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Abstract This paper presents a fuzzy set—ordered

weighted averaging (FSOWA) approach for the integrated

health risk assessment associated with multiple air pollu-

tion factors and evaluation criteria. A number of different

methods and tools are integrated within the same platform,

including Geographic Information System, air quality

modeling, fuzzy set, multi-criteria analysis, ordered

weighted averaging, and health risk assessment. A degree

of fuzziness is incorporated into the air quality criteria by

using the fuzzy sets and therefore the absolute criteria is

avoided. The health risk and relative importance of various

pollution factors are aggregated by two models (Max–min

and Max-product composition) with the consideration of

uncertainties. The main advantage of FSOWA is capable of

revealing the potential interactions among various pollu-

tion factors and quantifying the inherent uncertainties and

complexities in air pollution integrated health risk assess-

ment. The developed approach is illustrated in a case study

of the state of California based on four criteria pollutants

(PM2.5, NO2, SO2 and CO). The results demonstrate that

the developed approach offers a flexible exploitation for

assessing air pollution health risk. This approach may also

be applied to much broader environmental problems for

multi-criteria decision making to achieve more sustainable

environment.

Keywords Air pollution � Multiple factor � Air quality

index � Fuzzy set � Ordered weighted averaging (OWA) �
Integrated health risk assessment

1 Introduction

A number of recent studies have shown that air pollutants

emitted from various sources pose serious impacts on

environment and human health, particularly in urban

areas. The U.S. EPA has set six commonly found air

pollutants (also known as ‘‘criteria pollutants’’), which are

particulate matter (PM), ground-level ozone (O3), carbon

monoxide (CO), sulfur oxides (SO2), nitrogen oxides

(NOx), and lead (Pb) (US EPA 2012). Epidemiological

studies worldwide have demonstrated that exposure to

these pollutants is associated with numerous effects on

human health, including increased respiratory symptoms,

hospitalization for heart or lung diseases, and even pre-

mature death (WHO 2006; Jerrett et al. 2009; Clark et al.

2010; Lenters et al. 2010). Particularly, PM2.5 (particulate

matter with aerodynamic diameter less than 2.5 lm) can

penetrate deeply into lungs, causing or aggravating a

variety of respiratory and cardiovascular illnesses, and can

even lead to premature death (Pope et al. 2002; Pope and

Dockery 2006; Laden et al. 2006; Turner et al. 2011;

Lepeule et al. 2012). NOx (= NO ? NO2) as the main

precursor of ozone and nitric acid can also lead to par-

ticulates that cause respiratory problems and impair visi-

bility. Especially NO2 as an indicator of surface air

quality is associated with mortality (Steib et al. 2003;

Burnett et al. 2004; Samoli et al. 2006) and respiratory

morbidity (Brook et al. 2007). Exposure to CO can reduce

the oxygen-carrying capacity of blood, which can cause

myocardial ischemia (reduced oxygen to the heart), often

accompanied by chest pain (angina) and mortality (Henz

and Maeder 2005; Satran et al. 2005; Henry et al. 2006).

SO2 is also linked with a number of adverse health effects

and mortality (Krzyzanowski and Wojtyniak 1991; Liu

et al. 2003).
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The historical approach for assessing the health risks of

air pollutants has been conducted individually. In fact, we

are exposed to a wide variety of pollutants every day and

are increasingly aware of potential health implications.

Different air pollutants may cause different physical,

chemical and toxic characteristics on human health, as

mentioned above. Moreover, there are the potential inter-

actions among various factors and the combined impacts

on human health. Therefore, the health risk assessment is

evolving away from a focus on individual pollutant toward

a multi-factor integrated risk assessment involving multiple

air pollutants, which is referred as cumulative risk assess-

ment (US EPA 2007). The effects of each pollutant and the

interactions among various factors on environment and

human health may be inaccurate or uncertain to various

degrees and should be considered when various factors and

information are taken into account. This means there are

some inherent complexities and uncertainties in air pollu-

tion integrated risk assessment, especially for human

health. Therefore, it is desirable to explore an efficient way

to evaluate the multi-factor integrated health risk due to air

pollution for decision making in air quality management

and planning.

Over the past decades, several stochastic methodologies

were developed for assessing the health risks of air pol-

lution (Kontos et al. 1999; Bhattacharya et al. 2000;

Economopoulou and Economopoulos 2002; Oettl et al.

2003; Cangialosi et al. 2008; Carnevale et al. 2012).

These previous studies were mostly based on stochastic

analysis approaches. However, when the uncertain factors,

such as pollutants’ physical, chemical and toxic charac-

teristics, media conditions, receptor sensitivities, and

dose–response effects, cannot be expressed as probability

distributions, such stochastic methods are inapplicable.

For example, if the probability of contracting cancer

through exposure to site related chemicals cannot be

conducted due to relatively small marginal changes in

exposure, it is impossible to evaluate the health risk using

a dose–response model.

Besides, when multiple factors exist in the risk assess-

ment, their latent interactions are also very important for

conducting a more sufficient and reliable assessment. A

number of methods, such as screening technique, stochastic

optimization, and factorial analysis, have been proposed

for dealing with various uncertainties and multi-factor

interactions in air quality management (Maqsood and Hu-

ang 2003; Li et al. 2006; An and Eheart 2007; Lin et al.

2008; Qin et al. 2008; Lu et al. 2010; Qin et al. 2010; Wang

and Huang 2013; Wang et al. 2013). These methods can

deal with uncertainties that exist in various forms (e.g.,

interval numbers, fuzzy sets, and probability distributions).

