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Abstract Tropical cyclones are one of the most serious

natural disasters in northwestern Pacific Ocean. In general,

an average of three to four typhoons invades the vicinity of

Taiwan annually, which brings heavy rainfalls and strong

winds resulting in disasters including flooding, mudflows,

and landslides, leading to severe damage to economies and

casualties. Studies show that different tracks of typhoon

can cause distinct spatio-temporal patterns of rainfall

events at different regions of Taiwan. As a result, under-

standing the trajectories of tropical cyclones and their

relationship to climatic variables at global scale is crucial

for hydrological modeling and disaster migration in Tai-

wan, especially under the conditions of climate change.

This study applied a probabilistic curve clustering tech-

nique, which is based on a regression mixture model, to

classify the best tracks of typhoons across the area within

6� around Taiwan during the period of 1951–2009. For the

purposes of modeling and forecasting the typhoon trajec-

tories, the track cluster is performed separately in different

seasons due to their distinct driving forces to typhoon

movements. A generalized linear model (GLM) is used to

characterize the relationship between the identified

typhoon tracks and the dominant climate features derived

from NCEP reanalysis data. Results showed the six major

typhoon tracks in the vicinity of Taiwan for different sea-

sons respectively. The result of GLM cross validation

showed that the frequency of typhoon tracks passing cross

Taiwan in summer can significantly depend upon with two

empirical orthogonal functions (EOFs) of sea level pres-

sure, and the third EOF of sea surface temperature.

Keywords Typhoon � Generalized linear model �
Trajectory modeling

1 Introduction

Tropical cyclones (TCs) are one of the most serious natural

disasters in Taiwan, which bring heavy rainfalls and strong

winds resulting in severe damage to economies and casu-

alties. In general, an average of three to four typhoons

invades the vicinity of Taiwan annually (Wu and Kuo

1999). The increasing frequency and intensity of extreme

typhoon rainfall events has been observed recently in

Taiwan. Recently, (Chu et al. 2014) pointed out an upward

trend in typhoon rainfall intensity over Taiwan since 1950.

For example, Typhoon Morakot, Typhoon Fanapi, and

Typhoon Megi in 2009 and 2010 brought record-breaking

rainfall intensity and amount to different locations of

Taiwan. In particular, Typhoon Morakot brought record-

breaking rainfall in Southern Taiwan leading to about 700

deaths from mudslides during 7–9 August 2009. Different

typhoon trajectories can induce different spatio-temporal

patterns of rainfall and wind speed in a watershed due to

topographical effect and cause different disasters and run-

off patterns (Yeh and Elsberry 1993a, b; Lin et al. 2002;

Wu et al. 2002; Huang et al. 2012; Yu 2014). Therefore,

understanding the typhoon movements is important for

estimating potential typhoon impact and mitigate typhoon

disasters.

To characterize the typhoon trajectories, various classi-

fication approaches have been proposed. For example,
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(Hodanish and Gray 1993) classified the typhoon tracks in

western North Pacific into four major patterns by consid-

ering their recurving processes, including recurving, grad-

ually recurving, left-turning and non-recurving track

patterns. Taiwan Central Weather Bureau stratified

typhoon trajectories into nine groups with respect to their

movements around the Island (Central Weather Bureau

2014). Classification techniques have been used to objec-

tively determine the typhoon track classes by accounting

for various characteristics of the trajectories, such as the

typhoon’s positions of maximum intensity, final position,

statistical moments of track positions (Elsner and Liu 2003;

Camargo et al. 2007a, b; Nakamura et al. 2009). Based

upon the quantitative measures of typhoon trajectories, the

major patterns of typhoon movements can then be identi-

fied by various curve clustering methods, such as k-means

clustering method, fuzzy c-means clustering methods, and

regression mixture method (Elsner and Liu 2003; Camargo

et al. 2007a, b; Nakamura et al. 2009; Chu et al. 2010a, b;

Kim et al. 2011; Paliwal and Patwardhan 2013). Among

them, the regression mixture method proposed by Camargo

et al. (2007a, b), and Chu and Zhao (2011) has an advan-

tage of not requiring the same length of the track data.

