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Abstract Dengue is the world’s most important vector-

borne viral disease. The dengue mosquito and virus are

sensitive to climate variability and change. Temperature,

humidity and precipitation influence mosquito biology,

abundance and habitat, and the virus replication speed. In

this study, we develop a modelling procedure to quantify

the added value of including climate information in a

dengue model for the 76 provinces of Thailand, from

1982–2013. We first developed a seasonal-spatial model, to

account for dependency structures from 1 month to the next

and between provinces. We then tested precipitation and

temperature variables at varying time lags, using linear and

nonlinear functional forms, to determine an optimum

combination of time lags to describe dengue relative risk.

Model parameters were estimated using integrated nested

Laplace approximation. This approach provides a novel

opportunity to perform model selection in a Bayesian

framework, while accounting for underlying spatial and

temporal dependency structures and linear or nonlinear

functional forms. We quantified the additional variation

explained by interannual climate variations, above that

provided by the seasonal-spatial model. Overall, an addi-

tional 8 % of the variance in dengue relative risk can be

explained by accounting for interannual variations in pre-

cipitation and temperature in the previous month. The in-

clusion of nonlinear functions of climate in the model

framework improved the model for 79 % of the provinces.

Therefore, climate forecast information could significantly

contribute to a national dengue early warning system in

Thailand.

Keywords Dengue � Climate � Spatio-temporal model �
Random effects � Nonlinear

1 Introduction

Dengue is an emerging vector-borne viral disease, ubiq-

uitous in the tropics and the subtropics, particularly in

Southeast Asia, the Pacific and the Americas (Guzman

et al. 2010). The geographic distribution of dengue and its

more severe form, dengue haemorrhagic fever, has ex-

panded dramatically in the last decades and dengue is now

considered to be the world’s most important arboviral

disease (Gubler 2002; Halstead 2007). Its recent expansion

has been attributed to a combination of uncontrolled ur-

banization, poor living conditions, increased international
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travel and trade (Gubler 2012), which act as mechanisms

for transporting and exchanging dengue vectors and viruses

between endemic populations. The principal dengue mos-

quito vector, Aedes aegypti, and virus (DENV) are also

sensitive to climate variability and climate change (Hsieh

and Chen 2009), as temperature, humidity and precipitation

influence mosquito biology, abundance and habitat and the

virus replication speed, with increased dengue incidence

during warmer and wetter seasons (Johansson et al. 2009).

Temperature has a significant impact on dengue epidemi-

ology, influencing both the population dynamics of Ae.

aegypti and the development of the virus within the mos-

quito (the Extrinsic Incubation Period, EIP). Below 13 �C,

mosquito eggs will usually not hatch and any larva will not

complete their development (Christophers 1960). Adult

mosquito survival is also influenced by temperature and is

constrained between lower (4 �C) and upper (43 �C) tem-

perature limits. Many studies on EIP have shown that viral

development within the mosquito accelerates with in-

creasing temperature (e.g. Tjaden et al. 2013). The conse-

quence of this is that the mosquito can become infectious

faster, enabling onward transmission of the virus before

mosquito mortality; an increase of only a few �C can

therefore potentially lead to a substantial increase in force

of infection. The association of rainfall with mosquito

bionomics is more complex, particularly because of the

adaptation of Ae. aegypti to a domesticated niche, where

the mosquitoes use man-made breeding sites, which con-

founds any increased availability of natural breeding sites

created by rain (Padmanabha et al. 2010; Scott et al. 2000).

Therefore, the association is very dependent on the local

extent of man-made breeding sites. More general non-lin-

ear effects of rainfall on mosquito density will also apply,

such as larval wash-out and increased adult mortality fol-

lowing heavy rain. Finally, rainfall will have an indirect

impact via its cooling effect on ambient temperature. For

these reasons, the associations with rainfall tend to be site-

specific with respect to mosquito densities and the rela-

tionship between mosquito density and dengue incidence

itself is weak because of other behavioural traits, such as

frequent multiple host feeding.

Many studies have found associations between climatic

factors and dengue transmission [see (Naish et al. 2014;

Thai and Anders 2011) for a review]. However, modelling

approaches and methods to account for climate factors

within the model vary considerably, which could lead to

differential results regarding the relationships and time lags

between climatic factors and dengue relative risk.