However, they cannot reveal the interactive effects of

uncertainties on integrated risk assessment.

Since the publication of a seminal paper by Zadeh in

1965, fuzzy set theory has been established as an ideal

method for dealing with various kinds of uncertainty and

vagueness (Zadeh 1999). Fuzzy set theory is different from

probability theory. Probability theory is trying to make

prediction about event from a state of partial knowledge,

while fuzzy logic is all about the degree of truth—about

fuzziness and partial or relative truth. Many studies have

reported the risk assessment associated with environmental

problems based on fuzzy set theory. For example, Smith

(1995) developed a fuzzy aggregation approach for envi-

ronmental quality evaluation. Chen et al. (1998) developed

an integrated fuzzy risk assessment approaches for evalu-

ating environmental risks derived from petroleum-con-

taminated sites. Chen et al. (2003) also proposed a hybrid

fuzzy-stochastic risk assessment approach for examining

uncertainties associated with both source/media conditions

and evaluation criteria in a groundwater quality manage-

ment system. Sadiqa and Husain (2005) developed a fuzzy-

based methodology for an aggregative environmental risk

assessment of drilling waste. Lopez et al. (2008) developed

a fuzzy expert system to characterize the contaminated soil

in function of human and environmental risks. Sadiq and

Tesfamariam (2009) applied the intuitionistic fuzzy set for

analytic hierarchy process (AHP) to handle both vagueness

and ambiguity related uncertainties in environmental

decision-making process. Topuz et al. (2011) used analytic

hierarchy process and fuzzy logic to handle problems

caused by complexity of environment and uncertain data

for integrating environmental and human health risk

assessment due to industrial hazardous materials. Ocampo-

Duque et al. (2013) developed a probabilistic fuzzy hybrid

model to assess river water quality and compute a water

quality integrative index using fuzzy logic reasoning.

Mesa-Frias et al. (2014) developed a framework to quantify

the uncertainty in the health impacts of environmental

interventions and to evaluate the impacts of poor housing

ventilation based on fuzzy set theory.

Despite the usefulness of fuzzy set theory, few studies

have reported the application of fuzzy set theory to air

pollution risk assessment. Li et al. (2008) proposed an

integrated fuzzy-stochastic modeling approach for quanti-

fying uncertainties associated with both source/medium

conditions and evaluation criteria and assessing air pollu-

tion risks. Reshetin (2008) described the application of a

formalism of fuzzy sets to model and to assess the risk of

carcinogenesis and additional mortality associated with air

pollution. Kaya and Kahraman (2009) evaluated the air

pollution’s level by using fuzzy specification limits and

fuzzy standard deviation to obtain the process capability

indices. Wang and Huang (2013) developed an interactive

fuzzy boundary interval programming (IFBIP) approach

through incorporating the interactive fuzzy programming
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(IFP) and the interval-parameter linear programming (ILP)

methods within a general framework for air quality man-

agement under uncertainty. However, none of these studies

has applied the fuzzy set approach to the integrated health

risk assessment due to multi-factor air pollution.

The objective of this study is to develop a fuzzy set—

OWA (FSOWA) approach to assess the integrated health

risk associated with multi-source and multi-factor air

pollution. A degree of fuzziness is incorporated into the

air quality criteria by using the fuzzy sets and therefore

the absolute criteria is avoided. The health risk and rela-

tive importance of various pollution factors are aggregated

by two models (Max–min and Max-product composition)

with the consideration of uncertainties. The main advan-

tage of FSOWA is capable of revealing the potential

interactions among various pollution factors and quanti-

fying the uncertainties using fuzzy sets and fuzzy member

functions for integrated health risk assessment. The

developed FSOWA approach is examined with a case

study of the state of California based on four criteria air

pollutants (PM2.5, NO2, SO2, and CO). The gridded pol-

lutant concentrations in 2008 predicted by the GIS-based

multi-source and multi-box (GMSMB) modeling system

(Wang and Chen 2013) are used as the inputs of the

FSOWA modeling approach to evaluate the integrated

health risk.

2 Methodology

2.1 GMSMB modeling system

The GMSMB modeling system was developed by Wang

and Chen (2013), which consists of two air quality

models: the spatial multi-box model and the multi-source

and multi-grid Gaussian model. The conventional box

models are usually applied for a few tens of square

kilometer areas. In order to extend the GMSMB model to

a large area, a multi-box model is employed, which is

spatially extended by incorporating with the Geographic

Information System (GIS) for simulating area source

dispersions. However, the box model simulates the for-

mation of pollutants within the box without providing any

information about the local pollutant concentrations. The

formulas of the state-of-the-art AERMOD model are then

employed in the multi-source and multi-grid Gaussian

model for simulating point source dispersions. The

GMSMB modeling system is employed to estimate the

gridded spatial concentration distributions of air pollu-

tants, which are applied as inputs to the FSOWA mod-

eling approach. More details about the GMSMB modeling

system can be found in Wang and Chen (2013).

2.2 Fuzzy set-OWA approach

2.2.1 Fuzzy set theory

Fuzzy set theory, an extension of classical set theory was

first proposed by Lotfi Zadeh (1965). The theory provided a

mathematical framework for handling categories that per-

mitting partial membership (or membership in degree) to

model complex systems that were difficult to model

through conventional set theories. A fuzzy set is charac-

terized by a membership function which represents

numerically the degree to which an element belongs to the

set (Zimmermann 1992). According to Zadeh’s definition

(Zadeh 1965), if X is a collection of objects denoted

generically by x, a fuzzy set A in X is then defined in terms

of a set of ordered pairs of elements x and its membership

function:

A ¼ x; lA xð Þð Þ x 2 Xjf g ð1Þ

where l(x) is the membership function of x in A. The

mapping of the function is denoted by lA: X ? [0, 1],

allowing for values from the entire unit interval. The closer

the value of l(x) to unity, the more x belongs to A.

