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Abstract In this study, an inexact joint probabilistic

programming (IJPP) approach is developed for risk

assessment and uncertainty reflection in water resources

management systems. IJPP can dominate random param-

eters in the model’s left- and right-hand sides of constraints

and interval parameters in the objective function. It can

also help examine the risk of violating joint probabilistic

constraints, which allows an increased robustness in con-

trolling system risk in the optimization process. Moreover,

it can facilitate analyses of various policy scenarios that are

associated with different levels of economic consequences

when the promised targets are violated within a multistage

context. The IJPP method is then applied to a case study of

planning water resources allocation within a multi-reser-

voir and multi-period context. Solutions of system benefit,

economic penalty, water shortage, and water-allocation

pattern vary with different risks of violating water-demand

targets from multiple competitive users. Results also

demonstrate that different users possess different water-

guarantee ratios and different water-allocation priorities.

The results can be used for helping water resources man-

agers to identify desired system designs against water

shortage and for risk control, and to determine which of

these designs can most efficiently accomplish optimizing

the system objective under uncertainty.

Keywords Joint probability � Management � Multistage �
Risk assessment � Uncertainty � Water resources

1 Introduction

In water resources management problems, many system

parameters and their inter-relationships may appear

uncertain (Li et al. 2008). For instance, the random char-

acteristics of available water quantity assumed to follow

probability distribution, that are related to a number of

natural and human-induced impacts such as the flows of

rivers, streams and lakes, varied precipitation, evapo-

transpiration, and runoff levels; the randomness of water

demand associated with the rapid population increase and

speedy economic development are possible sources of the

uncertainties. Correspondingly, it is desired to develop a

more efficient, equitable, and environmentally-benign

management plan to water resources allocation among

multiple competing users within a basin context under

various uncertainties and complexities. Previously, many

researchers employed stochastic mathematical program-

ming (SMP) methods for planning water resources man-

agement under uncertainty (Kasiviswanathan and Sudheer

2013; Kriauciuniene et al. 2013; Li and Huang 2013; Syme

2014). SMP is an extension of mathematical programming

to decision problems whose coefficients (input data) are not

certainly known but could be represented as chances or

probabilities (Birge 1985; Huang 1998). For example,

Morgan et al. (1993) proposed a mixed integer chance-

constrained programming method that considered
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uncertainty in all linear programming constraint coeffi-

cients and did not require a prior knowledge of the distri-

bution in a groundwater remediation problem. Huang and

Loucks (2000) developed an inexact two-stage stochastic

programming model for dealing with uncertainties

expressed as discrete intervals and random variables in

water resources management problems. Watkins et al.

(2000) proposed a multistage scenario-based stochastic

programming model for planning water supplies from

highland lakes, where dynamics and uncertainties of water

availability (and thus water-allocation) could be taken into

account through generation of multiple representative

scenarios. Li et al. (2006) developed an interval-parameter

multistage stochastic programming method for water

resources decision making under uncertainty, which could

deal with uncertainties expressed as discrete random vari-

ables and intervals through constructing a set of scenarios

that are representative for the universe of possible out-

comes. Tilmant et al. (2008) presented a stochastic pro-

gramming approach for assessing the statistical distribution

of marginal water values in multipurpose multi-reservoir

systems where water managers faced complex spatial and

temporal trade-offs to track site and time changes in water

values across different hydrologic conditions. Andrieu

et al. (2010) proposed a joint dynamic chance constraints

model in the case of continuous distribution for reservoir

management, where the ideas of multistage stochastic

programming are adapted to the situation of chance con-

straints; the model was particularly useful in the presence

of independent random variables but worked equally well

in the case of correlated variables. Housh et al. (2013)

proposed a limited multistage stochastic programming

method, in which the number of decision variables at each

stage remained constant; consequently, the method could

utilize the optimal decisions obtained by solving a set of

deterministic optimization problems to identify decision

nodes and the methodology was demonstrated on a multi-

stage water supply system operation problem.

Among these SMP methods, multistage stochastic pro-

gramming (MSP) improved upon the conventional SMP

methods by permitting revised decisions in each time stage

based on the uncertainty realized so far (Li et al. 2006); the

primary advantage of the MSP was its flexibility in mod-

eling the decision process and defining all possible sce-

narios (Birge 1985). Chance-constrained programming

(CCP) was effective for solving optimization problems

with random variables included in constraints and some-

times in the objective function as well (Charnes and Coo-

per 1959). CCP could reflect the reliability of satisfying (or

risk of violating) system constraints under uncertainty

when the probability distributions are available without

requiring the constraints are totally satisfied (Charnes and

Cooper 1983). However, due to the frequently observed

lack of convexity and/or smoothness, stochastic programs

with joint probabilistic constraints (JPC) were considered

as a hard type of chance constrained optimization problems

(Zhang et al. 2002). In JPC, at least, the total set of

uncertain constraints were enforced to be satisfied one

probability level, which allowed more robustness in con-

trolling system risk in optimization process (Li et al. 2009).

However, when uncertainties were presented as the ran-

domness in the left-hand-sides of the constraints, the con-

ventional JPC method could hardly reflect such uncertainty

due to the difficulty in solving the caused nonlinear forms.

Sun et al. (2013) proposed an inexact joint-probabilistic

left-hand-side chance-constrained programming (IJCP)

method for municipal solid waste management; the IJCP

integrated techniques of interval-parameter programming

(IPP) and left-hand-side chance-constrained programming

within a general framework, such that uncertainties

expressed as interval values and left-hand-side random

variables were tackled. However, the IJCP was incapable

of analyzing various policy scenarios that were associated

with different levels of economic penalties when the

promised targets were violated, especially for large-scale

problems with sequential structure.

Therefore, the objective of this study is to develop an

inexact joint probabilistic programming (IJPP) approach for

solving random parameters in the model’s left- and right-

hand sides of constraints and interval parameters in the

objective function within amultistage context. Penalties will

be exercisedwith recourse against any infeasibility, such that

the IJPP can be used for analyzing various policy scenarios

that are associated with different levels of economic conse-

quences when the promised water-allocation targets are

violated. The IJPP can also help examine the risk of violating

joint probabilistic constraints, which allows an increased

robustness in controlling system risk in the optimization

process. A case study will then be provided for demon-

strating how the developedmethod will support the planning

of water resources management within a multi-user, multi-

reservoir and multi-period context.

