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Abstract The recent (1970–1999) and future (2070–2099)

climates under the SRES A1B scenario, simulated by the

regional climate model RegCM4.0 driven with lateral

boundary conditions from the ECHAM5 general circulation

model, are utilized to force a large-scale hydrological model

for assessing the hydrological response to climate changes in

the Yangtze River Basin, China. The variable infiltration

capacity model (VIC) is utilized to simulate various

hydrological components for examining the changes in

streamflow at various locations throughout the Yangtze

River Basin. In the end of the twenty-first century, most of

the Yangtze River Basin stands out as ‘‘hotspots’’ of climate

change in China, with an annual temperature increase of

approximately 3.5 �C, an increase of annual precipitation in

North and a decrease in South. Runoff in the upper reach of

Yangtze River is projected to increase throughout the year in

the future, especially in spring when the increase will be

approximately 30 %. Runoff from the catchments in the

northern part of Yangtze River will increase by approxi-

mately 10 %, whereas that in the southern part will decrease,

especially in the dry season, following precipitation changes.

The frequency of extreme floods at three mainstream sta-

tions (Cuntan, Yichang, and Datong) is projected to increase

significantly. The original extreme floods with return periods

of 50, 20, and 10 years will change into floods with return

periods of no more than 20, 10, and 5 years. The projected

increase in extreme floods will have significant impacts on

water resources management and flood control systems in

the Yangtze River Basin.

Keywords Climate change � Hydrological extremes �
RegCM4.0 � VIC � Yangtze River Basin

1 Introduction

Temperature, precipitation, and water vapor patterns are

predicted to change significantly by the end of the twenty-

first century according to the Fourth and Fifth Assessment

Report of the Intergovernmental Panel on Climate Change

(IPCC 2007, 2013). Anthropogenic global climate change

and human activities have significantly affected different

hydrological processes, and resulted in changes in the

spatial and temporal distribution of water resources at both

global and local scales (Christensen et al. 2004; Jha and

Gassman 2014; Wang 2005; Yang et al. 2008, 2010, 2012;

Yu et al. 2014). Considering that water is an essential

resource, the changes in the hydrological cycle will have

serious impacts on ecological, social, and economic situa-

tions (Horrevoets et al. 2004; Poff et al. 1997). Changes in

global streamflow are still unclear and no significant

changes have been found based on observational data over

the second half of the twentieth century (Alkama et al.

2013; Dai et al. 2009; Walling and Fang 2003), although

some studies have identified robust trends over some
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specific regions (Krakauer and Fung 2008; Stahl et al.

2010). Projecting the future climate and assessing its pos-

sible impact on water resources are critical for the basin

level and national planning of flood control, hydropower

production, agricultural irrigation, and ecosystem preser-

vation. Many studies on the impacts of climate change on

hydrological regimes have been conducted (Chiew et al.

2009; Etchevers et al. 2002; Mkankam Kamga 2001;

Senatore et al. 2011; Shabalova et al. 2003). These studies

usually used a three-step process that consists of (1)

implementing global climate models (GCMs), the most

commonly used tools for future climate predictions, under

different greenhouse gases emission scenarios; (2) using

statistical or dynamical approaches (i.e., regional climate

models, RCMs) to downscale the GCM output and provide

fine-resolution climate parameters for hydrological simu-

lations; and (3) implementing hydrological models to

simulate the changes in hydrological regimes at watershed

scales (Xu et al. 2005).

Yangtze River is the largest river in China and the third

largest river in the world. It is also one of the most

important rivers in the history, culture, and economy of

China. However, frequent floods in the Yangtze River

Basin inflicted considerable loss of lives and property (Ge

et al. 2013). In the last century, Yangtze River Basin

experienced significant warming in terms of annual aver-

age temperatures and temperature extremes (Sang et al.

2013; Wang et al. 2014), while no obvious trend was found

in annual mean precipitation. However, distinct decreases

in the number of rain days and increase in precipitation

intensity were observed over most part of the Yangtze

River Basin (Gu et al. 2014; Guo et al. 2013; Huang et al.

2013; Su et al. 2006; Zhang et al. 2014). The trend of

annual discharge has been examined by several research-

ers, and the results indicated that the trend is not significant

and is unevenly distributed spatially, with a decrease in the

upper reach, and an increase in middle and lower reaches

of the Yangtze River Basin (Chen et al. 2014; Zhang et al.

2006, 2009). Because large dams and reservoirs built along

the Yangtze River during the last 50 years dramatically

change the seasonal streamflow rates (Lai et al. 2014; Zhou

et al. 2014), trends in seasonal streamflow can be affected

greatly by these human activities (Dai et al. 2009).