Large atmospheric circulation is one of the major factors

to affect the typhoon trajectories as well as the genesis and

development of tropical cyclones (Camargo et al. 2007a, b;

Chu and Zhao 2007; Hsu et al. 2014). Based upon various

atmospheric circulation observations, statistical regression

approach was applied for the seasonal forecast of hurricane

activities that can explain over 60 % of hurricane activities

in Atlantic (Gray et al. 1993, 1994). Bayesian regression

method was also developed for the modeling of seasonal

TC activities to account for forecasting uncertainties of TC

counts (Elsner and Jagger 2004; Chu and Zhao 2007; Lee

et al. 2012). The large-scale atmospheric variables relevant

to TC activities and trajectories in Western North Pacific

commonly include the space–time distributions of sea level

pressure (SLP), sea level temperature (SST), wind field at

various vertical levels, as well as El Niño Southern

Oscillation (ENSO) index (Chan 1985a, b; Holland 1995;

Simpson et al. 1997; Camargo et al. 2007a, b). Among

them, SST is the major energy source to fuel tropical

cyclones, particularly for the temperature higher than

26 �C (Emanuel 2005; Trenberth 2005; Michaels et al.

2006; Ali et al. 2013). The ENSO variation can change

spatial distribution of SST in the Pacific, i.e., the hot spot of

high SST. Wind field can affect the stability of the atmo-

sphere, and further induce or suppress the developing of

tropical cyclones (Rasmusson and Carpenter 1982; Vickery

et al. 2000).

This study proposed a seasonal typhoon trajectory

modeling approach to characterize and forecast the tra-

jectory type based on the large-scale atmospheric

circulation patterns over East Asia and western North

Pacific region. A regression mixture method was used for

classifying typhoon trajectories in different seasons. gen-

eralized linear model (GLM) was applied to identifying the

associations between activities of each trajectory pattern

and climatic features. For the purposes of disaster man-

agement in Taiwan, the proposed approach was applied to

analyzing the best tracks of typhoons across the island

during the period of 1951–2009.

2 Data

Japan Meteorological Agency (JMA) compiles the trajec-

tory data of all TCs since 1951 in the western North

Pacific, i.e., spatial range of 100�E–180�E and 0�N–60�N,
shown in Fig. 1 (Japan Meteorological Agency 2014). The

best tracks of these trajectory data are recorded in the

temporal resolution of 6 h. This study collected the tra-

jectory data only for the TCs that went across the vicinity

of Taiwan, i.e., within 6� in latitude and longitude as

shown in Fig. 1. Tropical depression data (TD) was also

considered in this analysis. The large-scale monthly

atmospheric observations were obtained from NCEP/

NCAR reanalysis I dataset (Kalnay et al. 1996), including:

(1) sea level pressure (SLP), (2) precipitable water

(PWAT), (3) 850-hPa relative vorticity (Vor850), (4)

vertical wind shear (VWS), and (5) Southern Oscillation

Index (SOI). In addition, the SST dataset in our analysis

were obtained from NOAA, which used the improved

tuning statistical method to reduce the data uncertainties

and compiled the latest version of historical SST estima-

tions (Smith et al. 2008), i.e., extended reconstructed SST

(ERSST). The time duration of the large-scale atmospheric

data are between 1951 and 2009 and the spatial range is

within 60�E–120�W in longitude and 0�N–70�N in latitude

with spatial resolution of 2.5� 9 2.5� (2� 9 2� for SST).

Both best track and atmospheric data were classified into

spring (April–June), summer (July–August), and autumn

(September–November).