Typically, the most significant time lags between tem-

perature/precipitation and dengue are found to be around

1–2 months (Arcari et al. 2007; Cheong et al. 2013;

Descloux et al. 2012; Garcı́a et al. 2011; Gharbi et al. 2011;

Gomes et al. 2012; Jeefoo et al. 2010; Lowe et al. 2011;

Wu et al. 2007), although some studies report lags of

around 3–4 months (Bi et al. 2001; Chen et al. 2012;

Depradine and Lovell 2004; Yu et al. 2011).

Among one of the most affected regions, Thailand

provides a very detailed and highly exhaustive dengue

surveillance and mosquito control system, with datasets of

reported cases for more than three decades. Dengue has

been endemic in the country since 1958, with co-circula-

tion of all four DENV serotypes. In most of the regions

where serotype identification has been performed, two or

three serotypes are found at the same time in the same area

(Anantapreecha et al. 2004). Meanwhile, during epidemic

periods the relative prevalence of the serotypes varies

(Muttitanon et al. 2004). Dengue remains a disease of

children and young adults in Thailand, with most cases

occurring in individuals aged between 5 years and

24 years, who represent one third of the population

(Limkittikul et al. 2014). The incidence rate appears to be

declining from its peak in the 1970s and 1980s, but remains

high at 20 per 1000 for children\15 years old (Wichmann

et al. 2011). The small temporal decline has been linked to

a reduced estimated force of infection and the changing

demography (reduced birth and death rates) may have

contributed to this (Cummings et al. 2009). However, there

exist no extensive data on seroprevalence and the majority

of infections are inapparent with no clinical presentation

(Grange et al. 2014).

In Thailand, dengue transmission occurs throughout the

year, but there exists a marked cyclical pattern associated

with the seasonal change in climate (Gubler 1998), as in all

Southern Asian countries. The seasonal peak in the num-

bers of cases is between May and September and coincides

with the southwest monsoon season. The strength of the

monsoon season is largely dependent on the local land-sea

thermal contrast, with preconditioning by the premonsoon

air temperatures over land playing a key role. The El Niño

Southern Oscillation (ENSO) can modulate Thailand’s

rainfall regime, with El Niño (La Niña) events corre-

sponding with low (high) rainfall seasons (Chen et al.

2002; Singhrattna et al. 2005). ENSO has been identified as

a potential driver of dengue in Thailand, via its impact on

local climate conditions (Cazelles et al. 2005). Campbell

et al. (2013) demonstrated the complexity of the asso-

ciation between local climatic variables and dengue dy-

namics in Thailand with temperature found to define a

viable range for dengue transmission (with 80 % of severe

dengue cases occurring when mean temperature was

27–29.5 �C) while humidity amplifies the potential within

that range.

In order to control the spread of dengue and prepare for

epidemics, decision support systems are required that take

into account the multiple factors that contribute to in-

creased dengue risk. Due to availability of seasonal climate
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forecasts that predict the average climate conditions for

forthcoming months/seasons in both time and space, there

is an opportunity to incorporate precursory climate infor-

mation in a dengue decision support system to aid epidemic

planning months in advance. In this paper we present a

flexible spatio-temporal Bayesian modelling approach for

dengue in Thailand to assess the potential use of climate

information in a dengue decision support system. Monthly

cases of dengue in the 76 provinces of Thailand for the

period 1982–2013 are modelled in a hierarchical frame-

work, which can allow for non-linearity in climate-dengue

associations. In order to quantify unknown or unmeasured

dengue risk factors, we use spatio-temporal random effects.

This helps quantify the extent to which variations in cli-

mate are associated with dengue relative risk and assess

whether climate information could significantly contribute

to a dengue early warning system.

2 Methods

2.1 Data

2.1.1 Dengue data

Dengue is a notifiable disease in Thailand and data from

all provinces exist from the beginning of the 1980s at the

Ministry of Public Health of Thailand in Bangkok. From

2003 to the present, the reported data from the national

surveillance system (DF, DHF, DSS using the 1997 WHO

case definition) have been available in both the electronic

and the hardcopy of the Weekly Bulletin of Epidemi-

ology, Ministry of Public Health of Thailand (http://www.

boe.moph.go.th/). Despite the unknown degree of under-

reporting, this national surveillance system is thought to

provide a good estimation, albeit underestimated, of the

real disease burden in the country (Wichmann et al.