Exploring the future changes in the Yangtze River Basin is

important for strategic adjustment in this area. Xu et al.

(2009) analyzed future projections of climate extreme

derived from an ensemble of GCMs, and found increases of

temperature extremes and heavy precipitation events in the

Yangtze River Basin. Wang et al. (2012) state that simu-

lations used VIC model with climate scenarios generated

by PRECIS regional climate model indicate southeast

China may experience greater rainfall and runoff in the

coming decades. Ju et al. (2014) applied the artificial neural

network model with eight selected GCMs to study the

impacts of climate change in the Yangtze River Basin, and

the results show that the likelihood of extreme floods tend

to increase in the future.

Most previous climate change impact assessment studies

on hydrological processes of Yangtze River Basin focused

on the seasonal or monthly water resources, and many of

them used future climate information directly from GCMs

to drive hydrological models. It is well known that the

changes of extreme hydrological events would have more

profound and immediate impacts on agriculture, economy,

and human health than the seasonal or monthly changes

(Arnell 2011; Easterling et al. 2000). So the primary con-

cern of this study was on the impact of future climate

change on extreme hydrological events based on the cou-

pling of a high-resolution regional climate model and a

distributed hydrological model. The objectives of this study

are (1) to investigate climate change across the Yangtze

River Basin by using projections of a global climate model

ECHAM5 downscaled by a regional climate model Reg-

CM4.0, (2) to assess hydrological changes in the Yangtze

River Basin by integrating the regional climate model and

a distributed hydrological model VIC, and (3) to explore

the likely impacts of climate change on extreme hydro-

logical events.

The study area and available data are described in the

next section. The methods employed to study the impact of

climate change on hydrological processes, including the

regional climate model, the bias correction method, and the

distributed hydrological model are described in Sect. 3.

The results of future climate projection and hydrological

impact, especially the changes in the frequency of extreme

hydrological events, are addressed in Sect. 4. The summary

and conclusions are presented in Sect. 5.

2 Study area and available data

The Yangtze River originates from the Tibetan Plateau and

flows across southwest, central, and eastern China for

6,300 km before emptying into the sea (Fig. 1). The basin

has a gently sloping topography that drops from above

5,000 m to sea level. The basin lies in southern China

between latitudes 24�N and 36�N and longitudes 90�E and

122.5�E and covers an area of approximately

1.8 9 106 km2. Most sections of the basin are situated

within a subtropical warm-wet zone and affected heavily

by monsoon climate; however, the Yangtze River source

region is in the dry, frigid, high-altitude zone. Annual

precipitation varies between 300 and 2,000 mm and

appears to diminish from southeast to northwest. Most of

the precipitation falls in the wet season between April and

October.
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Daily rain gauge data from 187 meteorological stations

in the Yangtze River Basin from 1958 to 2006 and the daily

mean discharge from 11 hydrological stations (Fig. 1) from

1971 to 2000 were obtained from the China Meteorological

Administration and the Hydrological Bureau of the Min-

istry of Water Resources. Inverse-distance squared method

was adopted in this study to interpolate meteorological

station data at a spatial resolution of 0.125� 9 0.125�,

which was the same as the hydrological model grid size.

3 Methods

The hydrological impact of climate change in the Yangtze

River Basin was assessed with the regional climate model

and hydrological model, based on the A1B SRES scenarios

(IPCC 2000). The A1B scenario was characterized by a

balance of economic and environmental sustainability

emphasis on all energy sources (i.e., fossil and non-fossil

fuels) and close to the ensemble of different scenarios.

Because the low-carbon economy strategy will be adopted

in China to cope with climate change and to promote

China’s economic growth and energy security (Jiang et al.

2010; Wang and Watson 2010), we are more interested in

hydrological changes in the Yangtze River Basin under

medium and low greenhouse gas emission scenarios.