3 Methods

For the purposes of long-term forecast of typhoon move-

ment patterns, this study investigates the frequency of

different typhoon track patterns regarding to the space–

time patterns of atmospheric anomalies. Our analysis was

performed in different seasons, i.e., summer and autumn,

during which southwest and northeast monsoons are

dominant in West Pacific respectively. The space–time

patterns of atmospheric anomalies were revealed by

empirical orthogonal function method (EOF). The
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atmospheric anomalies were calculated with respect to the

baseline records during 1970–2000. The EOF analysis

decomposes a continuous space–time random field Xðs; tÞ,
i.e., atmospheric anomalies in this study, into the additive

space–time multiplication form as follows (Pearson 1901;

Hotelling 1933; Hannachi et al. 2007)

Xðs; tÞ ¼
XM

k¼1

ckðtÞukðsÞ ð1Þ

where the vector (s, t) denotes the space–time location at

time t and spatial position s. M is the number of modes in

orthogonal space–time random fields, i.e. ck(t) uk(s). The

modes are formulated as an optimal set of orthogonal

spatial functions uk(s), i.e. EOFs, the k-th spatial features.

Their associated expansion functions of time ck(t), i.e., the

projection of X(s, t) on uk(s), are also called EOF expansion

coefficients (ECs), which represents the k-th temporal

features. Similar to common principal component analysis,

the leading EOFs can usually explain the fair amount of the

observed variances of the original space–time dataset

(Hannachi et al. 2007; Yu and Chu 2010, 2012).

The typhoon track clustering was performed by using a

curve clustering analysis (Gaffney 2004; Camargo et al.

2007a, b), in which a regression mixture model based on

finite mixture model was developed to classify the TC

trajectories into a user-specified number of track clusters.

Finite mixture model is a convex combination of two or

more probability density functions, which is capable of

approximating any arbitrary distribution (Filho 2008). The

regression mixture model considers the probability distri-

bution of entire set of TC trajectories, which can be char-

acterized by the combination of several marginal

distributions of identified subset of TC tracks.

The method formulates the marginal distribution of the

typhoon positions to be Gaussian-distributed, in which the

mean positions are time-dependent. The time-dependent

position function can be derived by using spline or poly-

nomial regressions to identify the relationships between

time and typhoon positions, i.e., longitude and latitude. It

was shown that the low-order polynomial regression, i.e.,

quadratic, appears to be the optimal choice for TC trajec-

tory modeling in terms of interpretation and goodness-of-fit

(Camargo et al. 2007a, b).

The parameters of marginal distributions, i.e., the esti-

mated positions of TC tracks and associated covariance, are

estimated by the EM (Expectation–Maximization) algo-

rithm. EM algorithm is an iterative method for finding

maximum likelihood estimates when there is missing val-

ues or latent variables. The EM algorithm alternates

between the steps of guessing a probability distribution

over completions of missing data given the current model

Fig. 1 Study area of the size with 6� boundaries in vicinity of Taiwan, i.e., 100�E–180�E and 0�N–60�N
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(known as the E-step) and then re-estimating the model

parameters using these completions (known as the M-step)

(Bilmes 1998; Do and Batzoglou 2008). For more details of

regression mixture modeling for TC trajectory clustering,

the readers are referred to (Gaffney 2004; Camargo et al.

2007a, b; Chu and Zhao 2011). In this study, the trajectory

clustering is performed by using the Curve Clustering

Toolbox (i.e., CCtoolbox) available online (Gaffney 2004;

Gaffney et al. 2007).

This study investigates the relationships between large-

scale atmospheric variables and typhoon trajectories by

using GLM. GLM is an extension from ordinary linear

regression, which allows the error distribution models of

response variables other than normal distribution, such as

binomial, Poisson and gamma distributions (McCullagh

and Nelder 1989; Fox 2008). We characterized the occur-

rence number of typhoon track clusters and the temporal

variations of space–time atmospheric EOF patterns by

using GLM model with the following relationship

kiðtÞ ¼
Xm

j¼1

Xp

k¼1

bj;kECj;kðtÞ ð2Þ

where kiðtÞ is the occurrence rate of typhoons in TC track i

at time t, ECj;kðtÞ is the expansion coefficient of the k-th

EOF patterns of j-th atmospheric variable, e.g., SST and

SLP, at time t. The number of typhoons appeared in track

category i can be considered to be Poisson-distributed

expressed as N�Poisson TkiðtÞð Þ, where T = 1 month in

this study. We performed parameter estimation for Eq. (2)