2011).

In this study, we have used aggregated monthly severe

cases (DF ? DHF ? DSS) from published sources

(Cazelles et al. 2005; Cummings et al. 2004; Nagao and

Koelle 2008) and the Weekly Bulletin of Epidemiology

(http://www.boe.moph.go.th/), for the period 1982–2013

for 76 provinces in Thailand. As these different datasets

have common, overlapping time periods, we compared

reported cases and found that for these common periods,

the values are quasi-identical. Details about these datasets,

and more generally, dengue data available in Thailand, can

be found elsewhere (Aguiar et al. 2014).

Demography data was obtained from population census

for the years 1980, 1990, 2000 and 2010 (from different

web pages http://web.nso.go.th/en/census/poph/cen_poph.

htm and http://www.statoids.com/uth.html). Since 2010,

the tables in the Weekly Bulletin of Epidemiology give

both numbers of cases and estimated census (see Fig. 1).

To compare dengue variations in time and space, dengue

standardised morbidity ratios (SMR) (i.e. relative risk)

were calculated as the ratio of observed to expected cases.

Expected cases are calculated as the population at risk for

dengue (obtained from yearly population estimates) mul-

tiplied by the overall ratio of dengue for the entire time

period. For values of SMR = 1, the observed cases are

equal to what is expected. If SMR = 2, the relative risk is

doubled. Figure 2 shows the distribution of dengue relative

risk, averaged over time for the 76 provinces across

Thailand and averages in space for the period 1982–2013.

Large epidemics occurred in the summer months of 1987,

1990, 1997, 1998, 2001, 2010 and 2013.

2.1.2 Meteorological data

Precipitation and temperature data (minimum and max-

imum) was obtained from the Climatic Research Unit (CRU)

TS 3.22 time series datasets, calculated on high-resolution

(0.5 9 0.5 �) grids, based on an archive of monthly mean

meteorological variables provided by more than 4000

weather stations distributed around the world (Harris et al.

2014). These data were extracted for 704 grid boxes over

Thailand and spatially interpolated to the 76 provinces.

Figure 3 shows the annual mean and dispersion of monthly

mean precipitation and mean temperature at the province

level for the period 1982–2013. Figure 4 shows the monthly

distribution of dengue relative risk (SMR), mean precipita-

tion and mean temperature across Thailand for the period

1982–2013.

2.2 Model formulation

Generalized linear and additive mixed models (GLMM/

GAMM) were formulated to assess the importance of cli-

mate variables as drivers of spatial variation and interan-

nual variability in dengue transmission across Thailand. A

negative binomial model was used to account for over-

dispersion found in the dengue count data (extra-Poisson

variation), where yst is monthly dengue cases, lst is mean

cases, est is expected cases, and qst is the dengue relative

risk (Eq. 1) (Lowe et al. 2013a; Stewart-Ibarra and Lowe

2013). By including the expected number of cases of

dengue as an offset, we estimated the relative risk (SMR)

of dengue using a combination of spatio-temporal struc-

tures and linear and nonlinear functions of climate.

yst �NegBinðlst;jÞ
log lst ¼ log est þ log qst

ð1Þ

Using monthly climate and dengue data from 1982–2013

(t = 1,…,384) for the 76 provinces (s = 1,…,76) of
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Thailand, we developed a set of models to understand the

relative contribution of spatio-temporal structured random

effects and climate covariates to dengue relative risk

(logqst). We started with a base model, the ‘seasonal’

model, that accounted for seasonality (an annual cycle) in

dengue relative risk, which might be attributed to climate

and/or seasonal population movements. This was incorpo-

rated via a first order autoregressive latent model, where

dengue relative risk in 1 month is allowed to depend on the

relative risk in the previous month. We then included

spatial structure using a convolution prior that combined

area-specific overdispersion and a neighbourhood depen-

dency structure (see (Besag et al. 1995; Lowe et al. 2013a)

for details), which we termed the ‘seasonal-spatial’ model.