2 Model development

For water resources management within a multi-user sys-

tem, uncertainties presented in terms of joint probabilities

may exist among multiple users to satisfy their water

demands (i.e., a level of probability represents the admis-

sible risk of violating the uncertain satisfactory con-

straints). The technique of JPC can be used for dealing with

such complexities (Miller and Wager 1965; Charnes and

Cooper 1983; Li et al. 2009). A general JPC formulation

can be expressed as (Miller and Wager 1965):
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Max cTx ð1aÞ

subject to:

PðTsx� es; s ¼ 1; 2; . . .; m3Þ� q ð1bÞ
Ax� b ð1cÞ
x� 0 ð1dÞ

Obviously, in JPC, the entire set of uncertain constraints

are enforced to be satisfied with at least a joint probability

of q; thus, an increased robustness in controlling the system

risk can be accomplished (Zhang et al. 2002; Lejeune and

Prekopa 2005). Model (1) is generally nonlinear and pos-

sibly non-convex due to the existence of joint probabilities

for multiple random variables (es). By letting the random

variables take a set of individual probabilistic constraints,

the JPC problem can be equivalently formulated as a linear

programming model as follows (Lejeune and Prekopa

2005):

Max cTx ð2aÞ

subject to:

Tsx�F�1
s ðqsÞ; s ¼ 1; 2; . . .; m3 ð2bÞ

Xms

s¼1

ð1� qsÞ� 1� q ð2cÞ

Ax� b ð2dÞ
x� 0 ð2eÞ

where qs (s = 1, 2,…, m3) are individual probabilities

constrained to be larger than or equal to q, and F�1
s refer to

inverse probability distributions of the random variables

(es). An improved joint-probabilistic programming (IJP)

technique is proposed to reflect the randomness uncer-

tainties in the left-hand-sides of constraints. In a linear

programming problem, when the left-hand-sides (aij) of

constraints are expressed as random parameters with nor-

mal distributions (lij is expectation and rij is standard

variation), the related constraints are satisfied at a certain

probability (1 - qi). Thus, an IJP model can be formulated

as follows (Abdelaziz et al. 2007; Zhang et al. 2011):

Max f ¼
Xn

j¼1

cjxj ð3aÞ

subject to:

Pr
Xn

j¼1

aij xð Þxj � bj

( )
� 1� qi; i ¼ 1; 2; . . .; m ð3bÞ

Xm

i¼1

qi � q ð3cÞ

aij xð Þ�N uij; r
2
ij

� �
ð3dÞ

xj � 0; j ¼ 1; 2; . . .; m ð3eÞ

where f is a linear objective function, xj is a real-number

decision variable, bj and cj are real-number parameters and

1 - q is a prescribed joint probability level at which the

entire set of uncertain constraints are enforced to be sat-

isfied. In real-world water resources management prob-

lems, complexities in water allocation problems where

interactive and dynamic relationships exist within a mul-

tistage context are desired to reflect. Besides, uncertain

parameters may be expressed as interval values with

known lower and upper bounds, but unknown membership

or distribution functions (Suo et al. 2013; Xu and Qin

2013). For uncertainties in left-and right-hand sides and

cost/revenue parameters in the objective function, an

extended consideration is the introduction of techniques of

IPP and MSP into the IJP framework. This leads to an IJPP

model as follows:

Max f� ¼
XT

t¼1

C�
t X

�
t �

XT

t¼1

XKt

k¼1

ptkD
�
tkY

�
tk ð4aÞ

subject to:

A�
rtX

�
t �B�

rt ; r ¼ 1; 2; . . .; m1; t ¼ 1; 2; . . .; T ð4bÞ

A�
it X

�
t þ A

0�
itkY

�
tk � ~w�

itk; i ¼ 1; 2; . . .; m2;
t ¼ 1; 2; . . .; T ; k ¼ 1; 2; . . .; Kt

ð4cÞ

Pr ast xð ÞA�
stX

�
t �B�

st

� �
� 1� qs; s ¼ 1; 2; . . .; m3;

t ¼ 1; 2; . . .; T

ð4dÞ

ast xð Þ�N ust; r
2
st

� �
; 8s; t ð4eÞ

Xm3

s¼1

qs � q ð4fÞ

x�jt � 0; x�jt 2 X�
t ; j ¼ 1; 2; . . .; n1; t ¼ 1; 2; . . .; T

ð4gÞ

y�jtk � 0; y�jtk 2 Y�
tk ; j ¼ 1; 2; . . .; n2; t ¼ 1; 2; . . .; T ;

k ¼ 1; 2; . . .; Kt

ð4hÞ

where superscripts ‘-’ and ‘?’ represent lower and upper

bounds of the interval parameters, respectively. Moreover,

the IJPP model forms a non-linear programming one, due

to the reflection of uncertainties of randomness in the left-

and right-hand sides simultaneously in constraint (4d),

which can hardly be solved through general arithmetic

algorithms. An alternative solution for model (4) is that the

constraint (4d) can be reformulated to its approximated
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linearization form (Sun et al. 2013). Thus, model (4) can be

converted into:

Max f� ¼
XT

t¼1

C�
t X

�
t �

XT

t¼1

XKt

k¼1

ptkD
�
tkY

�
tk ð5aÞ

subject to:

A�
rtX

�
t �B�

rt ; r ¼ 1; 2; . . .; m1; t ¼ 1; 2; . . .; T ð5bÞ

A�
it X

�
t þ A

0�
itkY

�
tk � ~w�

itk; i ¼ 1; 2; . . .; m2;
t ¼ 1; 2; . . .; T ; k ¼ 1; 2; . . .; Kt

ð5cÞ

A�
stX

�
t ust þ rst/

�1 1� qsð Þ
� �

�B�
st ; s ¼ 1; 2; . . .; m3;

t ¼ 1; 2; . . .; T ð5dÞ
Xm3

s¼1

qs � q ð5eÞ

x�jt � 0; x�jt 2 X�
t ; j ¼ 1; 2; . . .; n1; t ¼ 1; 2; . . .; T

ð5fÞ

y�jtk � 0; y�jtk 2 Y�
tk ; j ¼ 1; 2; . . .; n2; t ¼ 1; 2; . . .; T;

k ¼ 1; 2; . . .; Kt ð5gÞ

where /�1 is the inverse cumulative distribution function

of a standard normal random variable. A two-step solu-

tion method is proposed for solving the IJPP model. The

sub-model corresponding to fþ can be formulated in the

first step when the system objective is to be maximized;

the other sub-model (corresponding to f�) can then be

formulated based on the solution of the first sub-model.