by using the glmfit routine of statistics toolbox in Matlab

which is based upon maximum likelihood method (Dobson

1999). Our analysis integrates the EOF and GLM methods

and can be summarized in Fig. 2. The optimal model for

our analysis is based upon the Akaike information criterion

(AIC) values.

4 Results

This study performed the EOF analysis to identify the

leading EOF patterns and their associated temporal varia-

tions, i.e., EC values. The EC results used for the modeling

of seasonal typhoon tracks are listed in Table 1. Since the

trajectory clustering analysis requires a pre-determined

cluster number, the log-likelihood of the regression mixture

models were estimated to determine the optimal number of

trajectory cluster number. Figure 3 shows the changes of

log-likelihood with respect to different cluster numbers,

where log-likelihood is the goodness-of-fit indicator rep-

resenting the log-probability of observed data derived from

the regression model. As shown in Fig. 3, though log-

likelihood increases as the cluster number increases, the

Atmospheric Data 
Best track data of 
tropical cyclone 

EOF analysis of 
atmospheric 

variables 

Curve clustering 
analysis 

Association analysis 
by GLM model 

Variable selection by 
AIC 

Model evaluation by 
cross validation 

Fig. 2 The modeling flowchart of this study

Table 1 The selected

atmospheric variables in

summer and the explained

variances of their first three

EOFs

Weather variables First three EOF of weather variables

EOF1 EOF2 EOF3

(1) Sea surface temperature (SST) sstEC1 (20.60 %) sstEC2 (14.56 %) sstEC3 (10.61 %)

(2) Sea level pressure (SLP) slpEC1 (23.99 %) slpEC2 (14.22 %) slpEC3 (7.64 %)

(3) Precipitable water (PWAT) pwatEC1 (11.18 %) pwatEC2 (9.18 %) pwatEC3(6.82 %)

(4) 850-hPa Relative vorticity (Vor850) vorEC1 (9.82 %) vorEC2 (4.40 %) vorEC3 (4.19 %)

(5) Vertical wind shear (VWS) vwsEC1 (8.83 %) vwsEC2 (8.34 %) vwsEC3 (6.31 %)

(6) Southern Oscillation Index (SOI) N/A
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change of log-likelihood significantly reduces while the

cluster number larger than six. As a result, we chose six to

be the number of track classes to represent for the typhoon

trajectories around Taiwan in summer in this study,

respectively.

Figure 4 shows the results of typhoon track clustering

analysis in the vicinity of Taiwan in different seasons, i.e.,

spring, summer, and fall. Table 2 lists the number of

typhoon tracks in the three seasons. Among these seasons,

summer is the most prevalent season for typhoon visits in
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Fig. 3 The changes in log-likelihood versus clustering numbers in

a spring, b summer, and c autumn

Fig. 4 Track clustering analysis in the vicinity of Taiwan in different

seasons, a spring, b summer, and c autumn
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Taiwan during the past decades; therefore, we focused our