This model accounts for temporal dependency from 1

month to the next and similarities or differences between

neighbouring provinces, but no interannual variability. The

inclusion of random spatial and temporal structures in the

model allowed us to account for unknown or unobserved

confounding factors that influence the dengue transmission

patterns, by introducing an extra source of variability into

the model in a hierarchical framework. Model parameters

were estimated within a Bayesian framework using Inte-

grated Nested Laplace Approximation (INLA, www.r-inla.

org) (Martins et al. 2013; Rue et al. 2009). INLA is a

promising alternative to Markov Chain Monte Carlo

(MCMC) methods, due to much shorter computational

times. This approach provides a novel opportunity to per-

form model selection in a Bayesian framework, while ac-

counting for underlying spatial and temporal dependency

structures and linear or nonlinear functional forms. Such

model selection would be extremely time and computing-

intensive using MCMC estimation methods (Craig et al.

2007; Lowe et al. 2013b). Using the INLA framework, it

was possible to determine optimum combinations of pre-

cipitation and temperature time lags, by fitting GLMMs

and GAMMs, multiple times each, changing one lag at a

time.

2.3 Model assessment

The goodness-of-fit of all models was assessed using the

deviance information criterion (DIC) (Spiegelhalter et al.

2002) and an R2
LR statistic for mixed effects models based

bFig. 1 Example data table: Weekly Epidemiological Surveillance

Report Vol. 44 No. 1: January 11, 2013. Source: http://www.boe.

moph.go.th/

Fig. 2 a Spatial and b temporal distribution of dengue relative risk

(SMR) for the 76 provinces of Thailand, averaged over the period

1982–2013

Fig. 3 Annual precipitation a mean and b dispersion (standard deviation) in mm/day and annual temperature c mean and d dispersion (standard

deviation) in degrees Celsius, for the period 1982–2013, for each province in Thailand
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on a likelihood ratio (LR) test between the candidate model

(e.g. GLMM or GAMM) and an intercept only (null) model

(Kramer 2005; Magee 1990). Smaller values of DIC indi-

cate a better-fitting model, while 0�R2
LR � 1, with R2

LR ¼
1 corresponding to a perfect fit, and R2

LR � 0 for any rea-

sonable model specification. While information criteria can

help decide which candidate model is best, they do not

provide information about the amount of variation ex-

plained by the model. R2
LR is useful as a measure of

goodness-of-fit and provides an intuitive measure of the

ability of the model to account for the variation in the

dependent variable.

The added value of including climate covariates in the

model framework was assessed by calculating the root

mean squared error (RMSE), a measure of the difference

between modelled and observed values, over the 32 year

time period, for each province (Lowe et al. 2013b). Smaller

values of RMSE indicate a better fitting model. The dif-

ference between the RMSE for the model excluding

climate information, i.e. the seasonal-spatial model and the

RMSE for the model including climate as (a) linear

(GLMM) and (b) nonlinear (GAMM) functions was cal-

culated. Provinces with positive values (RMSEnoclimate-

RMSEclimate[ 0) indicate that accounting for climate

variability improves the estimation of dengue relative risk

in these places, as its inclusion results in a smaller differ-

ence between the modelled values and the observations,

than using the seasonal-spatial model alone.

3 Results

Table 1 shows model adequacy results for models of in-

creasing complexity. First, we fitted a seasonal model, to

account for the annual cycle in dengue. This model was

found to explain 26 % of the variation in dengue relative

risk. This annual cycle in dengue is closely related to the

annual cycle in precipitation and temperature (see Fig. 4).

We then included location specific overdispersion and a

neighbourhood dependency structure in the model, to ac-

count for unobserved confounding factors such as ur-

banisation and socio-economic disparities. This explained

32 %, an additional 6 % of the variance. Using the sea-

sonal-spatial model as a base, we then added different

combinations of precipitation and mean temperature at

time lags ranging from 0–12 months (169 different

GLMMs/GAMMs were fitted). Figure 5 shows contour

plots of of R2
LR for varying precipitation and mean tem-

perature time lags when including these variables as (a)

linear functions (GLMM) and (b) nonlinear functions

(GAMM) (note: both maximum and minimum temperature

were also tested, but mean temperature gave slightly higher

R2
LR values). Overall, slightly more variance in dengue

relative risk was explained by using nonlinear functions of

climate. For both the linear and nonlinear models, there

was a peak in variance at all precipitation lags for tem-

perature, lag 1. Given temperature lag 1, two maxima were

found at precipitation lag 1 and lag 5. Given findings from

previous literature and knowledge of dengue epidemiology

of the relationships between climate and dengue, a GLMM

and GAMM with both precipitation and temperature lag-

ged by 1 month were selected for further analysis (see

Table 1). The linear and nonlinear climate models ex-

plained 39 and 40 %; an additional 7 and 8 % respectively,

in addition to the variation explained by seasonality and

spatial structures.