Thus, the first sub-model is (assume that B� [ 0 and

f� [ 0):

Max fþ ¼
XT

t¼1

ð
Xj1

j¼1

cþjt x
þ
jt þ

Xn1

j¼j1þ1

cþjt x
�
jt Þ

�
XT

t¼1

XKt

k¼1

ptk
Xj2

j¼1

d�jtky
�
jtk þ

Xn2

j¼j2þ1

d�jtky
þ
jtk

 !

ð6aÞ

subject to:

Xj1

j¼1

arjt
�� ���Sign(a�rjtÞxþjt þ

Xn1

j¼j1þ1

arjt
�� ��þSign(aþrjtÞx�jt � bþrt ;

8r; t
ð6bÞ

Xj1

j¼1

asjt
�� ���Sign(a�sjtÞxþjt þ

Xn1

j¼j1þ1

asjt
�� ��þSign(aþsjtÞx�jt

" #

ust þ rst/
�1 1� qsð Þ

� �
� bþst ; 8s; t ð6cÞ

Xj1

j¼1

aijt
�� ���Sign(a�ijtÞxþjt þ

Xn1

j¼j1þ1

aijt
�� ��þSign(aþijtÞx�jt

þ
Xj2

j¼1

a
0

ijtk

���
���
þ
Sign(a

0þ
ijtkÞy�jtk

þ
Xn2

j¼j2þ1

a
0

ijtk

���
���
�
Sign(a

0�
ijt Þyþjtk � ~wþ

itk ;

8i; t; k ¼ 1; 2; . . .; Kt

ð6dÞ

Xm3

s¼1

qs � q ð6eÞ

xþjt � 0; 8t; j ¼ 1; 2; . . .; j1 ð6fÞ

x�jt � 0; 8t; j ¼ j1 þ 1; j1 þ 2; . . .; n1 ð6gÞ

y�jtk � 0; 8t; j ¼ 1; 2; . . .; j2; k ¼ 1; 2; . . .; Kt

ð6hÞ

yþjtk � 0; 8t; j ¼ j2 þ 1; j2 þ 2; . . .; n2;

k ¼ 1; 2; . . .; Kt

ð6iÞ

Let x�jt ð j ¼ 1; 2; . . .; j1Þ be variables with positive

coefficients in the objective function, x�jt ð j ¼ j1 þ 1; j1 þ
2; . . .; n1Þ be variables with negative coefficients, y�jtkð j ¼
1; 2; . . .; j2 and k ¼ 1; 2; . . .; KtÞ be recourse variables

with positive coefficients in the objective function, and

y�jtkð j ¼ j2 þ 1; j2 þ 2; . . .; n2 and k ¼ 1; 2; . . .; KtÞ be

recourse variables with negative coefficients. Solutions of

xþjtoptð j ¼ 1; 2; . . .; j1Þ, and x�jtoptð j ¼ j1 þ 1; j1 þ 2; . . .;

n1Þ, y�jtkoptðj ¼ 1; 2; . . .; j2 and k ¼ 1; 2; . . .; KtÞ, and

yþjtkoptð j ¼ j2 þ 1; j2 þ 2; . . .; n2 and k ¼ 1; 2; . . .; KtÞ
can be obtained through solving sub-model (6). Based on

the above solutions, the second sub-model corresponding

to f� can be formulated as follows:

Max f� ¼
XT

t¼1

ð
Xj1

j¼1

c�jt x
�
jt þ

Xn1

j¼j1þ1

c�jt x
þ
jt Þ

�
XT

t¼1

XKt

k¼1

ptkð
Xj2

j¼1

dþjtky
þ
jtk þ

Xn2

j¼j2þ1

dþjtky
�
jtkÞ ð7aÞ

subject to:

Xj1

j¼1

arjt
�� ��þSign(aþrjtÞx�jt þ

Xn1

j¼j1þ1

arjt
�� ���Sign(a�rjtÞxþjt � b�rt ;

8r; t
ð7bÞ

Xj1

j¼1

asjt
�� ��þSign(aþsjtÞx�jt þ

Xn1

j¼j1þ1

asjt
�� ���Sign(a�sjtÞxþjt

" #

ust þ rst/
�1 1� qsð Þ

� �
� b�st ; 8s; t ð7cÞ
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Xj1

j¼1

aijt
�� ��þSign(aþijtÞx�jt þ

Xn1

j¼j1þ1

aijt
�� ���Sign(a�ijtÞxþjt

þ
Xj2

j¼1

a
0

ijtk

���
���
�
Sign(a

0�
ijtkÞyþjtk

þ
Xn2

j¼j2þ1

a
0

ijtk

���
���
þ
Sign(a

0þ
ijt Þy�jtk � ~w�

itk ;

8i; t; k ¼ 1; 2; . . .; Kt

ð7dÞ

Xm3

s¼1

qs � q ð7eÞ

0� x�jt � xþjtopt; 8t; j ¼ 1; 2; . . .; j1 ð7fÞ

xþjt � x�jtopt; 8t; j ¼ j1 þ 1; j1 þ 2; . . .; n1 ð7gÞ

yþjtk � y�jtkopt; 8t; j ¼ 1; 2; . . .; j2; k ¼ 1; 2; . . .; Kt

ð7hÞ

0� y�jtk � yþjtkopt; 8t; j ¼ j2 þ 1; j2 þ 2; . . .; n2;

k ¼ 1; 2; . . .; Kt

ð7iÞ

Solutions of x�jtoptð j ¼ 1; 2; : : : ; j1Þ,
xþjtoptðj ¼ j1 þ 1; j1 þ 2; . . .; n1Þ, yþjtkoptðj ¼ 1; 2; . . .; j2

and k ¼ 1; 2; . . .; KtÞ, and y�jtkoptðj ¼ j2 þ 1; j2 þ
2; . . .; n2 and k ¼ 1; 2; . . .; KtÞ can be obtained through

solving sub-model (7). Therefore, combining solutions of

sub-models (6) and (7), solution for the IJPP model can be

expressed as follows:

x�jtopt ¼ x�jtopt; x
þ
jtopt

h i
; j ¼ 1; 2; . . .; n1; 8t ð8aÞ

y�jtkopt ¼ y�jtkopt; y
þ
jtkopt

h i
; j ¼ 1; 2; . . .; n2;

k ¼ 1; 2; . . .; Kt; 8t
ð8bÞ

f�opt ¼ f�opt; f
þ
opt

h i
ð8cÞ

3 Case study

The following water resources management problem is

used to demonstrate applicability of the IJPP method.

