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Abstract Quantitative analysis of the risk for reservoir

real-time operation is a hard task owing to the difficulty of

accurate description of inflow uncertainties. The ensemble-

based hydrologic forecasts directly depict the inflows not

only the marginal distributions but also their persistence

via scenarios. This motivates us to analyze the reservoir

real-time operating risk with ensemble-based hydrologic

forecasts as inputs. A method is developed by using the

forecast horizon point to divide the future time into two

stages, the forecast lead-time and the unpredicted time. The

risk within the forecast lead-time is computed based on

counting the failure number of forecast scenarios, and the

risk in the unpredicted time is estimated using the reservoir

routing with the design flood hydrographs. As a result, a

two-stage risk analysis method is set up to quantify the

entire flood risks by defining the ratio of the number of

failure scenarios (excessive the critical value) to the total

scenarios number. The China’s Three Gorges Reservoir is

selected as a case study, where the parameter and precip-

itation uncertainties are conducted to produce ensemble-

based hydrologic forecasts. Two reservoir operation

schemes, the historical operated and scenario optimization,

are evaluated with the flood risks and hydropower profits

analysis. The derived risk, which units with yearly scale,

associates with the flood protection standards (described

with return periods) that can be used as the acceptable level

to operate reservoir. With the 2010 flood, it is found that

the proposed method can greatly improve the hydropower

generation with acceptable flood risks.

Keywords Reservoir operation � Ensemble-based

hydrologic forecasts � Risk analysis � Multi-objective �
Scenario optimization

1 Introduction

Reservoirs, which have contributed a significant role in the

development of human civilization, such as flood control,

hydropower, and water supply for municipal, industrial,

and agricultural uses, are one of the most efficient mea-

sures for the integrated water resources development and

management (Yeh 1985; Guo et al. 2004; Labadie 2004).

Although the effective real-time operation of reservoirs

have been widely studied and summarized (Yeh 1985;

Labadie 2004); it is still a difficult task due to the gap

between theories and practices Wurbs (1993), where the

uncertainty caused by stochastic inflows is one of the most

difficulties to tackle.

To understand the uncertainty involved in reservoir real-

time operation, quantitative risk analysis have been widely

studied and applied to reservoir decision-making (e.g., Xu
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et al. 1997; Apel et al. 2006). By controlling the risk under

an acceptable level, the reservoir’s functions can be max-

imized, and a reasonable decision can be then made based

on the trade-off between the risks and profits (e.g., Simo-

novic and Marino 1980; Datta and Houck 1984; Reznicek

and Cheng 1991; Sreenivasan and Vedula 1996; Ouarda

and Labadie 2001; Pianosi and Soncini-Sessa 2009). As a

result, the quantitative risk analysis has become the key

issue for reservoir real-time operation.

The risk is originally measured by both the probability

of the event and the seriousness of the consequences (Plate

2002), and only the probability is taken into account in this

study. In this case, the risk of reservoir operation can be

defined with the probability in various ways, such as the

reservoir water level above a critical level (e.g., the risk of

dam overtopping), and the water release more than a crit-

ical discharge (Tung and Mays 1981). Marien (1984)

analyzed the reservoir risk by giving a set of inflow sce-

narios, which also used by Kelman et al. (1989) to deter-

mine the optimal flood control volumes. Marien et al.

(1994) extended the method for flood control of multi-

purpose multi-reservoir systems. Turgeon (2005) deter-

mined the optimal daily operating policy of a small

reservoir subject to yearly probabilistic constraints on

floods and shortages. Kuo et al. (2007) used five methods,

including the Rosenblueth’s point estimation method, the

Harr’s point estimation method, Monte Carlo simulation,

Latin hypercube sampling, and the mean-value first-order

second-moment method, to assess the reservoir dam over-

topping risk. It was found that the Monte Carlo method is

still the most reliable method, since the quantitative risk

analysis problem is difficult due to the persistence of the

inflows (Turgeon 2005). Therefore, the Monte Carlo

method also benchmarks for reservoir risk analysis owing

to the complexity of accuracy description of the inflow

distribution, the model and parameter uncertainties. How-

ever, the Monte Carlo method is often unable to apply to

real reservoir operation risk analysis owing to the heavy

computation burden.

