by the MLR model (Fig 7).

6 Conclusion

The aim of this paper was to compare the performance of

estimation of the wavelet-ANN models. In the presented

study, firstly, the meteorological patterns were decomposed

into periodic series by the DWT. Then, the GWS and the

correlations between the wavelet components and the ob-

served precipitations were evaluated as criteria for the se-

lection of appropriate components. The GWS present some

knowledge about the physics of data such the periodicities

and magnitudes of the time series. So, this study brings a

new view in the literature about the contribution of physics

of data in the ANN structure. Generally, the correlations in

the short term modes such 2–4–8–16 daily and in the an-

nual modes such 256 daily have significant. However, the

correlations in the long term period such 512 and 1024 day

mode are insignificant. Later, the new summed series ob-

tained by the addition of the selected wavelet components

were employed as inputs of the hybrid models. It can be

understood clearly form the results that the wavelet-FFBP

model showed the best performance in terms of the de-

termination coefficient and also for the extreme precipita-

tion estimation. Also, the prediction ability of the WNN

models was tested and compared with the ANN and the

MLR model. The R2 obtained by the ANN are within the

interval 0.2–0.4, whereas the WNN models provided val-

ues in the region of 0.6–0.8. Meaning, using the wavelet

series affects the estimation ability positively. Also the

MLR models have the lowest R2 (within interval 0.1–0.2)

and the highest mean square error values. At last, the re-

sults show clearly that the performance of the FFBP al-

gorithm is better than the RBF and the GRNN algorithms

for daily precipitation predictions.

In the presented study, GWS of the observed data pro-

vides considerable contribution about the structure of the

physical process to be modeled. By wavelet, some prop-

erties of the decomposed series such as its daily, monthly,

annually periods can be seen more clearly than original

signal. As results, it proved that wavelet feed forward

neural network is more efficient and accurate than wavelet

radial basis neural network and wavelet GRNN in the

precipitation predicting. So, wavelet-FFBP model is more

suitable for practical application in guiding the design of

WNNs.
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