A more convenient notation was proposed by Zadeh

(1972). When X is a finite set {x1, x2,…, xn}, a fuzzy set on

X is expressed as

A ¼ lA x1ð Þ=x1 þ lA x2ð Þ=x2 þ � � � lA xnð Þ=xn

¼
Xn

i¼1

lA xið Þ=xi ð2Þ

For two fuzzy sets A and B defined on the universe X,

the classical operations, including intersection, union and

complement for a given element x belonging to X are

carried out based on the minimum and maximum, i.e.

lA\B xð Þ ¼ min lA xð Þ; lB xð Þf g 8 xð Þ 2 X ð3Þ
lA[B xð Þ ¼ max lA xð Þ; lB xð Þf g 8 xð Þ 2 X ð4Þ
l �A xð Þ ¼ 1 � lA xð Þ 8 xð Þ 2 X ð5Þ

There are three other operations on fuzzy sets that are

important, namely, concentration, dilation, and aggrega-

tion. Concentration and dilation modify one set, similar to

the complement, whereas aggregation is another connec-

tive between sets, similar to union and intersection (Bel-

iakov et al. 2007).

Fuzzy aggregation operator combines several fuzzy sets

in a desirable way to produce a single fuzzy set. The

aggregation operator on n fuzzy sets, where n C 2, is for-

mally defined by a function F: [0, 1]n ? [0, 1], with the

properties (Cornelis et al. 2010):

(i) f 0; 0; . . .0ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�times

¼ 0 and f 1; 1; . . .1ð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n�times

¼ 1
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(ii) A�B implies f að Þ � f bð Þ for all A;B 2 ½0; 1�n

2.2.2 Fuzzy relation

Fuzzy relations generalize the concept of relations by

admitting the notion of partial association between ele-

ments of universes (Pedrycz et al. 2011). Given two uni-

verses X and Y, a fuzzy relation R is any fuzzy subset of the

Cartesian product of X and Y (Zadeh 1971). Equivalently, a

fuzzy relation on X 9 Y is a mapping R: X 9 Y ? [0, 1].

Fuzzy relations play an important role in fuzzy modeling,

fuzzy diagnosis, and fuzzy control.

The membership function of R for some pair (x, y),

R(x, y) = 1, denotes that the two elements x and y are fully

related. Conversely, R(x, y) = 0, means that these elements

are unrelated. Whereas the values in-between, 0\
R(x, y)\ 1, underline a partial association. The basic

operations on fuzzy relations, say union, intersection, and

complement, conceptually follow the corresponding oper-

ations on fuzzy sets once fuzzy relations are fuzzy sets

formed on multidimensional spaces (Zadeh 1975).

A mechanism to construct fuzzy relations is through the

use of the concept of Cartesian product extended to fuzzy

sets. The concept closely follows the one adopted for sets

once they involve the pairs of points of the underlying

universes, added with a membership degree (Pedrycz and

Gomide 2007).

If U: Z 9 X ? [0, 1] and V: Z 9 Y ? [0, 1] are fuzzy

relations on finite universes, X = {x1, x2,…, xn}, Z = {z1,

z2,…, zn}, and Y = {y1, y2,…, yn}, represented by (p 9 n)

and (p 9 m) fuzzy relational matrices [uki] and [vkj],

respectively, and R = [rij] is the (m 9 n) fuzzy relational

matrix associated with a fuzzy relation R: X 9 Y ? [0,1],

then the fuzzy relation becomes:

V ¼ U � R ð6Þ

Denote by Uk the kth row of U and by Vk the kth row of

V, k = 1, 2,…, p. Let Rj be the jth column of R, j = 1,

2,…, m. Equation (6) can be rewritten as follows:

V1

V2

..

.

Vp

0
BBBBB@

1
CCCCCA

¼

U1

U2

..

.

Up

0
BBBBB@

1
CCCCCA

� R1R2 � � �Rm
� �

¼
U1 � R1 U1 � R2 � � � U1 � Rm

..

. . .
. ..

.

Up � R1 Up � R2 � � � Up � Rm

0

B@

1

CA ð7Þ

where • can be a t-norm or t-conorm, referred as max–min

or max-product composition (Zadeh 1971).

2.2.3 Fuzzy set-ordered weighted averaging (FSOWA)

approach

When fuzzy set theory is used to produce an aggregate

fuzzy set by operating on the membership grades of fuzzy

sets, there are two potential pitfalls, exaggeration and

eclipsing that are very important in aggregation process

(Ott 1978). Exaggeration is a case where individual pol-

lution factor possess lower values (i.e., in an acceptable

range), yet the aggregate comes out unacceptably high.

Eclipsing is the converse phenomenon, where one or more

of the pollution factors are of relatively high value (i.e., in

an unacceptable range), yet the aggregate comes out as

unacceptably low. These phenomena are typically affected

by the method of aggregation (Veiga 1995).