On the other hand, the ensemble-based forecasts have

the ability of describing the inflow uncertainty directly,

because they easily depict the inflows not only the marginal

distributions but also their persistence via scenarios. The

ensemble streamflow prediction is a general and popular

forecast technique for the real reservoir operation (Alemu

et al. 2011), which has been well literature by Cloke and

Pappenberger (2009). It is a natural idea that the ensemble-

based hydrologic forecasts (forecast scenarios) can be

directly input to the reservoir operation model and used

into risk analysis. Based on the above idea, risk analysis for

reservoir real-time operation is conducted by using the

ensemble-based hydrologic forecasts in this study, which

has seldom been addressed in the literature.

The remainder of this paper is organized as follows. In

Sect. 2, a risk analysis model is presented, which is dri-

ven by inputting an ensemble-based hydrologic forecast.

Section 3 deals with a case study of the Three Gorges

Reservoir (TGR). Finally, conclusions are given in

Sect. 4.

2 Methodalogy

A scenario is defined here as a streamflow hydrograph

(Faber and Stedinger 2001). Based on the ensemble fore-

casts with m members, the risk is defined as the frequency

of the failure number of members k, i.e., k
m

. Two flood risks,

either the release discharge or the reservoir water level

(elevation) is greater than a critical value, are considered to

assess the risk of reservoir operation.

As shown in Fig. 1, the future beyond the current time

period is divided into two stages by the forecast horizon

point: the forecast lead-time (forecast horizon) and the

consequent time period, where the latter is called as the

unpredicted time owing to the difficult of streamflow pre-

diction. Based on the above two-stage, the entire risk

consists of two dependent items: one is the risk within the

forecast lead-time, which can be computed based on

counting the failure numbers of scenarios; the other is the

risk in the unpredicted time, although which is difficult to

calculate due to floods after the lead-time, but it can be

estimated using the statistical information, i.e., the design

flood hydrographs. Thus, the risk in the unpredicted time is

estimated using reservoir routing with the design flood

hydrographs in this study. It is notable that the initial water

level of the reservoir routing, i.e., the time of forecast

horizon point, should be begin with the reservoir end water

level of stage one (reservoir routing with forecasts). A

novel method presented in this study is that not only the

failure probability within the forecast lead-time is taken

into account, but also the risk in the unpredicted time is

considered.

2.1 Reservoir routing model

The basic reservoir routing model is based on the mass

balance equation (Loucks et al. 2005), i.e.,

Vtþ1 ¼ Vt þ
It þ Itþ1

2
� Rt þ Rtþ1

2

� �
Dt � et;

t ¼ t1; t2; . . .; tn�1 ð1Þ

where It, Rt and Vt denote reservoir inflow, release and

storage at time period t, respectively. et denotes reservoir

losses during time period t, which is often ignored. Dt is the

time interval.

804 Stoch Environ Res Risk Assess (2015) 29:803–813

123



The constraints are expressed as follows:

Rmin�Rt �Rmax ð2Þ
Vmin�Vt �Vmax ð3Þ

where Rmin denotes the reservoir minimum release for other

purposes, such as environment and navigation, and Rmax

denotes the reservoir maximum release for the downstream

safety and spillways capacity. Vmin denotes allowed reser-

voir minimum storage, which is often the storage corre-

sponding to the dead water level. Vmax denotes storage

capacity of reservoir, which is often the storage corre-

sponding to the normal water level.

Based upon the reservoir routing model and ensemble-

based forecasts, two operation models can be set up as follows:

(1) Release control model When the reservoir releases

have been pre-determined, the corresponding water

levels are simulated for each forecast scenario,

respectively. In this case, there is only one scheme

of the reservoir releases and m scenarios of the

reservoir water levels.

(2) Water level control model The reservoir water levels

have been pre-determined, thus the corresponding

reservoir releases can be simulated for each forecast

scenario, respectively.