analysis of seasonal trajectory in summer. Particularly,

typhoon track number one is one of the most prevailing

tracks during summer and can easily associate to the

southeasterly prevailing steering flows, bringing substantial

rainfalls and landslide damages to the island. Though the

numbers of summer tracks 3 and 4 are also high, these

typhoons are generally less devastating to the island. GLM

model was used to characterize the relationships between at

atmospheric variables and the number of typhoon track 1 in

summer. The significant patterns of atmospheric variables

in this GLM model are listed in Table 3, showing the

optimal fitted GLM regression coefficients (i.e., the b in

Eq. (2)) selected by AIC value and their associated p-val-

ues, in which TRUE and FALSE represent the variable is

selected in this model or not, respectively. Figure 5 shows

the leave-one-out cross validation results from GLM

monthly track number modeling for typhoon track 1 during

2002–2009. The result shows that the proposed model can

provide reasonable monthly forecast for the prevailing

typhoon track pattern with respect to different atmospheric

conditions. The spatial distribution of the identified EOF

Table 2 The number of typhoon tracks in the three seasons from 1951 to 2009

Seasons Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Total

Spring 9 8 4 12 22 4 59

Summer 51 43 70 64 16 35 279

Fall 22 40 32 32 19 22 167

Table 3 The variable selection and parameter estimation in GLM for track 1 in summer

Variable Const. vwsEC1 vwsEC2 vwsEC3 slpEC1 slpEC2 slpEC3 pwatEC1 pwatEC2

Variable selection FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE

Fitted coefficient -1.207 -0.041 0.039 0.057 -0.056

p value 0.000** 0.015* 0.013* 0.000** 0.000**

Variable pwatEC3 vorEC1 vorEC2 vorEC3 sstEC1 sstEC2 sstEC3 SOI

Variable selection TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE

Fitted coefficient 0.054 0.032 -0.042 -0.020 -0.046

p value 0.012* 0.084 0.047* 0.146 0.001**

TRUE and FALSE represent the variable is included in this model or not, respectively; *represents significant level p B 0.05, **represents

significant level p B 0.01

Fig. 5 The leave one out cross

validation result for GLM

model in forecasting the number

of summer track 1 during

2002–2009. Two forecasts (July

and August) are made for each

summer
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patterns in atmospheric variables and their corresponding

temporal variation that significant level reach p

value B 0.01 are shown in Fig. 6, including two EOF

patterns for SLP and one for SST, respectively, i.e.,

slpEC2, slpEC3, and sstEC3. Among them, the second

EOF of SLP (Fig. 6a) and its corresponding EC (Fig. 6b)

showed a strong opposite pressure system pattern between

Pacific Ocean and Asian continent, which is a common

atmospheric pattern in summer dominated by subtropical

ridge in Pacific and thermal low in Asia. The third EOF of

SLP (Fig. 6c) and its corresponding EC (Fig. 6d) shows the

Pacific subtropical ridge is located in higher latitude while

lower latitude Pacific Ocean is dominated by low-pressure

systems or tropical cyclones. The third EOF of SST

(Fig. 6e) and its corresponding EC (Fig. 6f) show signifi-

cant weighted region near Guam, where most tropical

cyclones form in the western North Pacific.

5 Discussion

Studies have investigated the major clusters of typhoon

trajectories in the western North Pacific (Camargo et al.

2007a, b; Chu et al. 2010a, b); however, for the disaster
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Fig. 6 The corresponding EOF results of selected variables (slpEC2, slpEC3, and sstEC3) in GLM for summer track 1 (left spatial weight of

each EOF variable; right the corresponding temporal variation of each EOF variables (EC))
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prevention purposes by local governments, the spatial