There are many different aggregation operators (Belia-

kov et al. 2007). To simultaneously reduce both exagger-

ation and eclipsing, an ordered weighted averaging (OWA)

operator (Yager 1988), which is based on averaging

aggregation, is employed. Yager (1988) defined the OWA

operator: a mapping F: Rn ? R (where R ? [0, 1]) as an

ordered weighted averaging operator of dimension n if it is

associated with a weighting vector (w1, w2,…; wn)
T, so that

xi 2 0; 1½ �;
Xn

i¼1

xi ¼ 1 ð8Þ

and F a1; a2; . . .anð Þ ¼
Xn

j¼1

bj � xj ð9Þ

where bj is the jth largest element of ða1; a2; . . .; anÞ. The

OWA operators are symmetric aggregation functions that

allocate weights according to the input values, thus can

emphasize the largest, smallest or mid-range inputs. By

using OWA operators, the exaggeration and eclipsing in

aggregation function can be reduced.

Generally, triangular fuzzy number (TFN) or trapezoidal

fuzzy number (ZFN) are used to represent fuzzy variable.

ZFN can be represented by four vertices (a, b, c, d) on the

universe of discourse, representing the minimum, most

likely interval, and maximum values, respectively. TFN is

a special case of ZFN, where b = c. In this study, TFN is

used because the relationship between health risk and air

pollution factor is considered as linear and relative stable

for a period. TFN is defined by two distinct factors,

membership grade (i.e. fuzzy relation) and weight coeffi-

cient. The membership grade is the degree of each pollu-

tion factor belongs to each fuzzy air quality criteria.

Whereas the weight coefficient denotes the relative

importance of each pollution factor to air quality, which is

used to identify the different scales of health impact among

various pollution factors. The higher the weight coefficient

is, the larger the impact.
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Incorporating the OWA operators into the max–min and

max-product compositions (Zadeh 1971), we have two

fuzzy set-ordered weighted averaging (FSOWA) models

for air quality integrated health risk assessment:

Max–min composition model:

F¼ fj
� �

¼max min w1;r1j

� �
;min w2;r2j

� �
; . . .;min wm;rmj

� �� �

j¼1;2; . . .;n

ð10Þ

Max-product composition model:

F ¼ fj
� �

¼ max w1 � r1j

� �
; w2 � r2j

� �
; . . .; wm � rmj

� �� �

j ¼ 1; 2; . . .; n

ð11Þ

where F = (fj) represents the membership grade (possi-

bility) for integrated health risk level j to occur; wi is the

degree of importance for pollutant i, and rij is the mem-

bership grade for fuzzy relation between pollutant i and

risk level j. Through using these two models, two potential

pitfalls, exaggeration and eclipsing, can be simultaneously

reduced in the integrated health risk assessment.

The FSOWA approach is a generalized aggregation

transformation that provides flexible aggregation ranging

between the minimum and the maximum operators. It can

quantify the different impact scales of various pollution

factors on air quality and stress the maximum effect. For an

air quality system containing several pollutants with high

concentrations, the integrated health risk level can be

obtained through the above models.

2.2.4 Integrated health risk assessment

The integrated health risk caused by multiple air pollutants is

assessed based on the gridded spatial concentration distri-

butions predicted by the GMSMB modeling system. This

paper is focused on the five stages of integrated health risk

assessment: (1) quantification of fuzzy health risk levels

using six fuzzy sets based on the U.S. EPA Air Quality Index

(AQI) (US EPA 2009a); (2) construction of fuzzy member-

ship functions; (3) calculation of relative importance (i.e.

weighting coefficient wi for each pollution factor); (4) con-

struction of fuzzy set-OWA modeling; and (5) assessment of

integrated health risk based on the FSOWA modeling. An

overview of system framework and five stages of integrated

health risk assessment (shaded boxes) are shown in Fig. 1.

2.2.4.1 Quantification of fuzzy health risk levels The

fuzzy health risk levels are represented by the classifying

representative values (ei) and the benchmarks (si). According

to the Air Quality Index (AQI) made by the U.S. EPA, the air

quality is divided into six levels with a yardstick that runs from

0 to 500 (US EPA 2009a). The higher the AQI value is, the

higher the risk level of air pollution and the greater the health

concern. An AQI value of 50 represents that the air quality is

considered satisfactory and air pollution poses little or no risk,

which is the level that the U.S. EPA has set as the annual mean

value in the NAAQS for these pollutants to protect public

health. An AQI value of 100 generally corresponds to the air

quality is acceptable; however, there may be a moderate health

concern for a very small number of people. While an AQI value

over 100 represents unhealthy and over 300 represents haz-

ardous air quality (US EPA 2009a). Using the AQI calculator

developed by the U.S. EPA (US EPA 2009b), the AQI values

can be converted to the pollutant concentrations, as shown in

Table 1. Table 1 only lists four criteria pollutants (i.e. PM2.5,

NO2, SO2 and CO), because in this study, the pollutant

GMSMB 
modeling system

Pollutant 
concentrations ci

Fuzzy health risk levels  
ei, si

Air Quality Index (AQI) 

Fuzzy membership functions 
rm(ci) 

Weighting coefficient  
wi

Max-min  
composition model 

Max-product  
composition model

Integrated health risk  

Fig. 1 Framework of FSOWA approach

Table 1 AQI values and corresponding concentration intervals of pollution factors (US EPA 2009a)

Pollution factors AQI and corresponding concentrations intervals

0–50 50–100 101–150 151–200 201–300 301–500

PM2.5 (lg/m3) (0, 15.4) (15.5, 35.4) (35.5, 65.4) (65.5, 150.4) (150.5, 250.4) (250.5, 500.4)

NO2 (ppm) (0, 0.059) (0.060, 0.075) (0.076, 0.095) (0.096, 0.115) (0.116, 0.374) (0.375, 0.604)

SO2 (ppm) (0, 0.034) (0.035, 0.144) (0.145, 0.224) (0.225, 0.304) (0.305, 0.604) (0.605, 1.004)

CO (ppm) (0, 4.4) (4.5, 9.4) (9.5, 12.4) (12.5, 15.4) (15.5, 30.4) (30.5, 50.4)
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concentrations are provided by the GMSMB modeling system,

which cannot be used for O3 and Pb.