2.2 Risk within forecast lead-time

The release discharge or the reservoir water level (evalu-

ation), which is greater than a critical value, is considered

to assess the risk of reservoir operation. The risk within

forecast lead-time is calculated as follows:

(1) The risk of the downstream.

R1;down ¼ ProbðR [ QcÞ

¼

Pm
i¼1

#ðRi;t [ Qc; 8t ¼ t1; t2; . . .; tnÞ

m

ð4Þ

where # Ri;t [ Qc; 8t ¼ t1; t2; . . .; tn
� �

¼
1 Ri;t [ Qc; 8t ¼ t1; t2; . . .; tn

0 otherwise

�
is a one-zero vari-

able for scenario i, i.e., the value is equal to one if any

release is greater than the critical value, otherwise it is

zero. It should be noted that the value is also set to one

even failure times more than once.
Pm
i¼1

#ðRi;t [

Qc; 8 t ¼ t1; t2; . . .; tnÞ indicates the number of scenarios

where at least one of release discharges is greater than the

critical value Qc, and hence the risk within forecast lead-

time can be given by counting the release failure number

among m scenarios.

(2) The risk of the reservoir upstream is due to the flood

merge even dam overtopping.

R1;up ¼ ProbðZ [ ZcÞ

¼

Pm
i¼1

#ð Zi;t [ Zc; 8 t ¼ t1; t2; . . .; tn Þ

m
ð5Þ

where
Pm
i¼1

#ðZi;t [ Zc; 8t ¼ t1; t2; . . .; tnÞ indicates the

number of scenarios where at least one of reservoir water

levels is more than the critical value Zc, that is the failure

number of water levels.

2.3 Risk in unpredicted time

Except for the risk within the forecast lead-time, the con-

sequent flood risk in the unpredicted time should be taken

into account. In this case, the reservoir’s design flood hy-

drographs are used to depict the associated risk.

Risk R2;down is defined as the probability that the reser-

voir release exceeds the critical value Qc if the flood events

(design hydrographs) occur at time tn (Fig. 1). Assuming

that the water level Zi;tn at time tn is uncorrelated with the

forthcoming flood, the risk can be estimated by Li et al.

(2010):

St
re

am
flo

w
TimeCurrent �me peroid, t1

Forecast lead-�me

Past streamflow

Unpredicted
�me peroid

End �me peroid of opera�on, tn

Ensemble-based forecasts

Design flood hydrographs

Fig. 1 Framework of the

reservoir risk analysis using two

stages within the forecast lead-

time and the unpredicted time

period
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R2;down ¼
Xm

i¼1

RdownðZi;tnÞPðZi;tnÞ ¼

Pm
i¼1

RdownðZi;tnÞ

m
ð6Þ

where Zi;tn is water level at time t for scenario i, PðZi;tnÞ is

the probability of end water level reach to Zi;tn that is often

set as equal probability, and RdownðZi;tnÞ is the frequency of

forthcoming flood when the storage level is Zi;tn , and it can

be derived by reservoir routing (flood regulating calcula-

tion). For example, starting from the flood limit water

level, the risk encountered with the 100-year design flood

hydrograph is equal to 0.01.

Similarly, the risk of the unpredicted time for the

upstream can be expressed as follow:

R2;up ¼
Xm

i¼1

RupðZi;tnÞPðZi;tnÞ ¼

Pm
i¼1

RupðZi;tnÞ

m
ð7Þ

2.4 Entire risk

The risks within the forecast lead-time and in the unpre-

dicted time are statistical related. Since the entire risk Rdown

is the probability of the failure number for all scenarios, it

can be calculated as follow:

Rdown ¼ R1;down þ PðR2;downj�R1;downÞ

¼

Pm
i¼1;i2T

#ðRi;t [ Qc; 8 t ¼ t1; t2; . . .; tnÞ þ
Pm

i¼1;i62T

RdownðZi;tnÞ

m

ð8Þ

where T means the set of scenarios where at least one of

the release discharge is greater than the critical value. The

above estimated risk equation is based on the inflow sce-

narios, and the entire risk Rdown is the ratio of failure

number to all scenarios number.