Figure 6a shows the contribution to dengue relative risk

for each month (seasonality), with a peak in July from the

selected GAMM. Similarly, Fig. 6b shows the relative risk

provided by different provinces, based on latent overdis-

persion and dependencies between neighbouring provinces,

Fig. 4 Distribution of a dengue relative risk (SMR), b average

precipitation and c average temperature for each calendar month

across Thailand for the period 1982–2013
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Table 1 Goodness-of-fit results

Model Relative risk log DIC R2
LR

Seasonal (autocorrelated annual cycle) log qst = a ? xt’(t) 278963.2 0.26

Seasonal-spatial (… ? spatial structure) log qst = a ? xt’(t) ? us ? ts 276685.9 0.32

Climate-linear (… ? rainfall, lag 1 ? temperature, lag 1) log qst = a ? xt’(t) ? us ? ts ?b1x1st-1 ?b2x2st-1 273850.2 0.39

Climate-nonlinear (… ? rainfall, lag 1 ? temperature, lag 1) log qst = a ? xt’(t) ? us ? ts ? f(x1st-1) ? f(x2st-1) 273084.4 0.40

Models are ranked by the deviance information criterion (DIC) and a likelihood ratio R2
LR statistic

Fig. 6 Dengue relative risk contribution for a each month and b each province. Values greater (less) than one show % increase (decrease)

Fig. 5 Surface of R2
LR at varying time lags in precipitation and temperature (0–12 months) for 169 models including a linear climate and

b nonlinear climate functional forms
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with an overall greater relative risk in the northwest of the

country, along the border with Myanmar. Figure 7 shows

the nonlinear relationships between precipitation/tem-

perature and dengue relative risk from the selected

GAMM. There is a general increase in relative risk as both

variables increase, with increased uncertainty estimates for

more extreme precipitation and temperature, which could

inhibit dengue transmission. Note, that for the GLMM, the

posterior median estimate for precipitation was 1.029

(95 % CI: 1.024, 1.035) and for temperature, 1.428 (95 %

CI: 1.409, 1.447). This can be interpreted as an ap-

proximately 3 % increase in dengue relative risk for a unit

increase in precipitation and a 40 % increase in dengue

relative risk for a unit increase in temperature.

Figure 8 shows the added value of including climate

information in addition to the seasonal-spatial model terms.

When including climate as linear covariates, the modelled

dengue relative risk is closer to observed values for 57 %

of the Thai provinces. When climate factors are modelled

as nonlinear functions, this proportion increases to 79 %.

The added value of climate information overlays the road

network and elevation in the country. Climate appears to

provide added value in provinces located in highland areas

and some provinces located on the border with Malaysia,

Cambodia, Laos and Myanmar.

4 Discussion

In this study, the most adequate model of dengue relative

risk, driven by climate factors, was determined using a

novel Bayesian model selection framework and expert

knowledge of dengue epidemiology. We quantified the

additional variation explained by interannual climate var-

iations at different time lags, above that provided by the

seasonal-spatial model. GLMMs and GAMMs with pre-

cipitation and temperature lagged by 1 month were se-

lected for further investigation. The positive relationship

between the clinical dengue relative risk and the tem-

perature and precipitation the month before is consistent

with what is classically known for the positive temperature

relationship with developmental time of the mosquito and

the virus within the mosquito at near optimal conditions

(Christophers 1960; Watts et al. 1987). Mosquito eggs will

hatch in 2 days following submersion in water with warm

ambient temperature and then progress through larval and

pupal development to emerge as adults in as little as 6 days

later. Mating and subsequent bloodfeeding on infectious

hosts could generate infectious mosquitoes within 10 days.

Thus, propitious ambient temperatures and sufficient rain-

fall generating breeding sites can lead to the rapid expan-

sion of the infectious mosquito population and the infected

human population within a month.