Based on Table 1, the concentration intervals can be

transformed into the fuzzy sets, which are represented with

the classifying representative values (ei) and the benchmarks

(si) which is the limit of safe level of pollution factor. Six

fuzzy sets, i.e. six health risk levels are defined to represent

air quality within ‘Good’, ‘Moderate’, ‘Low unhealthy’,

‘Unhealthy’, ‘Very unhealthy’ and ‘Hazardous’. For the first

risk level, the upper limit concentration values are taken as

the classifying representative values (e1) since they are close

to the annual mean values of the NAAQS for these pollutants

(except CO, it’s half of 8-hour mean) (US EPA 2006); while

for the rest risk levels, the average concentration values of

each interval are taken as the classifying representative

values (ei). According to the AQI, the second risk level is

‘‘acceptable and only a moderate health concern for a very

small number of people’’, while the third risk level means

‘‘although general public is not likely to be affected, mem-

bers of sensitive groups may experience health effects,

especially for people with lung disease, older adults and

children who are at a greater risk from exposure to ozone and

particles in the air’’. Thus, the second risk level is considered

as the limit of safe level and its upper limit concentration

values are taken as the benchmarks (si), as shown in Table 2.

2.2.4.2 Construction of fuzzy membership functions The

membership function represents the degree of a specified

concentration that belongs to the fuzzy health risk levels.

Triangular fuzzy number (TFN) is used to determine the

membership functions based on the classifying represen-

tative values ei of each health risk level. The linear mem-

bership functions are shown as following:

where rm(ci) denotes the membership grade of each pol-

lution factor belongs to each classifying representative

value; m is the number of health risk level; ci is the pol-

lutant concentration; e(m) denotes the classifying repre-

sentative value of each risk level. Following the

membership functions, the fuzzy function curves for the

health risk levels are created, as shown in Fig. 2.

2.2.4.3 Calculation of weighting coefficient In this study,

the relative importance, i.e. weighting coefficient wi of each

pollution factor is measured by the corresponding bench-

mark si which is the limit of safe level. When the pollutant

concentration is lower than the benchmark, it is considered to

pose a smaller impact on air quality which means it causes

lower health risk level. Conversely, when the pollutant

concentration is higher than the benchmark, it is considered

to pose a larger impact on air quality and causes a higher

health risk level. Thus, the weighting coefficient wi can be

calculated using the following formula:

wi ¼
ci

si
ð13Þ

where ci is the predicted concentration of each pollutant; si
is the benchmark of fuzzy health risk level of each pollu-

tion factor.

In this case, the weight coefficient wi is larger than 1

when the predicted pollutant concentration is higher than

the benchmark. Consequently, the definition of the aggre-

gation function given by F: [0, 1]n ? [0,1] should be

extended to R: [0, rj�max (w1, w2,…, wn)], where rj is the

jth largest membership grade of (r1, r2,…, n).

2.2.4.4 Construction of FSOWA modeling As discussed

in Sect. 2.2.3, the two models, i.e. the Max–min

rm cið Þ ¼
1

e mþ 1ð Þ � ci½ �= e mþ 1ð Þ � e mð Þ½ �
0

ci � e 1ð Þ or ci � e 6ð Þ
e mð Þ� ci\e mþ 1ð Þ
else

rmþ1 cið Þ ¼ 1 � rm cið Þ e mð Þ� ci\e mþ 1ð Þ

8
>>><

>>>:
ð12Þ

Table 2 Fuzzy health risk levels

Pollution factors Classifying representative values (ei) Benchmarks (si)

e1 e2 e3 e4 e5 e6 si

PM2.5 (lg/m3) 15.40 25.45 50.45 107.95 200.45 375.45 35.40

NO2 (ppm) 0.059 0.068 0.086 0.106 0.245 0.490 0.075

SO2 (ppm) 0.034 0.090 0.185 0.265 0.455 0.805 0.144

CO (ppm) 4.40 6.95 10.95 13.95 22.95 40.45 9.40
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composition model and the Max-product composition

model are used in this study.

2.2.4.5 Assessment of integrated health risk level By

loading the pollutant concentrations predicted by the

GMSMB modeling system, the integrated health risk levels

caused by four criteria pollutants can be assessed using the

FSOWA modeling approach. The results from two models

(Eqs. 10, 11) can be cross-verified by each other and the

maximum integrated risk level is taken as the result of

health risk assessment.

3 Case study

3.1 Overview of the study area

The state of California is chosen as the study area since

there are a wide variety of climates, geographic features,

meteorological factors and emission sources in this area. It

is located on the West Coast of the United States, which is

the most populous and third-largest state with an area of

160,000 square miles (414,000 km2). The capital of the

state is Sacramento. The five largest cities are Los Angeles,

San Diego, San Jose, San Francisco, and Fresno (California

Department of Finance 2009). The diverse geography

ranges from the Pacific Coast to the west, to the Sierra

Nevada Mountains in the east, to the Mojave Desert areas

in the southeast and to the Redwood-Douglas fir forests of

the northwest. The center of the state is dominated by the

Central Valley, a major agricultural area. The climate is

often compared to that of the Mediterranean, due to warm,

dry summer, and mild, wet winter. Farther inland, summer

is hot and dry, and at higher altitudes the weather is more

typical of a four-season cycle with cold, snowy winter. For

the purpose of managing air resources on a regional scale,

the state of California is divided into 15 air basins by the

California Air Resources Board (CARB) based on the

similar meteorological and geographic conditions and the

state political boundaries, as shown in Fig. 3 (California

Air Resources Board (CARB) 2009a).