domains of previous analyses were too large to provide

necessary information to estimate the anticipated impacts

of typhoons such as heavy rainfall or landslides for a

moderately small island such as Taiwan. For the case of

Taiwan, changes in typhoon tracks can introduce distinct

impact to the island. As a result, typhoon track patterns

were considered as the primary predictors by studies of

rainfall and landslide modeling (Lee et al. 2006; Chiang

and Chang 2011). Furthermore, Taiwan central weather

bureau (CWB) announced an official classification of

typhoon tracks to fulfill the requirements of local agencies

(Fig. 7). The current typhoon track classification was

subjectively determined on the basis of the experiences of

experts and officers (Central Weather Bureau 2014). This

study applied regression mixture model to provide a more

objective approach to differentiate the typhoon tracks

within the study area. As shown in Fig. 4, the prevalent

tracks of typhoon can change across the seasons due to the

influence of monsoons. Particularly, during summer sea-

sons, typhoons can more likely take paths going through

the middle of Taiwan from East to West, i.e., track 1 and 2

in Fig. 4b, than other seasons. These two summer tracks

can commonly bring heavy rainfalls and strong winds to

Taiwan, such as typhoons Herb (1996), Aere (2004), and

Saola (2012). Many typhoons in July and August taking

these tracks caused severe damages during July and

August. Moreover, the typhoons with these tracks can

sometimes have accompanying effects, introducing the

southwesterly flow with amount of precipitable water from

the warm oceans, and substantially increase the rainfall

intensity and duration (Pan et al. 2011). For example,

typhoon Morakot (2009) followed track 2 and brought

record-breaking intensity and magnitude of rainfalls, i.e.,

over 3,000 mm rainfalls in 3 days, in southern Taiwan.

These accompanying effects can also occur in autumn

while typhoons take the tracks 1, 2, 4, and 5 in Fig. 4c.

Comparing our results with CWB classification, it shows

our analysis is compatible with the previous experiences

from the local agency. In addition, we further identified the

major classes of the typhoon tracks in different seasons.

Speaking of the CWB classification, our results showed the

CWB tracks 2–5 are more prevalent in summer and CWB

tracks 1 and 6 can occur more frequently in fall.

Numerous studies have developed the seasonal forecast

model for typhoon counts (Elsner and Jagger 2006; Chu

et al. 2010a, b; Kim et al. 2012) and revealed the significant

atmospheric patterns for the TC activities. (Mestre and

Hallegatte 2009) identified SST, North Atlantic Oscillation,

and Southern Oscillation index are important predictors to

the TC occurrence frequency in North Atlantic. Camargo

et al. (2007b) showed the high associations of 500 hpa wind

field, vertical wind and ENSO with the typhoon track dis-

tribution in NWP (Camargo et al. 2007a, b). Chu et al.

(2010a, b) investigated the typhoon tracks crossing Taiwan

areas from June to October and revealed that their high

associations with antecedent atmospheric variables,

including positive correlation with SST around Taiwan and

equatorial western Pacific, and negative correlation with

SLP at least half of NWP (Chu et al. 2010a, b). Based upon

the EOF analysis of atmospheric variables, this study found

that the EOF patterns of SLP around the vicinity of Hawaii

and Japan, as shown in Fig. 6a, c respectively, are positively

associated to the typhoon counts of summer type 1,

implying that the two SLP patterns can strengthen the large-

scale low-level summer circulation over the NWP in terms

of the formation of monsoon troughs and ridges (Lander

1996). This study also showed the EOF pattern of SST

around the vicinity of Guam, as shown in Fig. 6e, has

positive correlation with the typhoon counts of summer type

1, suggesting the high SST in this area can contribute to the

typhoon formation. The movement of tropical cyclone is

well-known steered by mid-level steering flow, therefore,

wind field data was widely used for estimating the TC track

(Chan and Gray 1982; Chan 1985a, b; Velden and Leslie

1991). Though the importance of steering flow to the TC

tracks, for the purposes of seasonal TC forecasting, in this

study, we focused on the modeling of seasonal TC track

patterns by several large-scale atmospheric observations

including SLP and SST, which are used to represent the

Fig. 7 Classes and percentages of typhoon tracks from Taiwan

Central Weather Bureau (1897–2007)
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general characteristics of atmospheric conditions. Previous

studies also used SLP to construct the statistical TC track

models (Rogers 1997; Fogarty et al. 2006; Lu et al. 2010,

2013).

Our approach of seasonal forecast of typhoon tracks

specific to Taiwan region can be useful to local agencies

for disaster mitigation preparations; however, the uncer-

tainties of this study should also be understood, resulting

from the limited size of typhoon data because our analysis

focused on the neighborhood of Taiwan Island and also

considered the seasonal effects to typhoon tracks. For the

purposes of forecasting, it can be also worthwhile to

investigate the conditions of low-level circulations at each

of identified typhoon tracks, and to have more physical-

based explanations of prevailing tracks.
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