Future climate changes were projected based on two

experiments that used the Abdus Salam International

Center for Theoretical Physics (ICTP) Regional Climate

Model version 4.0 (RegCM4.0) (Elguindi et al. 2011) dri-

ven with boundary forcing from the fifth-generation

atmospheric general climate model (ECHAM5) developed

at the Max Planck Institute for Meteorology (Roeckner

et al. 2003). One experiment is for the present (1970–1999)

scenario, and the other is for the SRES A1B future scenario

(2070–2099). The results of climate models often include

biased representations compared with observations because

of the imperfect conceptualization, parameterization

scheme, discretization, and other systematic model errors;

bias correction is usually necessary (Ahmed et al. 2013;

Wilby et al. 2000). To reduce the uncertainties of the cli-

mate projection scheme including only one GCM and one

RCM, given the limited computing resources, the bias

correction method is used as opposed to a multi-model

ensemble. In this study, precipitation and 2-m temperature

derived from the RegCM4 fields were corrected using a

distribution transfer method (Piani et al. 2010) and a

scaling method (Wood et al. 2004). The corrected fields

were then employed in a macro-scale distributed hydro-

logical model, the VIC model, to evaluate the impacts of

climate change on hydrology in the Yangtze River Basin.

Frequency analysis of annual maximum daily discharge

was conducted with maximum of 7–15 days flood volume

to examine the occurrence of flood events. The Pearson

type III frequency distribution recommended by the min-

istry of water resources of the people’s republic of China

was selected for the flood frequency analysis at three sta-

tions in the main stream of Yangtze River (MWR 1993).

The impacts of climate change on extreme flood events

were evaluated by comparing the flood frequency between

the baseline and future simulations under the A1B scenario.

3.1 Regional climate model RegCM4.0

The RegCM has been the first limited area model devel-

oped for the long-term regional climate simulation and has

evolved from the first version built upon the National

Center for Atmospheric Research (NCAR)-Pennsylvania

State University (PSU) mesoscale model version 4(MM4)

developed in 1980s (Dickinson et al. 1989; Giorgi 1990).

The RegCM4.0 was released in 2010 and many physical

processes had been continuously updated compared with its

previous version (Giorgi et al. 2012). It includes a new land

surface scheme, a mixed convection scheme, planetary

Fig. 1 Location and

topography of the Yangtze

River Basin
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boundary layer, and so on (Elguindi et al. 2011). The new

land surface scheme Community Land Model version 3.5

(CLM3.5) is a more advanced scheme which has a more

comprehensive description of the land surface processes

than BATS scheme in previous versions, and may improve

the surface energy and water cycles simulation (Steiner

et al. 2005, 2009). More details on the model RegCM4.0

can be found in Giorgi et al. (2012).

Our previous study (Gu et al. 2012), based on results of

a large set of sensitivity experiments, identified a config-

uration of the model that performs well for simulating

climate over the Yangtze River Basin. This includes a

domain that covers the East and South Asia (shown in

Fig. 1) with a 50 km horizontal resolution, 18 vertical

levels, the CLM3.5 land surface scheme, and the MIT-

EMAN convective scheme. As explained in Gu et al.

(2012), the initial and boundary conditions were provided

in the ECHAM5 general climate model. ECHAM5 cap-

tures the temporal variation and spatial pattern of precipi-

tation in China (Blender and Fraedrich 2006; Li et al.

2009), and has a climate sensitivity similar to the multi-

model average of all models in the Coupled Model Inter-

comparison Project (CMIP3) (IPCC 2007). The two

experiments covered a historic period (1970–1999) and a

future period (2070–2099) under the SRES A1B emission

scenario.

3.2 Climate model bias correction

Systematic errors of climate models can lead to unrealistic

hydrological simulations of river flow (Bergström et al.

2001; Graham et al. 2007); thus, bias correction methods

must be implemented before hydrologic modeling. The

commonly used bias correction methods to adjust RCM

simulations include the linear scaling, local intensity scal-

ing, power transformation, variance scaling, distribution

transfer, and the delta-change approach (Teutschbein and

Seibert 2012). Bias correction methods are based on the

assumption that the same correction algorithm applies to

both current and future climate conditions. Distribution

mapping is reported to be the best correction method; it can

adjust both the mean and variance of raw RCM data

(Teutschbein and Seibert 2012). In this study, distribution

mapping method was employed to correct the daily pre-

cipitation. Linear scaling method was employed to correct

the daily temperature of the RCM output.

The RegCM4.0 simulations and observation data were

interpolated to the one-eighth degree geographical grid in

VIC with the inverse distance weighting technique. The

distribution transfer between the simulated and observed

daily precipitation was completed at each grid. Gamma

distribution is often assumed to be suitable for the daily

rainfall distribution (Block et al. 2009; Piani et al. 2010).

The cumulative distribution function of gamma distribution

is defined as

cdf xð Þ ¼
Zx

0

e �
x
hð Þx k�1ð Þ

C kð Þhk
dxþ cdf 0ð Þ ð1Þ

C kð Þ ¼
Z þ1

0

tk�1e�tdt

where x is the daily precipitation, cdf(0) is the fraction of

days with no precipitation, and k and h are the form and

scaling parameter, respectively.