We also found a peak in model adequacy with tem-

perature in the previous month, but precipitation

4–6 months previously. In addition, both the linear and

nonlinear relationship between relative risk of clinical

dengue and precipitation 4–6 months previously was

negative. This feature is curious and deserves further in-

vestigation. One plausible explanation for this is the effect

of homotypic or even heterotypic short-term immunity,

where significant rainfall 4–6 months previously would

lead to dengue transmission and hence deplenish the sus-

ceptible population. Consequently, the relative risk of

Fig. 7 The relative risk of dengue as a function of a mean precipitation and b mean temperature in the previous month. The solid line represents

the median relative risk and the dotted lines, the 95% credible intervals. The red dashed line marks the point of no change in relative risk
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clinical dengue 4–6 months later is reduced because of a

reduced susceptible population, despite conditions propi-

tious for dengue transmission. This may occur irrespective

of the circulating serotype as homotypic immunity is be-

lieved to be life-long (Sabin 1952) and heterotypic im-

munity is estimated to last from 3 months to a year (Reich

et al. 2013; Sabin 1952). The latter may not prevent in-

fection, but rather reduce clinical disease (Endy et al. 2011;

Grange et al. 2014; Sabin 1952). Additionally, heavy rains

can ‘‘wash-out’’ mosquito breeding sites, resulting in short-

term population crashes. However, given the urban niche

of Ae. aegypti, whilst wash-out may impact outdoor arti-

ficial/natural breeding sites, the majority of house proximal

breeding sites (a predilection for Ae. aegypti) would likely

remain relatively unaffected. Moreover, the delay of

4–6 months between the heavy rains and the drop in den-

gue incidence would require a considerable knock-on ef-

fect on mosquito densities, given that the life cycle is a

matter of weeks. The long term effect of wash-out could,

however, have longer term effects if there was a subsequent

anomalously dry period that thus deprived mosquitoes of

new breeding sites. However, given the domesticated

breeding habits of this mosquito, this is unlikely. The ob-

served negative relationship could thus be the result of a

direct negative effect on mosquito densities and an indirect

effect on the susceptibility of the population to dengue

disease.

Overall, a model including seasonal-spatial dependency

structures alone accounted for 32 % of the variance in

dengue relative risk. When nonlinear functions of pre-

cipitation and temperature in the previous month were in-

cluded, the variance explained increased to 40 %. The

seasonality in dengue is mostly driven by the annual cycle

in climatic factors, determined by the southwest monsoon.

However, by accounting for interannual variations in pre-

cipitation and temperature in the previous month, an

additional 8 % of the variance in dengue relative risk is

gained. Several previous studies that use climate to model

dengue fever include an autoregressive time series com-

ponent based on the idea that the current value of the time

series can be explained as a function of past values (Hii

et al. 2012; Tipayamongkholgul et al. 2009). However,

these studies do not always separate the contribution of an

autoregressive lagged disease term from the contribution of

climate covariates to the variance explained by such a

model. Elevated R2 values are often reported for models

that include both climate and dengue in the previous time

step, despite the fact that a large proportion of the variance

is likely attributed to the autoregressive dengue term. It is

advisable to test the added value of climate, without in-

cluding these terms in the model, to gauge a more realistic

idea of the added value provided by climate factors. Fur-

ther, autoregressive terms with only 1 week or month lag

offer little, if any, advance warning of an impending epi-

demic as the collation of such data may not be feasible in

advance of the time period for which the forecast is valid.

In practice, seasonal forecasts of the climate, with lead

times up to several months ahead, would be the only fea-

sible option to provide timely early warning of dengue

epidemics (Lowe et al. 2014).

By comparing observed dengue to modelled dengue,

using the seasonal-spatial model and the models including

climate, we found that the inclusion of nonlinear functions

of climate improved the model for 79 % of the provinces.

Provinces with no improvement indicate areas where

more complex processes might influence dengue risk.

Climate is likely to impact rural and urban areas differ-

ently while socio-economic conditions and vector control

disparities will play a role in determining dengue risk.

Ideally, other interannual signatures, such as serotype

circulation and human mobility patterns would be in-

cluded in the model.

Fig. 8 Difference between

RMSE for the model excluding

climate information and RMSE

for the model including climate

as a linear (GLMM) and

b nonlinear (GAMM) functions.