3.2 Prediction of pollutant concentrations

In the GMSMB modeling system, the state of California is

horizontally divided into 10 km 9 10 km grid cells (Wang

and Chen 2013). The emission inventory data are obtained

from the Air Emission Inventory Database of the CARB

(CARB 2009b). The surface meteorological data, including

ambient temperature, wind speed and direction with fre-

quency distributions, humidity, precipitation and cloud

cover measured from over 800 surface meteorological

sites, are extracted from the CARB’s real-time Air Quality

and Meteorological Information System (AQMIS 2)

(CARB 2009c). The upper air meteorological data of

monthly average at the heights from 3 m and up from the

ground are obtained from the NOAA (National Oceanic

and Atmospheric Administration) Upper-Air Data products

(NOAA 2010). All of these data are processed as the input

to the GMSMB. The annual mean concentrations of four

criteria pollutants (i.e. PM2.5, NO2, SO2 and CO) at each

grid center are predicted for 2008. According to the pre-

dicted concentration intervals, the California air basins are

divided into several relative pollution levels (level is

defined by a specific concentration range being represented

with a color on GIS map), as shown in Fig. 4.

Figure 4a shows that the state of California is evenly

divided into four relative pollution levels according to the

predicted concentration intervals of PM2.5 in 2008. The

highest level (at a range of 15.1–21.6 lg/m3, shown in dark

red) is predicted in four regions: (a) the South Coast;

(b) the San Joaquin Valley; (c) the San Francisco Bay

Area; and (d) the Sacramento Valley. The maximum

modeling concentration for these areas is 21.6 lg/m3,

which is 1.8 times higher than the California Ambient Air

Quality Standards (CAAQS) (12 lg/m3) (CARB 2009d,

same as below), and the National Ambient Air Quality

Standards (NAAQS) (12 lg/m3) (US EPA 2006, same as

below). The second highest PM2.5 pollution level (at a

range of 10.1–15.0 lg/m3, shown in salmon color) is found

in: (a) the South Central Coast; (b) Mojave Desert Kern;

and (c) San Diego. The maximum concentration for these

areas is 15.0 lg/m3, which exceeds the NAAQS and the

CAAQS by 1.25. The third highest PM2.5 pollution level (at

a range of 5.1–10.0 lg/m3, shown in dark pink) is obtained

in: (a) the North Central Coast; (b) Mountain Counties; and

(c) the North Coast; and (d) Salton Sea. The maximum

concentration for these areas is 10.0 lg/m3, which meets

the NAAQS and the CAAQS. For the rest regions, the

lowest PM2.5 pollution level (0.0–5.0 lg/m3, shown in light

pink) are predicted.

HazardousGood Moderate
Low 

unhealthy Unhealthy
Very 

unhealthy

0

0.2

0.4

0.6

0.8

1

M
em

be
rs

hi
p 

G
ra

de
s

Representative Values
e1 e2 e3 e4 e5 e6

Fig. 2 Curves of the membership function for health risk levels
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Figure 4b presents the predicted CO concentration dis-

tribution for the year 2008, which is marked with colors red

to pink according to three pollution levels. The maximum

modeling result is 8.5 ppm occurring in the South Coast

and San Francisco Bay Area, which meets the NAAQS and

the CAAQS (8 h value at 9 ppm).

Similarly, Fig. 4c, d present the predicted SO2 and NO2

concentration distributions for the year 2008, marked in red to

pink based on the pollution levels. The maximum SO2 concen-

tration is0.007 ppmfound in the South Coast, San Francisco Bay

Area and San Joaquin Valley, which is lower than the NAAQS

(0.030 ppm for certain areas). The highest NO2 concentrations

also occur in the South Coast and San Joaquin Valley, with a

maximum of 0.036 ppm, which is just over the CAAQS

(0.030 ppm) and is lower than the NAAQS (0.053 ppm).

The modeling results from the GMSMB have been

validated with the monitoring values obtained from the

U.S. EPA Air Quality System (AQS) Database (US EPA

2010a). Since the annual average monitoring value for CO

is not available, CO is not included in the model error

analysis. The correlations between the modeling results and

the monitoring values are analyzed with R2 values, which

are 0.89, 0.90 and 0.94, for PM2.5, NO2, and SO2, respec-

tively. The modeling results show satisfactory agreement

with the monitoring values with slope of 0.84 and intercept

of 2.25 for PM2.5, slope of 0.82 and intercept of 0.003 for

NO2, and slope of 0.90 and intercept of 0.0002 for SO2.