Similarly, the entire risk Rup can be calculated as follow:

Rup ¼

Pm
i¼1;i2T

#ðZi;t [ Zc; 8 t ¼ t1; t2; :::; tnÞ þ
Pm

i¼1;i 62T

RupðZi;tnÞ

m

ð9Þ

Clearly, the proposed risk is a yearly scale and related to

the flood protection standard, which is described with

return period. The flood protection standard is therefore

used as the acceptable risk.

3 Case study

3.1 The Three Gorges Reservoir

The TGR is a vital project for water resources development

of China’s largest river, the Yangtze River (Fig. 2). The

TGR receives inflow from a 4.5 9 103-km-long channel

with a contributing drainage area of 106 km2. The mean

annual runoff at the dam site is 4.51 9 1011 m3. Currently,

the TGR is the largest multipurpose hydro-development

project ever built. The benefits of the TGR include flood

control, power generation and improved navigation. With a

flood storage capacity of 2.215 9 1011 m3, the TGR plays

a very important role in flood control of the Yangtze River.

The dam has 32 sets of 700 MW hydraulic turbo genera-

tors, i.e. 22,400 MW in total installed capacity. The TGR

supplies a large proportion of its electricity to eastern and

central China.

As shown in Fig. 3, the risk analysis involves three

procedures as follows.

(1) Generation of ensemble-based forecasts Since both

the probabilistic forecasting and the ensemble

streamflow prediction (ESP) are expressed as the

ensemble-based forecasts, we only use the probabi-

listic forecast with parameter and precipitation

uncertainties to produce the inflow scenarios, for a

demonstration. No difference between the ESP and

probabilistic forecasting to the reservoir operator

since both of them are depicted as a lot of scenarios.

(2) Reservoir simulation with scenarios The reservoir

operation is implemented by inputting ensemble-

based forecasts, and then a set of operation results is

obtained by using either reservoir release of water

level control models.

(3) Flood risks evaluation and controlling Based upon

these operation scenarios, the reservoir operation

risks can be calculated and evaluated.

3.2 Ensemble-based forecasts

3.2.1 Hydrologic model

The inflow of TGR consists of three components, the main

upstream inflow (Cuntan gage station), the tributary inflow

from the Wu River (Wulong gage station), and the rainfall

runoff from the TGR intervening basin (Fig. 2). The

intervening basin has a catchment area of 55,907 km2,

about 5.6 % of the TGR upstream Yangtze River basin.

Over the entire intervening basin, there are 40 rainfall

gauged stations and 2 hydrological stations (Cuntan and

Wulong), which control the upstream inflow and tributary

inflow, respectively.

The observed streamflows of Cuntan and Wulong, and

the rainfall data in the intervening basin are used for the

hydrologic forecasting. With the time interval of 6 hour,

data of flood season (from June to September) from 2003 to

2010 is used, where 2003–2007 is the calibration period,

and the data of 2008 to 2010 is used for validation.
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Figure 4 demonstrates the flowchart of the probabilistic

hydrologic forecasting for the TGR. The hydrologic sim-

ulation is implemented by using a multiple inputs and

single output model (MISO) Liang et al. (1992), where the

streamflows of Wulong and Cuntan stations are used to

depict the upstream and tributary flows respectively. The

Xinanjiang model Zhao (1992), a conceptual rainfall-run-

off model, is set up to model rainfall-runoff relationship of

the intervening basin.