Consider a case in which a manager is responsible for

allocating water from two unregulated reservoirs to three

users: a municipality, an industrial unit, and an agricultural

sector. Owing to the extremely uneven distributions of

precipitation, the available water resources present a

remarkable pattern of seasonal variations (Li et al. 2006;

Fayaed et al. 2013; Mahiny and Clarke 2013; Gibbs et al.

2014). In the wet seasons, high rainfall recharging into the

river may result in ample available water, total water

demands of users may be satisfied. While in the dry sea-

sons, low rainfall may result in insufficient available water;

there is not enough available water to satisfy all needs,

leading to that the competing water users would face the

water-shortage risk. Water shortage can pose a number of

impacts on water-resources management, the human life

and health, as well as industrial and agricultural develop-

ment. Otherwise to protect water supplies against short-

ages, the water may be obtained from more expensive

sources or the demand will be curtailed, resulting in pen-

alties (i.e., negative consequences) to the local economy

(Li and Huang 2009). Meanwhile, the effects of water

shortage and the need for clean water have led to compe-

tition and political strife among competing agricultural,

industrial, and municipal sectors. Moreover, with the

effects of the different characters of economic data and

water demand targets in these competing water users,

different water consumers have characters of different

guarantee ratios and different priorities from different

water supply schemes. The differentiation for each user

that the water user whom is more likely to engage in water

scarcity conflicts and more easily convinced to engage in

more shortages of water resources are existed in the water

resources management. If the targeted water is delivered,

revenues will be generated for each unit of water allocated;

however, if the targeted water is not delivered, penalties

will be generated from the shortfalls (Loucks et al. 1981;

Li et al. 2006).

In the study system, the stream inflow is random vari-

able with known probability distributions; the relevant

water allocation plan would be of dynamic feature over a

three-period context; and uncertainties also provided as

intervals for water-allocation targets and economic data

existed in water uses. Furthermore, in such a multi-user

system, uncertainties presented in terms of joint probabil-

ities are existed in terms of water availabilities among

multiple competing water users (i.e., the available water

may be fixed with a level of probability). Different joint

probabilities represent the different admissible risk of

violating the uncertain available water constraints and it

can be accounted as part of risk management to control

water shortage in order to avoid or mitigate the loss in

decision making processes. Additionally, a tradeoff may

exist between system benefit and constraint-violation risk

which often needs to be made in an attempt to find an

acceptable balance between reliability and vulnerability of

the system. In general, since uncertainties exist in water

resources management system components (provided as

intervals, randomness, joint probability, as well as dynamic

policy scenarios), the IJPP method can help to identify

desired water-allocation plans with a maximized net benefit

and a minimized water shortage risk. Thus, the study

problem can be formulated as follows:
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Max f� ¼
XI

i¼1

XT

t¼1

ðNB�
it � EX�

it ÞW�
it

�
XI

i¼1

XT

t¼1

XKt

k¼1

ptkC
�
it D

�
itk ð9aÞ

subject to:

S�1ðtþ1Þk ¼ S�1tk þ ~Q�
tk � A1ae1t

S�1t þ S�1ðtþ1Þ
2

 !
þ A10e1t

" #

� R�
1tk; 8t; k ¼ 1; 2; � � � ; Kt ð9bÞ

S�2ðtþ1Þk ¼ S�2tk þ R�
1tk � A2ae2t

S�2t þ S�2ðtþ1Þ
2

 !
þ A20e2t

" #

� R�
2tk; 8t; k ¼ 1; 2; . . .; Kt ð9cÞ

Pr
XI

i¼1

ðW�
it � D�

itkÞð1þ hmÞ�R�
2tk

( )
� 1� qm;

m ¼ 1; 2; 3

ð9dÞ

XM

m¼1

qm � q ð9eÞ

hm �Nðlm; r2mÞ ð9fÞ

S�ntk �RSC�
n ; 8t; n ¼ 1; 2; k ¼ 1; 2; . . .; Kt ð9gÞ

S�ntk �RSV�
n ; 8t; n ¼ 1; 2; k ¼ 1; 2; . . .; Kt ð9hÞ

W�
itmax �W�

it �D�
itk � 0; 8 i; t; k ð9iÞ

where A0 is the storage-area coefficient; Aa is the area per

unit of active storage volume above A0; PEit is the reduc-

tion of net benefit to user i per unit of water not delivered

during period t ($/m3), (PEit[NBit); EXit is the acquisition

cost, proportional to the amount of imported water to users

during period t ($/m3); Ditk is the shortage by which the

water-allocation target (Wit) is not met in period t under

scenario k (m3); et is the average evaporation rate in period

t; f is the net system benefit over the planning horizon ($); i

is the water user, i = 1, 2,…, I; Kt is the number of sce-

narios in period t; NBit is the net benefit to user i per unit of

water allocated during period t ($/m3); ptk is the probability

of occurrence for scenario k in period t, with ptk[ 0 andPKt

k¼1 ptk ¼ 1; Qtk is the random inflows into the river in

period t under scenario k (m3); Rtk is the release flows from

the river in period t under scenario k (m3); RSC is the

storage capacity of the river (m3); RSV is the reserved

storage level for the river (m3); Stk is the storage level in the

river in period t under scenario k (m3); t is the time period,

t = 1, 2,…, T; Wit is the fixed allocation target for water

that is promised to user i during period t (m3); Witmax is the

maximum demand amount for user i during period t (m3).

In the expression given by constraint (9d), the related

constraints are satisfied at a certain probability (1 - qm);

qm stands for individual probability and q stands for a pre-

determined joint probability denoting the acceptable risk-

level set by the decision-makers to violate the chance

constraint. In the above nonlinear programming model, the

water loss rates hm of the constraints are expressed as

random parameters with normal distributions (lm is

expectation and rm is standard variation).

Figure 1 shows the framework of IJPP method for

water-resources management. The objective is to maximize

the expected net system benefit through allocating the

water resources to multiple users over a multistage context.