3.3 Integrated health risk assessment

By loading the pollutant concentrations predicted by the

GMSMB modeling system, the integrated health risk levels

caused by four criteria pollutants can be assessed using the

FSOWA modeling approach. An arbitrary grid in the study

area is taken as an example to illustrate the details of

computational process. The concentrations of four criteria

pollutants, PM2.5, NO2, SO2 and CO in this grid are

18.5 lg/m3, 0.063, 0.045, and 3.3 ppm, respectively. The
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Fig. 3 Map of air basins in the

state of California (CARB

2009a)
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procedure of integrated health risk assessment is as

following:

(1) Calculation of the membership grades (rij) of

pollutant concentrations. The membership grade

(rij) is the degree of predicted concentration of each

pollution factor in the grid that belongs to each

classifying representative value of the fuzzy health

risk levels (see Table 2). The membership grade

matrix R is obtained using Eq. (12):

R ¼ rij
� �

¼

0:6900 0:3100 0 0 0 0

0:3750 0:6250 0 0 0 0

0:8000 0:2000 0 0 0 0

1 0 0 0 0 0

2

664

3

775

(2) Calculation of the weighting coefficient wi of each

pollution factor. The vector of weighting coeffi-

cient W is determined by Eq. (13):

W ¼ ð0:5226; 0:8533; 0:3125; 0:3511Þ

(3) Calculation of the integrated health risk caused by

four pollution factors. Two integrated risk assess-

ment results are obtained using the two FSOWA

modeling (Eqs. 10, 11):

F1 ¼ 0:5226; 0:6250; 0; 0; 0; 0ð Þ
F2 ¼ 0:3606; 0:5333; 0; 0; 0; 0ð Þ

The results are illustrated in Fig. 5, which show the

relationships between the integrated health risk and the

fuzzy health risk levels.

Figure 5(a) is the solution from the Max–min compo-

sition model, which indicates that the integrated health risk

is between level 1 (membership grade is 0.5226) and level

2 (membership grade is 0.6250), with a maximum mem-

bership grade corresponding to the fuzzy health risk level

2. Figure 5b is the solution from the Max-product com-

position model, which also shows that the integrated risk is

between level 1 (membership grade is 0.3606) and level 2

(membership grade is 0.5333). Both of them show that the
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Fig. 4 Annual mean spatial

concentration distribution maps

based on the air basins in the

state of California in 2008

(Wang and Chen 2013)
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maximum membership grades are corresponding to the

fuzzy risk level 2, which cross-verifies that the integrated

health risk in this grid belongs to the fuzzy risk level 2.

That means the air quality is moderate, i.e. it is acceptable;

however, there may be a moderate health concern for

people who are more sensitive to air pollution.

4 Results and discussion

4.1 Results

Using the GMSMB and FSOWA modeling approach, the

air quality integrated health risk assessment result is

achieved based on 10 km 9 10 km grids for the state of

California in 2008, which is visually presented in ArcGIS,

as shown in Fig. 6a.

From Fig. 6a, we can see that the air quality in most

areas of the state of California belongs to the first fuzzy

health risk level (dark green areas), namely, the air quality

is considered satisfactory, and air pollution poses little or

no risk. Only a few areas (i.e. the South Coast, San Diego,

San Joaquin Valley, Mojave Desert and the San Francisco

Bay Areas) belong to the risk level 2 (yellow areas),

indicating moderate air quality and some health concerns

for more sensitive people. There is no area belongs to the

rest of risk levels.

The integrated health risk assessment result is compared

with the U.S. EPA Air Quality Index (AQI) Report created

by county in 2008 (US EPA 2010b). In the AQI report, the

days are counted as five categories: ‘‘good’’, ‘‘moderate’’,

‘‘unhealthy for sensitive group’’, ‘‘unhealthy’’, and ‘‘very

unhealthy’’ based on the AQI values. The range of AQI

values are varying from 12 to 92 which are visually pre-

sented in Fig. 6b. The air quality with 0\AQI\ 45 is

considered as good (dark green), 45\AQI\ 50 is con-

sidered as potential moderate (light green), and

50\AQI\ 100 is considered as moderate (yellow).

Table 3 lists the counties with AQI values higher than 45

and the days of dominant pollutant during 2008.

Figure 6 shows the air quality integrated health risk

assessment from this study (Fig. 6a) is quite consistent

with the AQI statistical results (Fig. 6b) in most counties.

The differences only occur in a few counties, such as the

San Francisco Bay Areas, Imperial, Inyo, Mariposa, and

San Luis Obispo. The reason for the difference is probably

due to the different air pollutants are used in this study and

the AQI statistics. In this study, four criteria pollutants, i.e.

Fig. 5 Integrated health risk

assessment results using Max–

min composition and Max-

product composition models.

a the solution from the Max–

min composition model; b the

solution from the Max-product

composition model. The shaded

parts are the areas with higher

membership grade

Fig. 6 Air quality integrated

health risk assessment for the

state of California in 2008:

a result from this study;

b according to the AQI values

based on county (US EPA

2010b)
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PM2.5, NO2, SO2 and CO are used for the air quality

integrated health risk assessment. While in the AQI sta-

tistics, two more pollutants, i.e. O3 and PM10 are used (US

EPA 2010b). The differences are possibly caused by these

two pollutants. From Table 3, it can be seen that the PM2.5

is the dominant pollutant of AQI values among the four

criteria pollutants except the counties with differences as

mentioned above. This further suggests that the differences

might be caused by O3 and PM10 that we don’t use in this

study. In addition, the FSOWA modeling system is based

on the 10 km 9 10 km grids, while the AQI statistics are

based on the counties, this is probably another reason for

the differences.