The formulation of the MISO for the TGR is expressed

as follow Li et al. (2010):

Ît ¼
Xm1

j¼1

x
ð1Þ
t�jþ1h1ðDt; jÞ þ

Xm2

j¼1

x
ð2Þ
t�jþ1h2ðDt; jÞ

þ f ðPt;Pt�1;Pt�2; � � �Þ ð10Þ

where Ît is the forecasted inflow of the TGR at time t; x
ð1Þ
t

and x
ð2Þ
t are the inflows of the Cuntan and Wulong gage

Fig. 2 The location of the TGR

basin in China

Fig. 3 Sketch of the reservoir

risk analysis using ensemble-

based forecasts

Xinanjiang model

Multiple inflows of the TGR

Reservoir operation

Risk analysis and decision

Intervening precipitation

Streamflow of Cuntan

Multiple inputs and single output 

Optimal decision 

Streamflow of Wulong

Parameter uncertainty Precipitation uncertainty 

Fig. 4 Flowchart of the TGR ensemble-based forecasts generation using the Bayesian method
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stations at time t, respectively; m1 and m2 are the memory

lengths, respectively; Pt is the mean rainfall of the inter-

vening basin during time t; f ð�Þ denotes the Xinanjiang

model, the evaporation is ignored since it limited affect the

floods; h1ðDt; jÞ and h2ðDt; jÞ are impulse responses that

can be calculated by Nash model.

hiðjÞ ¼
1

KiCðniÞ
e�ðj=KiÞðj=KiÞn�1 ð11Þ

Si jð Þ ¼
Z j

0

1

KiCðniÞ
e�ðs=KiÞ s=Kið Þni�1

ds ð12Þ

hiðDt; jÞ ¼ Si jð Þ � Si j� Dtð Þ½ �=Dt ð13Þ

where CðniÞ is the Gamma function; ni (the number of

linear reservoirs) and Ki (the common storage coefficient)

are the parameters of Nash model.

Finally, 19 parameters, including 15 parameters of the

Xinanjiang model, and four parameters of the Nash models

that simulate streamflow from Wulong and Cuntan to the

TGR respectively, are implemented for the uncertainty

analysis.

3.2.2 Uncertainties implementation

Bayesian inference is an approach to statistics in which all

forms of uncertainty are expressed in terms of probability.

With the development and application on watershed mod-

els for the analysis of hydrologic systems, Bayesian

uncertainty forecasting becomes a popular technique for

hydrologic study (Beven and Binley 1992; Vrugt et al.

2003; Pappenberger and Beven 2006). Beven and Binley

(1992) proposed a pseudo-Bayesian framework, namely

generalized likelihood uncertainty estimation (GLUE),

which is easy of implementation, to produce probabilistic

forecasting. Based on GLUE, Lin et al. (2014) proposed the

discharge criterion of interior gauge station to select the

behavioral parameters and then reduce the uncertainty.

Vrugt et al. (2003) used the Monte Carlo Markov Chain

(MCMC) method to update the estimating covariance

values and then derived the posterior target distribution.

After that, Vrugt and Robinson (2007) presented the

simultaneous optimization and data assimilation method,

which combined the SCEM-UA algorithm with an

ensemble Kalman filter. Indeed, uncertainty analysis of

flood forecasting involves the quantification of uncertainty

in the model inputs, parameters, structure, and observations

Liu and Gupta (2007). We only discuss the parameter

uncertainty for the hydrologic model in this study, and this

simplicity does not cause significant loss for the proposed

reservoir operation model. An advanced MCMC method,

the adaptive Metropolis (Haario et al. 2001; Marshall et al.

2004; Smith and Marshall 2008), is used to produce a

number of samples (scenarios).

3.2.3 Measurement criterions

Two measurement criterions are used to evaluate the per-

formance of the MISO: the Nash–Sutcliffe model effi-

ciency index R2 (Nash and Sutcliffe 1970) and the mean

relative error of the volumetric (RE). They are expressed as

follows:

R2 ¼ 1�
P

Qt � Q̂t

� �2

P
Qt � �Qð Þ2

" #
� 100 % ð14Þ

RE ¼
P
ðQt � Q̂tÞP

Qt

� 100 % ð15Þ

where Qt and Q̂t are the observed and simulated discharges

at time t, respectively, and �Q is the mean value of Qt during

calibration or validation periods.

The R2 and RE for the median values of the 90 % pre-

diction interval are 0.96 and 0.02 for the calibration period,

and are 0.94 and -0.01 for the validation period. Figure 5

demonstrates the results of the MISO simulation using

parameter uncertainty analysis. With the streamflow sim-

ulation in 2004, it shows that a number of inflow scenarios

could be produced by considering the parameter uncer-

tainty. These scenarios not only describe the marginal

distribution of the observed streamflow, but also reflect

their persistence.