Provinces with positive values

(purple) suggest that climate

information improves the model

in these areas. Provinces with

negative values (light blue)

suggest that climate information

does not improve the model
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5 Conclusion

Once accounting for spatial–temporal confounding factors,

non-linear functions of temperature and precipitation were

found to have a statistically significant contribution to the

relative risk of dengue in the following month. Therefore,

forecast climate information, which predicts anomalous

climate patterns several months in advance, has potential

utility in a dengue decision support system for Thailand.

Taking advantage of climate forecast lead times, public

health authorities will be better able to put into place com-

munity communication campaigns to increase public

awareness of the ensuing epidemic season and encourage

community based environmental hygiene to reduce the

mosquito breeding sites. Dengue control can in principle be

achieved when campaigns focus on larval source reduction

(Gubler 1998) and community participation has long been

recognised as offering good potential as part of an integrated

control programme (Townson et al. 2005). However,

maintaining active participation over a long period of time is

a challenge and there is ample evidence that source reduc-

tion methods are often implemented poorly and conse-

quently have little impact (Chadee et al. 2005; Hayes et al.

2003). Therefore, forecasts offer an evidence-base for acti-

vating community programs over a restricted period of time.

In addition, advanced warning would enable the imple-

mentation of a more effective surveillance system. Dengue

epidemiology has a forest-fire signature with urban spreading

of dengue virus via human mobility that is followed by local

expansion. This suggests that the best way to tackle an epi-

demic is to rapidly target mosquitoes in the area around the

dengue cases. Rapid detection of the first seasonal dengue

cases and focused mosquito eradication should slow down the

spread of the virus. Current fumigation methodologies are

ineffective, in part because the insecticide dissipates rapidly

with no or little residual action (Reiter 2014). However, there

are an increasing number of novel insecticidal techniques that

offer potential for more effective vector control (Devine et al.

2009; Ritchie and Devine 2013). An increased state of alert

during a limited time period, made possible through climate-

driven dengue forecasts, and rapid implementation of insec-

ticidal methodologies that have residual action offer immense

potential to help control dengue epidemics.

The model framework presented here is extremely

flexible and could be applied to model spatio-temporal

dengue variation in any geographical setting. This would

facilitate between country comparisons of the impact of

climate on dengue fever and contribute towards a more

global approach to assessing the impact of climate vari-

ability and climate change on dengue risk.
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Carvalho M, Barcellos C (2011) Spatio-temporal modelling of

climate-sensitive disease risk: towards an early warning system

for dengue in Brazil. Comput Geosci 37:371–381

Lowe R, Bailey TC, Stephenson DB, Jupp TE, Graham RJ, Barcellos

C, Carvalho MS (2013a) The development of an early warning

system for climate-sensitive disease risk with a focus on dengue

epidemics in Southeast Brazil. Stat Med 32:864–883

Lowe R, Chirombo J, Tompkins AM (2013b) Relative importance of

climatic, geographic and socio-economic determinants of malar-

ia in Malawi. Malar J 12:416

Lowe R, Barcellos C, Coelho CA, Bailey TC, Coelho GE, Graham R,

Jupp T, Ramalho WM, Carvalho MS, Stephenson DB et al

(2014) Dengue outlook for the World Cup in Brazil: an early

warning model framework driven by real-time seasonal climate

forecasts. Lancet Infect Dis 14:619–626

Magee L (1990) R 2 measures based on Wald and likelihood ratio

joint significance tests. Am Stat 44:250–253

Martins TG, Simpson D, Lindgren F, Rue, avard H (2013) Bayesian

computing with INLA: new features. Comput Stat Data Anal

67:68–83

Muttitanon W, Kongthong P, Kongkanon C, Yoksan S, Nitatpattana

N, Gonzales J, Barbazan P (2004) Spatial and temporal dynamics

of Dengue Hemorrhagic Fever epidemics, Nakhon Pathom

province, Thailand, 1997–2001. Dengue Bull 28:35–43

Nagao Y, Koelle K (2008) Decreases in dengue transmission may act

to increase the incidence of dengue hemorrhagic fever. Proc Natl

Acad Sci 105:2238–2243

Naish S, Dale P, Mackenzie JS, McBride J, Mengersen K, Tong S

(2014) Climate change and dengue: a critical and systematic

review of quantitative modelling approaches. BMC Infect Dis

14:167

Padmanabha H, Soto E, Mosquera M, Lord C, Lounibos L (2010)