Constraints (9b) and (9c) present the mass balance for

water resources in each time period (i.e., the change in

storage equals inflows minus releases and evaporation

losses), where the evaporation loss is assumed to be a linear

function of the average storage; constraint (9d) means that

the actual water allocated to the users must not exceed the

amount of water released from the reservoir, and this

constraint also allows the spill of extra water; constraint

(9 g) specifies that the storage amount must not exceed the

reservoir capacity under all scenarios; constraint (9 h)

requires that the storage will not lower a reserve level

under all scenarios; constraint (9i) indicates that the allo-

cated water must not exceed the users’ maximum

requirements and means that the shortage (i.e., decision

variable) must be nonnegative.

Table 1 shows the target demands from municipal

(including residential, tourism, and municipal services),

industrial (including livestock and fisheries, industry and

urban public facilities), and agricultural (including irriga-

tion, forestry and animal husbandry) sectors. The time

horizon of this study is divided into three planning periods.

Table 2 shows the availablewater resources in the river basin

and the associated probabilities of occurrence in three

planning periods. Shortages in water supply will occur if

insufficient water is available, such that the promised

demand targets cannot be satisfied (i.e., shortage = demand

target - available stream). Under such a situation, the actual

water-allocation value will be the difference between the

fixed demand and the probabilistic shortage (i.e., water

allocation = demand target - shortage). Table 3 presents

the related benefits and penalties. If the promisedwater is not

delivered, either the water must be obtained from higher

priced alternatives, or the demandsmust be curtailedwith the

costs of reduced industrial and/or agricultural productions.

These would then result in a reduction of net benefit (i.e.,

penalty) to each user (Loucks et al. 1981; Li et al. 2006). In

this case, random water availability with probability ptk was

used to construct three scenario trees for the planning hori-

zonwith a branching structure of 1–3–3–3. In detail, there are

one initial node at time 0 (the present) and three succeeding

ones in period 1; each node in period 1 has three succeeding

nodes in period 2, and so on for each node in period 3. These
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result in 27 nodes (scenarios) in period 3. Besides, the initial

storages in reservoirs 1 and 2 are [5.0, 40.0] and [10.0,

50.0] 9 106 m3, respectively; the storage capacities in res-

ervoirs 1 and 2 are [38.0, 56.0] and [36.0, 55.0] 9 106 m3,

respectively; the reserved storage levels in reservoirs 1 and 2

are [25.0, 28.0] and [30.0, 32.0] 9 106 m3. Water loss rates

are N (0.05, 0.072), N (0.04, 0.062) and N (0.03, 0.052) in the

three periods, respectively.

Industrial sector Municipal sector Agricultural sector

Economic and 
technical data

Dynamic variation of 
system components

Randomness in 
water availability

Policy analysis in 
water allocation

Limitation in 
water supply

Generation of the decision alternatives

Joint probability Interval parameterVarious policy scenarios

Policy analysis and uncertainty reflection

Water resources management 

Balance of multiple 
water-supply goals

Examination of the tradeoffs 
between system benefit and 

system reliability

Analysis of various 
policy scenarios 

Uncertainty Uncertainty

Multistage stochastic 
programming (MSP)

Joint probabilistic
 constraints (JPC)

Interval-parameter
 programming (IPP)

Inexact joint probabilistic programming 
(IJPP) model 

Risk analysis

 IJCP model 

Random variables

Fig. 1 Framework of IJPP method for planning water resources system

Table 1 Water allocation

targets
Time period

t = 1 t = 2 t = 3

Water allocation target (106 m3):

W1t (to municipal) [134.7, 156.4] [161.8, 190.2] [197.1, 231.4]

W2t (to industrial) [92.2, 110.8] [115.2, 140.6] [132.7, 164.5]

W3t (to agricultural) [131.6, 157.5] [123.2, 146.7] [112.6, 130.1]

Maximum water-allocation target (106 m3):

W1t max (to municipal) 207.8 229.4 257.6

W2t max (to industrial) 169.2 186.4 202.7

W3t max (to agricultural) 164.6 153.3 145.1
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4 Results and discussion

4.1 Result analysis

In this study, a number of cases associated with different

joint and individual probabilities (as listed in Table 4) were

examined. In the IJPP model, an increased q level means a

raised risk of violating joint-probabilistic constraints and,

at the same time, a decreased strictness for the satisfactory

level in meeting the water demand constraint, and vice

versa. To demonstrate the effect of robustness on the model

results, the system is optimized for violation joint proba-

bilities ranging from 0.01 (the most conservative) to 0.20

(the most radical). Meanwhile, at each level of joint

probability, two individual probabilities were considered.

For example, case 1 and case 2 are under the same joint

probability with different individual probabilities.

In the study area, the water resources are used to satisfy

the water needs from municipal, industrial, and agricultural

sectors. Deficits would occur if the available flows do not

meet the user’ demands over the planning horizon. The

solutions for most of the non-zero water shortages (D�
itk) are

interval numbers under the given targets, reflecting

potential system-condition variations due to uncertain

inputs. Particularly, based on the modeling solutions, it can

be concluded that there would be almost no water deficit

for the municipal user under most possible scenarios over

the planning periods. This implies that the optimized

allocated water would equal the water-allocation targets for

the municipality. Figures 2 and 3 present the optimized

lower- and upper-bound water shortage patterns for

industrial and agricultural sectors under case 3 (joint

probability = 0.05) and case 9 (joint probability = 0.20).

For industrial user under case 3, shortages may exist under

low, medium and high flow levels in period 1, (i.e.,

D�
211opt ¼ 92:2� 106m3, D�

212opt ¼ 56:1; 92:2½ 	 � 106m3,

and D�
213opt ¼ 0; 62:3½ 	 � 106m3). Similarly in period 2,

water shortages for the industry would be 115.2 9 106,

[58.7, 88.7] 9 106 and 0 m3, respectively, when the flow

levels are low, medium and high in period 2 (following a

low flow in period 1). In period 3, if the water levels are

low in the previous two periods, while flows in period 3 are

low, medium and high, then the water shortages would be

132.7 9 106, [94.6, 132.7] 9 106 and [0, 70.9] 9 106 m3,

respectively. In comparison, when the flows are high in the

previous two periods, there would be no shortage for all

users in period 3 even though the flow level in this period is

low (i.e., D�
1325opt ¼ D�

2325opt ¼ D�
3325opt ¼ 0). Moreover,

the water shortage pattern as well as shows a significant

difference between the agricultural and industrial sectors

over the planning periods. For example, while flows in

period 3 are low, medium and high (following a medium

Table 2 Stream flows (106 m3) Flow level Time period

t = 1 t = 2 t = 3

Probability Stream flow Probability Stream flow Probability Stream flow

Low (L) 0.2 [123, 146] 0.2 [136, 152.6] 0.2 [110.9, 152.6]