4.2 Discussion

The purpose of this study is to develop an approach for

determining the integrated health risk due to various air

pollution factors and different impact of each factor. When

determining the integrated risk, there are various uncer-

tainties. They may arise from imprecision in knowledge

because of limited information, or from random variability

found in the stochastic nature of most real-world variables. It

could be argued that the fuzzy-set method provides a better

measure for characterization of the uncertainties in cir-

cumstances characterized with limited information about

statistical parameters or imprecision in knowledge. In this

study, the fuzzy health risk levels are derived based on fuzzy

set theory, which are defined by the triangular membership

function with the classifying representative values and the

benchmarks to represent the lower and upper bounds, as well

as base point of the fuzzy evaluation criteria, respectively

(Table 2). By taking into account the multiple air pollution

factors and the relative impact of each pollution factor based

on the fuzzy set theory, two models (Max–min and Max-

product composition) for the integrated health risk assess-

ment are developed to deal with the uncertainties in the

parameters of models. The integrated risk is determined by

the membership grade (ri, magnitude) and relative impor-

tance (wi, weighting coefficient). The uncertainty of health

risk of each pollution factor is treated using fuzzy set, and

their integrated health risk is determined based on the OWA

operators for ambient air quality. A potential limitation of

the fuzzy set approach is that the fuzzy set does not incor-

porate knowledge regarding correlation and other statistical

information in parameters, and this could be a limitation in

circumstances when there is sufficient information to

incorporate statistical information such as mean, correla-

tions and others (Mesa-Frias et al. 2014).

The developed approach is applied to evaluate the

integrated health risk of four criteria pollutants (PM2.5,

NO2, SO2 and CO) in the state of California. The result

shows that the health risk levels of ‘‘good’’ and ‘‘moder-

ate’’ dominate the air quality in the state of California,

which means that the risk levels are not high enough to

induce health problems. This is further verified by com-

paring with the AQI report, which shows that the range of

AQI values are varying from 12 to 92 (good to moderate,

US EPA 2009a) in the state of California.

The case study illustrates that the proposed FSOWA

approach offers a flexible exploitation for assessing air

pollution risk to human health. However, some differences

are also found between the result from this study and the

AQI report. Except the possible reasons mentioned above,

the uncertainty in the predicted pollutant concentrations is

probably another reason. The air pollution integrated health

risk assessment is based on the predicted or monitored

pollutant concentrations. The key to improve the assess-

ment is the accuracy of the related pollutant concentrations.

The FSOWA modeling approach can be operated sepa-

rately from the air quality models, which means, it can be

combined with any air quality models, such as the U.S.

EPA recommended AERMOD, CALPUFF models, or

more advanced numerical models, which may probably

improve the assessment. In addition, the FSOWA modeling

approach can be applied to much broader areas and more

pollution factors such as O3 and PM10, which may also

improve the assessment to match the situation in the real-

world.

Table 3 Air quality index statistics for the state of California in 2008

(US EPA 2010b)

County AQI Days of dominant pollutant

CO NO2 SO2 PM2.5

Fresno 71 8 167

Kern 92 9 129

Kings 67.5 130

Los Angeles 76 94 1 116

Orange 57 81 175

Riverside 80.5 34 91

San Bernardino 71 84 26

San Diego 64 72 97

Stanislaus 54 5 157

Tulare 69 31 43

Imperial 49 2 101 15

Inyo 45.5 1

Mariposa 46

Merced 47 35 35

Nevada 45 2 53

Sacramento 47 81 31

San Joaquin 45 59 84

San Luis Obispo 47 3 1 9

Ventura 46 25 24

* AQI is calculated based on 366 days per year
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5 Conclusion

In this study, a fuzzy set—ordered weighted averaging

(FSOWA) approach has been proposed for the integrated

health risk assessment associated with multiple air pollu-

tion factors and evaluation criteria. FSOWA can handle the

uncertainties in the integrated health risk assessment and

can also characterize the potential interactions among

various pollution factors and the combined impacts on

human health. In the final aggregation process, two

potential pitfalls, exaggeration and eclipsing, are of para-

mount importance. Through using a flexible aggregation

technique, the tolerance level for these two pitfalls can be

incorporated into the integrated health risk assessment.

The FSOWA modeling approach is based on the spatial

concentration distributions of various pollution factors. In

FSOWA, a degree of fuzziness is incorporated into the air

quality criteria by using the fuzzy sets and therefore the

absolute criteria is avoided. There is no sharp boundary

between different air pollution risk levels, instead, it is

fuzzy with implication for health risk levels. The health

risk and relative importance of various pollution factors are

aggregated by two models (Max–min and Max-product

composition) with the consideration of uncertainties. The

integration of the FSOWA approach with a GIS-based air

quality modeling system offers multiple benefits. GIS

implementation could provide essential information about

the spatial concentration distributions of air pollutant for

health risk assessment and risk area identification, which

are very important for air quality management and living

condition assessment in urban environment.

The developed approach has been illustrated to quantify

the integrated health risk associated with four criteria

pollution factors for the state of California in 2008. The

results have been compared with the U.S. EPA AQI sta-

tistic report, which demonstrates that the developed

FSOWA approach has provided an effective, systematic

and more realistic way for combining and quantifying

fuzzy quantities to achieve a more sufficient and reliable

integrated health risk assessment. The main advantage of

FSOWA is capable of revealing the potential interactions

among various pollution factors and quantifying the

uncertainties of integrative impact using fuzzy sets and

fuzzy member functions for air pollution. This approach

can also be applied to much broader environmental prob-

lems, such as surface and ground-water, soil, with more

pollution factors and parameters. However, it has some

limitations as mentioned in Sect. 4.2. And also, it is only

used for linear issues, i.e. pollution factors and risk levels

are linearly related. It cannot be used for nonlinear issues,

such as a dynamic system. FSOWA could be extended by

coupling with other types of fuzzy numbers and risk

analysis methodologies to handle various types of

uncertainties.
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