One of the top five observed floods on the TGR, the

2010 flood is used to evaluate the reservoir real-time

operation. Figure 6 shows the results of the quantified

precipitation forecast (implemented and published by the

Yangtze River Water Resources Commission), which has

three key values, the maximum, the minimum and the

recommend precipitation. The uncertainty forecasts of the

Cuntan and Wulong streamflows are implemented and

published by the Yangtze River Water Resources Com-

mission. Figure 7 shows the ensemble forecasts that is

produced with the uncertainties of both the parameters and

precipitation (Pappenberger et al. 2005).

3.3 Two schemes for reservoir operation

Two schemes, the historical operation and the optimal one,

are compared as follows.

3.3.1 Operated operation

Figure 8 shows the historical (operated) operation of the

TGR for the 2010 flood. The maximum streamflow
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reached 70,000 m3/s on 21st, July. The total hydropower

generation is 1.44 billion kWh with the end water level of

152.41 m.

3.3.2 Scenario-based reservoir operation

Since the inflow scenarios are used, the optimization

approaches such as scenario optimization (Dembo 1991),

sampling stochastic dynamic programming (SSDP) (Kel-

man et al. 1990), or scenario trees Watkins et al. (2000) can

be used to find the optimal operation. The SSDP is chosen

to implement the scenario-based reservoir operation. The

SSDP formulates a deterministic problem Liu et al. (2011)

for each scenario, and forces it shared by two or more

scenarios. It should be noted that the SSDP could be

improved and accelerated by using analytical probability

density functions (PDFs), with the idea of Wang and

Tartakovsky (2012).

The optimization objective functions are expressed as

follows:

(1) Minimization of the reservoir maximum water level,

which can be described as

F1 ¼ min max
t¼t1;t2;...;tn

Vt , F1 ¼ min
Ptn
t¼t1

V2
t

ð16Þ

(2) The downstream flood control objective is to mini-

mize the maximum discharge, which can be descri-

bed as follow:
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F2 ¼ min max
t¼t1;t2;...;tn

Rt , F2 ¼ min
Ptn
t¼t1

R2
t

ð17Þ

(3) Maximization of the hydropower generation:

F3 ¼ max
Ptn
t¼t1

Nt ð18Þ

where Nt denotes the hydropower generation during time

period t. It is a function of release Rt (m3/s) and water head

Ht (m). Specifically, power output is calculated as

Rt ¼ minðKRtHt;NmaxÞ, where K is a constant coefficient

(m/s2, say 8.8 in the case study) that includes generating

efficiencies and the specific weight of water, water head Ht

is a function of the reservoir storage volume and the tail

water level, and Nmax is the maximum power output.

The constraints are Eqs. (1)–(3). The above optimization

model has multiple objectives, which have been assigned

variance weights to transform into a single objective

problem. In this way, Pareto solutions have been produced.

The final decision is arbitrarily made by selecting a rea-

sonable one. In this case study, the weights are set to 0.3,

0.3 and 0.4 for the Eqs. (16)–(18) respectively. With the

SSDP method, Fig. 9 demonstrates the optimal operating

17 Jul 18 Jul 19 Jul 20 Jul
0

2

4

6

8

10
x 10

4

Date

D
is

ch
ar

ge
 (

m
3 /s

)

0

5

10

P
re

ci
pi

ta
tio

n 
(m

m
)

Precipitation
Observed flow

Forecasted flows

Fig. 7 Forecasted streamflow of the TGR in 2010

144

146

148

150

152

154

156

0

20000

40000

60000

80000

18-Jul 19-Jul 20-Jul 21-Jul 22-Jul

W
at

er
 le

ve
l(m

)

D
is

ch
ar

ge
 (m

3 /
s)