Medium (M) 0.6 [143, 206.1] 0.6 [211.7, 301.2] 0.6 [342.7, 471.7]

High (H) 0.2 [238.5, 312.7] 0.2 [441.7, 517] 0.2 [636.1, 702.8]

Table 3 Net benefit, penalty and acquisition cost

Time period

t = 1 t = 2 t = 3

Net benefit when water demand is satisfied ($/m3):

Municipality [8.50, 10.80] [9.27, 11.68] [10.10, 13.02]

Industrial [6.42, 8.56] [6.98, 9.02] [7.65, 9.92]

Agricultural [3.21, 4.14] [3.52, 4.54] [3.87, 5.03]

Penalty when promised water is not delivered ($/m3):

Municipality [15.21, 20.20] [16.72, 22.04] [18.26, 24.02]

Industrial [11.52, 15.26] [12.66, 16.46] [13.80, 18.08]

Agricultural [5.71, 7.52] [6.22, 8.18] [6.81, 8.90]

Acquisition cost when handing with water ($/m3):

Municipality [1.5, 1.8] [1.2, 1.4] [0.6, 0.8]

Industrial [1.0, 1.3] [0.8, 1.0] [0.5, 0.7]

Agricultural [0.6, 0.9] [0.55, 0.8] [0.45, 0.6]

Table 4 Different probability levels

Case Joint probability Individual probability

q1 q2 q3

1 q = 0.01 0.0020 0.0030 0.0050

2 0.0033 0.0033 0.0033

3 q = 0.05 0.0080 0.0120 0.0300

4 0.0166 0.0166 0.0166

5 q = 0.10 0.0200 0.0300 0.0500

6 0.0330 0.0330 0.0330

7 q = 0.15 0.0300 0.0450 0.0750

8 0.0498 0.0498 0.0498

9 q = 0.20 0.0400 0.0600 0.1000

10 0.0660 0.0660 0.0660
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flow in the previous two periods), shortages for agricultural

sector would be 112.6, 112.6 and [87.8, 112.6] 9 106 m3,

respectively; correspondingly, the shortage for the indus-

trial sector would be [97.5, 132.7], [17.0, 72.0] and [0,

14.5] 9 106 m3, respectively, which are different from the

agricultural sector. The water-shortage patterns under other

scenarios can be similarly interpreted based on the results.

Additionally, it can be obviously observed that with the

highest risk of violating the water target demands (i.e.,

q = 0.20), the water-shortage patterns under case 9 (as

shown in Fig. 3) are different from it under case 3 (as

shown in Fig. 2). For example, in period 2 when flow

levels are low, medium and high (following a medium flow

in period 1), shortages for industrial user under case 9

would be 115.2, [0, 67.4] and 0 9 106 m3, respectively;

correspondingly, it would be 115.2, [0, 66.6] and

0 9 106 m3, respectively, under case 3. Similarly in period

3 while flows are low, medium and high (following a low

flow in the previous two periods), shortages for agricultural

sector under case 9 would be 112.6, 112.6 and [95.0,

112.6] 9 106 m3, respectively; while it would be 112.6,

112.6 and [108.8, 112.6] 9 106 m3, respectively, under

case 3.

Each allocated flow is the difference between the

promised target and the probabilistic shortage under a

given stream condition with an associated probability level

(A�
itopt ¼ W�

itopt � D�
itkopt). Figure 4 provides the optimized

water allocation patterns to the municipal, industrial, and

agricultural sectors over the planning horizon under q = 0.01

and q = 0.20 (i.e., case 1 and case 9). There are 117 scenarios

for water allocation associated with different probabilities

over the planning horizon.Under case 1 (i.e.,q = 0.01), when

flows are all low during the entire planning horizon (the worst

condition), the total water allocated would be [106.1,

147.1] 9 106 m3 (A�
opt ¼ 106:1; 147:1½ 	 � 106m3), while the

total water demand from the three users would be 476.7 9

106 m3 (W�
opt ¼ 476:7� 106m3), demonstrating a serious

water shortage (D�
opt ¼ 329:6; 370:6½ 	 � 106m3). Corre-

spondingly, the shortage for municipal would be [84.3,

125.3] 9 106 m3 (occupying [25.6, 33.8]% of the total

shortage); which is lower than 132.7 9 106 m3 (occupying

[35.8, 40.2]%) for industrial; and 112.6 9 106 m3 (occupying

[30.4, 34.1]%) for agricultural sectors, respectively. Under a

medium condition (i.e., when water flows are medium during

the entire planninghorizon), the totalwater allocatedwould be

[280.3, 328.4] 9 106 m3, while the total shortage would be

[148.3, 196.4] 9 106 m3, indicating a significant shortage as

well (but less serious than that under the worst condition). The

shortages for municipality, industry and agriculture would be
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Fig. 2 Solutions of water

shortage under case 3

(a industry and b agriculture)
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0, [35.7, 83.8], and 112.6 9 106 m3, respectively. In the case

of insufficient water, allotments to the agriculture could be

first decreased due to its low benefit fromwater allocation and

lowpenalty for shortfall; then, the shortagewould be passed to

the industry, while the municipal user should be first guar-

anteed since it is associated with both high benefit (when

target is satisfied) and high penalty (when the promised water

is not delivered) with the same amount of water deficit.

Variations of joint probability would result in different

water use efficiencies in different cases (denoted as cases

1–10) in Fig. 5. For example, the joint probability and the

water use efficiency (i.e., q = 0.20 and 87.0 %) under case

10 would both be higher than those under case 1 (i.e.,

q = 0.01 and 79.6 %). It can be explained that the relax-

ations(i.e., a higher joint probability) of system constraints

would lead to raised available water amount and reduced

water losses, correspondingly a higher water use efficiency;

and vice versa. On the other hand, the water use efficiency

would vary with individual probability (qi) level. For

example, when a same joint probability (i.e., q = 0.05) is

existed under case 3 (i.e., q1 = 0.008, q2 = 0.012 and

q3 = 0.030) and case 4 (i.e., q1 = q2 = q3 = 0.0166), the

water use efficiencies would be 82.9 and 83.2 % differently.