Ecological links between water storage behaviors and Aedes

aegypti production: implications for dengue vector control in

variable climates. EcoHealth 7:78–90

Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S,

Yoon I-K, Gibbons RV, Burke DS, Cummings DA (2013)

Interactions between serotypes of dengue highlight epi-

demiological impact of cross-immunity. J R Soc Interface

10:20130414

Reiter P (2014) Surveillance and control of urban dengue vectors. In:

Gubler DJ, Ooi EE, Vasudevan S, Farrar J (eds) Dengue and

dengue hemorrhagic fever, 2nd edn. CAB International,

Wallingford, pp. 481–518

Ritchie SA, Devine GJ (2013) Confusion, knock-down and kill of

Aedes aegypti using metofluthrin in domestic settings: a

powerful tool to prevent dengue transmission? Parasit. Vectors

6:1–9

Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference

for latent Gaussian models by using integrated nested Laplace

approximations. J R Stat Soc Ser B Stat Methodol 71:319–392

Sabin AB (1952) Research on dengue during World War II. Am J

Trop Med Hyg 1:30–50

Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG,

Strickman D, Kittayapong P, Edman JD (2000) Longitudinal

studies of Aedes aegypti (Diptera: Culicidae) in Thailand and

Puerto Rico: blood feeding frequency. J Med Entomol

37:89–101

Singhrattna N, Rajagopalan B, Kumar KK, Clark M (2005) Interan-

nual and interdecadal variability of Thailand summer monsoon

season. J Clim 18:1697–1708

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002)

Bayesian measures of model complexity and fit. J R Stat Soc Ser

B Stat Methodol 64:583–639

Stewart-Ibarra AM, Lowe R (2013) Climate and non-climate drivers

of dengue epidemics in southern coastal Ecuador. Am J Trop

Med Hyg 88:971–981

Stoch Environ Res Risk Assess (2016) 30:2067–2078 2077

123

http://dx.doi.org/10.3389/fimmu.2014.00280
http://dx.doi.org/10.1371/journal.pmed.1000168
http://dx.doi.org/10.1371/journal.pmed.1000168


Thai KT, Anders KL (2011) The role of climate variability and

change in the transmission dynamics and geographic distribution

of dengue. Exp Biol Med 236:944–954

Tipayamongkholgul M, Fang CT, Klinchan S, Liu CM, King CC

(2009) Effects of the El Niño-Southern Oscillation on dengue

epidemics in Thailand, 1996–2005. BMC Public Health 9:1–15

Tjaden NB, Thomas SM, Fischer D, Beierkuhnlein C (2013) Extrinsic

incubation period of dengue: knowledge, backlog, and applica-

tions of temperature dependence. PLoS Negl Trop Dis 7:e2207

Townson H, Nathan M, Zaim M, Guillet P, Manga L, Bos R,

Kindhauser M (2005) Exploiting the potential of vector control

for disease prevention. Bull World Health Organ 83:942–947

Watts D, Burke D, Harrison B, Whitmire R, Nisalak A (1987) Effect

of temperature on the vector efficiency of Aedes aegypti for

dengue 2 virus. Am J Trop Med Hyg 36:143–152

Wichmann O, Yoon I-K, Vong S, Limkittikul K, Gibbons RV,

Mammen MP, Ly S, Buchy P, Sirivichayakul C, Buathong R

et al (2011) Dengue in Thailand and Cambodia: an assessment of

the degree of underrecognized disease burden based on reported

cases. PLoS Negl Trop Dis 5:e996

Wu P-C, Guo H-R, Lung S-C, Lin C-Y, Su H-J (2007) Weather as an

effective predictor for occurrence of dengue fever in Taiwan.

Acta Trop 103:50–57

Yu H-L, Yang S-J, Yen H-J, Christakos G (2011) A spatio-temporal

climate-based model of early dengue fever warning in southern

Taiwan. Stoch Environ Res Risk Assess 25:485–494

2078 Stoch Environ Res Risk Assess (2016) 30:2067–2078

123


	Quantifying the added value of climate information in a spatio-temporal dengue model
	Abstract
	Introduction
	Methods
	Data
	Dengue data
	Meteorological data

	Model formulation
	Model assessment

	Results
	Discussion
	Conclusion
	Acknowledgments
	References