Date

Inflow
Op�mal release
Operated release
Op�mal water level
Operated water level 

Fig. 8 Optimal reservoir

operation in the 2010-7-20 8:00

145
150

155
160

165
170

175

3
4

5
6

7
8

x 10
4

145

150

155

160

165

170

175

Water level at 2:00 PM, 20 July (m)Inflow during 2:00 PM, 

20 July (m 3/s)

O
pt

im
al

 w
at

er
 le

ve
l a

t 8
:0

0 
P

M
, 

20
 J

ul
y 

(m
)

Fig. 9 Optimal operating policy in the 2010-7-20 8:00

810 Stoch Environ Res Risk Assess (2015) 29:803–813

123



policy for the 8:00 AM, July 20, 2010. As shown in Fig. 8,

the optimal operation seems more aggressive and store

more water for hydropower compared with historical

operation.

3.4 Risk analysis

Table 1 defines four typical risks for the TGR based on the

design flood hydrographs. The critical water level and

release are listed, which is used to evaluate the reservoir

real-time operation. Again, the risk in the unpredicted time

is calculated based upon the design flood hydrographs and

reservoir routing. For example, Fig. 10 shows the rela-

tionship between the initial water level and the risk for the

critical value of 153.1 m (5 % design flood hydrograph).

3.4.1 Release control model

By fixed the reservoir releases to the operated or optimal

one, the release control model is set up. In this case, the

risk of downstream is equal to zero and only upstream risk

need to evaluate. As shown in Table 2, the operated

operation produce 1.44 billion kWh hydropower with a

flood risk of 2.39 % for the upstream, which is acceptable

since the design flood risk is 5 % (20-year return period).

On the other hand, the optimal operation has a flood risk of

4.95 % and produces 1.58 billion kWh hydropower.

Additionally, the end water level is higher than the oper-

ated one, which means more energy to produce under the

conditions that risks are controlled within acceptable value

(5 %).

3.4.2 Water level control model

Similarly, the reservoir water levels are kept fixed and the

corresponding reservoir releases scenarios are used for risk

analysis. Again, Table 2 shows that the operated operation

produce 1.44 billion kWh hydropower with a flood risk of

3.65 % for the downstream, while the optimal operation

has a flood risk of 5.00 % and produces 1.60 billion kWh

hydropower, which means that the optimal one has an

acceptable risk and produces more energy.

Table 1 The critical values based on the design flood hydrographs

Flood

frequency (%)

Flood peak

of inflow (m3/s)

Maximum reservoir

release (m3/s)

Maximum reservoir

water level (m)

0.01 111,800 100,200 175.0

0.1 97,800 67,900 173.7

1 82,900 53,900 161.9

5 71,300 53,900 153.1

0 

5 

10 

15 

138 140 142 144 146 148 150 152

Fl
oo

d 
ri

sk
 (%

)

Ini�al water level (m)

Fig. 10 Relationship between

the reservoir initial water level

and flood risk of upstream based

on the critical value of 153.1 m

(5 % design flood hydrograph)

Table 2 Risks and profits of four operation schemes for the 2010 floods

Schemes Reservoir risk (%) Hydropower generation

(billion kWh)

End water

level (m)
Downstream Upstream

Operated scheme Release control – 2.39 1.44 152.41

Water level control 3.46 –

Optimized scheme Release control – 4.95 1.58 155.14

Water level control 5.00 – 1.60 155.23
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4 Conclusions

In this study, the reservoir real-time operating risk with

ensemble-based hydrologic forecasting inputs is studied.

With a case study of the Three Gorges Reservoir (TGR) for

the 2010 flood, following conclusion could be drawn:

(1) A novel risk not only considering the risk within

forecast lead-time but also in the unpredicted time is

developed.

(2) The hydrologic forecasting is very important to the

reservoir operation, and the proposed model pro-

vides a risk estimated method, which units with

yearly scale, associates with the flood protection

standards (described with return periods) that can be

used as the acceptable level to operate reservoir.

Although a framework for the ensemble-based forecasts

has been set up, a number of issues need to further

research, such as how to trade-offs between risks and

profits, and the selection of the acceptable risk based upon

economic analysis.
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