Variations in the q level correspond to the decision

makers’ preferences regarding the tradeoff among system

benefit, penalty, and constraint-violation risk. Figures 6

and 7 provide the variations of system-benefit and penalty

with different water use efficiencies (i.e., varying joint

probability levels). Given different underlying probability

levels as well as water-availabilities, the expected system

benefit and the total penalty would change correspondingly

between their lower and upper bound. A lower joint

probability level would result in a lower system benefit and

a lower constraint-violation risk; conversely, a higher joint

probability would sacrifice the system safety in order to

reduce the penalty. For example, the system benefit (f�opt) in

Fig. 6 would be $ [415.1, 6744.0] 9 106 under case 3,

lower than $ [547.2, 6876.8] 9 106 under case 5, and

$ [636.9, 6961.5] 9 106 under case 7 (i.e., when q = 0.05,

0.10 and 0.15), respectively. Solutions indicate that the

system benefit would also vary with individual probability

(qi) level.

However, an opposite trend of the variations of total

penalty with different water use efficiencies (i.e., varying

joint probability levels) is shown in Fig. 7. For example,

the total penalty would be $ [3445.5, 7003.3] 9 106 under

case 3, which is higher than $ [3365.7, 6911.0] 9 106

under case 5 and $ [3308.3, 6841.7] 9 106 under case 7,

respectively. It can be concluded that different policies in

regulating the constraint-violation risks are associated with
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Fig. 3 Solutions of water shortage under case 9 (a industry and b agriculture)
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different levels of economic benefit and economic impli-

cations (e.g., losses or penalties caused by improper poli-

cies). For example, decisions with lower constraint-

violation risks would be associated with a lower system

benefit but increased system reliability; a desire for higher

benefit could result in raised risks of violating the system

constraints. However, a desire for lower total penalty

would result in decreased system reliability and higher

risks of violating the system constraints; which is opposite

to the relationship between system benefit and system

reliability.

Figure 8 provides a comparison of resulting lower- and

upper-bound water shortage patterns for industrial and

agricultural users under case 1 and case 9. These imply that

(a) under advantageous conditions (e.g., when the available

water amounts approach their upper bounds), the shortage

levels may be low, and (b) under demanding conditions,

the shortage levels may be raised. Meanwhile, a larger

number of water shortage scenarios is existed under case 1

than under case 9. For example, under advantageous con-

ditions under case 1, the number of scenarios subjecting to

water-shortage risks w would be 60 (occupying 51.3 % of
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the total water-allocation scenarios; in this case, the num-

ber of total water-allocation scenarios would be 117 over

the planning horizon) under case 1, that is higher than 56

(occupying 47.9 %) under case 9. However, under

demanding conditions, such a number would be increased

to 78 (occupying 66.7 %) under case 1 under case 1, which

is also higher than 72 (occupying 61.5 %) under case 9.

Moreover, a larger amount of water shortage is existed

under case 1 than under case 9. For example, when the flow

levels are medium and high in period 3 (following a low

flow in period 1 and a medium flow in period 2), water

shortages for the industrial sector would be [72.3, 130.1]

and [46.7, 78.7] 9 106 m3 under case 1, which is higher

than [48.6, 111.1] and [20.9, 55.5] 9 106 m3 under case 9.

Similarly, when the flow levels are medium and high in

period 3 (following a high flow in period 1 and a medium

flow in period 2), water shortages for the agricultural sector

would be [111.3, 112.6] and [42.2, 112.6] 9 106 m3 under

case 1, which is also higher than [81.7, 112.6] and [3.3,

85.2] 9 106 m3 under case 9. The water shortage patterns

for all users would have generally decreasing trends with

the increasing joint probability. It can be explained that a

higher level of joint probability corresponds to a relaxed

decision domain, a more reliability of sufficient water

supply, which results in a higher satisfactory degree of

water demands constraint and lower risk of water-shortage.

On the other hand, at the same joint probability over the

planning horizon, the optimized water-shortage patterns

between increasing individual probability and those at

equal individual probability for each user as well show an

obvious difference. Figure 9 presents the typical different

water shortage patterns under case 9 and case 10. The total

number of typical different water-shortage patterns is 58,

which is consisted of eleven typical different water short-

age scenarios for municipal, thirty scenarios for industrial

and seventeen scenarios for agricultural sectors. It can be

found that a higher amount of water shortage pattern is

existed under case 9 than under case 10. For example,

when the flow levels is low in period 1 and high in period

2, the water shortage would be [30.9, 64.6] 9 106 m3

under case 9, lower than [36.5, 70.3] 9 106 m3 under case
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10. Similarly, when the flow level is medium in period 3

(following low flows in period 1 and period 2), the water

shortage for the industrial sector would be [84.5,

132.7] 9 106 m3 under case 9, lower than [88.4,

132.7] 9 106 m3 under case 10. However, for all users in

period 1, the relationship between the optimized water-

shortage patterns at the same joint probability would be

higher under the case with increasing individual probabil-

ity, than the other case with equal individual probability. It

is indicated that the effects of individual probability levels

on the IJPP model results would vary in different periods

when joint probability levels were kept as the same.

4.2 Comparison of IJCP with IJPP

If the uncertainty in the stream inflow is simplified from

random variable into interval value, the study problem can

then be formulated as an inexact joint-probabilistic left-

hand-side chance-constrained programming (IJCP) model.

Similarly, ten cases of IJCP model were examined based on

multiple joint probabilities and individual probabilities.

Each IJCP model was transformed into two submodels that

corresponded to the lower and upper bounds of the

objective function values. The solutions of water-allocation

patterns from the IJCP model are provided in Table 5,

which are significantly different from the solutions from

the IJPP (as shown in Fig. 4). For example, in period 1,

from the IJCP model (joint probability = 0.01), the

amounts of water allocated to municipal, industrial and

agricultural sectors would be 312.7 9 106, [208.4,

248.6] 9 106 and [0, 54.3] 9 106 m3, respectively; in

comparison, when the stream inflow is low in period 1, the

amounts of water allocated to municipal, industrial and

agricultural sectors would be [106.1, 134.7] 9 106, 0 and

0 m3, respectively; similarly, when the inflow level is

medium in period 1, the amounts of water allocated to

the three users would be [102.1, 134.7] 9 106,

[0, 32.8] 9 106 and 0 m3, respectively; and when the

stream inflow is high in period 1, the water allocated to

municipal, industrial and agricultural sectors would be

134.7 9 106, [26.6, 92.2] 9 106 and 0 m3, respectively,

from the IJPP model. In period 3, there would also be only

one water-allocation pattern for each water user from the

IJCP; in compassion, under the same case (joint probabil-

ity = 0.01), there would be totally 81 water-allocation

scenarios for municipal, industrial and agricultural users

from the IJPP model, with a three-period (four-stage)

scenario tree that generated with a branching structure of

1-3-3-3 from IJPP model. Summarily, the IJPP could

incorporate more dynamic and uncertain information

within its modeling framework, for its formulation of the

dynamics and uncertainties of water availability (and thus

water allocation and shortage) is conceptualized into gen-

eration of a set of representative scenarios within a multi-

stage context. In comparison, without transactions at

discrete points of a complete scenario set over a multistage

context, the IJCP is unable to reflect the dynamic uncer-

tainties of inflow stream in terms of decisions for water

allocation.

Table 5 also presents the solutions of system benefits

from the IJCP model. The results indicate that the system

benefits obtained through the IJCP model are higher than

those through the IJPP model (as shown in Fig. 6) under a

range of joint and individual probability levels. For

example, the result of system benefit from IJCP under case

1 would be $ [3371.6, 5875.6] 9 106, higher than $ [98.2,

6494.6] 9 106 from IJPP. The corresponding mid-value

(i.e., f midopt ¼ ðf�opt þ fþoptÞ=2) would be $ 4623.6 9 106 from

IJCP, which is also higher than it from IJPP (i.e.,

$ 3296.4 9 106). Due to the simplification of the uncer-

tainties, the IJCP cannot reflect economic penalties as

corrective measures or recourse against any infeasibilities

arising due to a particular realization of uncertainty, lead to

a higher system benefit from the IJCP. In comparison, the

IJPP shows a conservative attitude towards the economic

benefit (i.e., a lower system benefit), and can make a

decision at each stage in a real-time manner based on

information about the actual realizations of the random
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variables as well as the earlier decisions. Generally, the

IJCP is unable to support analyses for a variety of policy

scenarios that are associated with different levels of eco-

nomic penalties.

5 Conclusions

In this paper, an IJPP model was developed for water

resource decision making under uncertainty. It integrates

the technique of MSP, IJP, and IPP within a general

framework. The major advantages of the developed IJPP

method can be outlined as follows: firstly, it can dominate

uncertainties presented as intervals in the objective func-

tion and randomness in the left- and right-hand sides of

constraints. Secondly, with joint probabilistic constraints, it

possesses an increased robustness in tackling the system

risk in the optimization process. Thirdly, it treats the

dynamics of system uncertainties via a scenario tree and

the splitting variable representation of the stochastic

problem has been considered. Finally, it will facilitate a

risk analysis and enable decision-makers to identify

effective managing strategies with tackling tradeoffs

among system reliability and objectivity.

The developed IJPP method has been applied to a case

study of water-resources management. Owing to the ran-

domness uncertainty of available water, risks of water-

shortage are existed when there is not enough available

water to satisfy all needs. Meanwhile, in such a multi-user

system, competition are existed to satisfying the competing

water demands from different water users, where risk of

violating the water target demands are presented as joint

probabilities. The results demonstrate that different joint

probabilities associated with different admissible risks of

violating the uncertain available water constraints, leading

to different system benefits, economic penalties, water

shortage, and water-allocation patterns. For example, under

a medium scenario, with the highest risk of violating the

water target demands (i.e., q = 0.20), the total water

shortage pattern would be [115.9, 174.6] 9 106 m3, lower

than [129.6, 184.6] 9 106 m3 when the constraint-violation

risk is 0.05. Similarly, the economic penalty would also be

lower with a higher risk of constraint-violation (i.e.,

$ [3445.5, 7003.3] 9 106 when q = 0.05, and $ [3261.7,

6786.8] 9 106 when q = 0.20). In short, a desire for a

lower water shortage pattern and a lower economic penalty

would be associated with higher risks of violating the

system constraints and decreased system reliability; and

vice versa.

In comparison, an opposite variation in the system

benefit and water-allocation pattern with different con-

straint-violation risks can be found. Decisions with a higher

water-allocation pattern and a higher system benefit would

result in higher constraint-violation risk; and vice versa.

For example, the system benefit would be $ [708.1,

7029.7] 9 106 when q = 0.20, higher than $ [415.1,

6744.0] 9 106 when q = 0.05. Correspondingly, the water

allocation pattern would be [302.1, 360.8] 9 106 m3 when

q = 0.20, as well as higher than [292.1, 347.1] 9 106 m3

when q = 0.05. Therefore, there is a tradeoff between

economic objective, water-shortage and water-allocation

patterns and constraint-violation risk. Moreover, different

water-guarantee ratios and different water-allocation pri-

orities have been attached to different water consumers

with the effects of the different characters of economic

data. In general, by explicitly considering a number of

different admissible risks of violating the water target

demands, the application of IJPP method cannot only gain

insight into the tradeoffs between economic objective,

water-allocation pattern and constraint-violation risk; but

can also help the water resources managers in making a

range of alternatives of water allocation on how to effec-

tively allocate water resource to meet competing demands

with different water-allocation priorities under uncertainty.

Table 5 Water-allocation

patterns and net system benefits

from the IJCP model

Case Water-allocation pattern (106 m3) Net system

benefit ($ 106)
Municipality Industrial Agricultural

1 312.7 [208.4, 248.6] [0, 54.3] [3371.6, 5875.6]

2 312.7 [204.4, 248.6] [0, 49.5] [3316.5, 5850.5]

3 312.7 [229.7, 248.6] [0, 79.4] [3660.6, 6007.3]

4 312.7 [221.9, 248.6] [0, 70.2] [3554.7, 5959.1]

5 312.7 [237.4, 248.6] [0, 88.4] [3765.2, 6055.0]

6 312.7 [230.9, 248.6] [0, 80.9] [3677.8, 6015.2]

7 312.7 [243.9, 248.6] [0, 96.2] [3854.6, 6095.7]

8 312.7 [237.0, 248.6] [0, 88.1] [3760.8, 6053.0]

9 312.7 248.6 [0.7, 102.6] [3923.4, 6129.1]

10 312.7 [241.6, 248.6] [0, 93.5] [3823.1, 6081.4]
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Although this study was the first application of the IJPP

method to water resources management problems, the

results suggest that this improved optimization technique is

effective to make decisions based on with risk assessment

in controlling the tradeoff between economic objective and

constrain-violation risk, and that can be extended to other

environmental problems to generate decision alternatives

in handling high-variability conditions.
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