One of the most common biases of RCM output is the

overestimation of the number of rainy days. The number of

rainy days was adjusted by applying a precipitation

threshold. The values of the threshold depend on the dif-

ference in the performance of RCM at each grid. After

correcting the number of rainy days, the daily precipitation

data from RCM and observation were fitted by Gamma

distribution to determine the parameters with the best fit

(k and h). The transfer function xsim = f(xobs) follows the

equation cdfsim(xsim) = cdfobs(xobs).

Unlike daily precipitation, the climate models express

the daily temperature in terms of mean, minimum, and

maximum temperatures. However, if these three variables

are corrected independently by the distribution function

transformation, large relative errors in the daily tempera-

ture range may result (Thrasher et al. 2012). A sample

linear scaling method was thus utilized to reduce the bias

by the same correction coefficient. The correction coeffi-

cient for temperature at each grid was calculated based on

the differences between the observed and simulated tem-

peratures, which is defined by

kTmonth ¼
X1999

year¼1970

X28;29;30;31

day¼1

OBSyear;month;day i; jð Þ

�
X1999

year¼1970

X28;29;30;31

day¼1

RCMyear;month;day i; jð Þ ð2Þ

where RCM and OBS indicate the temperature at a given

day (day, month, year) from the RegCM4.0 simulation and

observation, respectively.

3.3 Distributed hydrological model VIC

The land surface scheme in climate models (both GCMs

and RCMs) includes the representation of terrestrial

hydrology, but often with substantial simplifications that

may not be suitable for some hydrological studies

(Bergström et al. 2001). For this reason, the VIC model

was employed to study the various hydrological processes

in the Yangtze River Basin. The VIC model is a semi-

distributed, physically based, macro-scale surface water
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and energy balance hydrological model (Cherkauer et al.

2003; Liang et al. 1994, 1996). The subgrid-scale spatial

variability in infiltration, vegetation/land cover, and pre-

cipitation was represented by a mosaic approach. The

model employs one vegetation layer, two snow layers, and

three soil layers, with moisture and energy fluxes, are

exchanged between layers. VIC employs a separate routing

scheme to simulate the delayed streamflow from the gen-

erated runoff within a grid cell (Lohmann et al. 1998). The

global 1 km land cover classification dataset (Hansen et al.

2000) and the global 10 km soil dataset (Reynolds et al.

2000) were utilized for each grid to define the soil and

vegetation parameters in the VIC model. The model has

been applied in a number of large river basins worldwide

(Hidalgo et al. 2013; Nijssen et al. 1997; Raje et al. 2014;

Su et al. 2005; Tang et al. 2010; Yong et al. 2013),

including the Yangtze River Basin in China (Ferreira et al.

2013; Zhang et al. 2013; Zhou et al. 2006).

4 Results

The hydrological effects of climate change were investi-

gated based on output from RegCM4.0 and VIC. The

RegCM4.0 performance over the Asia domain and the

projected future changes were documented in Gu el al.

(2012). Here we provide a more detailed assessment of the

RegCM4.0 performance and projected future climate

changes for the Yangtze River Basin, followed by the

hydrological changes simulated by VIC model.

4.1 RegCM4.0 model validation

The meteorological fields simulated by using RegCM4.0

were evaluated against observed data during the control

period 1970–1999. Figure 2 shows the seasonal cycle of

temperature and precipitation for the control period within

the Yangtze River Basin obtained from RegCM4.0

simulations and observations. RegCM4.0 captured the

overall seasonality of temperature and precipitation fairly

well. However, the model underestimated the temperature

in most months. During the winter season, the difference

exceeds 2 �C. For precipitation bias, a significant overes-

timation (percentage wise) of precipitation was observed in

February and December. Obvious underestimation was

observed in September and October. In terms of the

absolute amount, obvious overestimation was observed in

July and August; obvious underestimation was observed in

September and October.

The spatial pattern of the simulated thirty year average

annual mean 2 m temperature is in close agreement with

that of the observed data (Fig. 3). The most noticeable bias

was found in the upstream of Yangtze River Basin located

in the high-elevation Tibetan Plateau region, where the

model underestimated the annual mean temperature by

5 �C. The model performance for precipitation was not as

good as that for temperature; however, the major features

of the spatial pattern were well captured. The model

overestimated precipitation in the upstream section, espe-

cially in the southwest region (overestimated by more than

50 %) of the Yangtze River Basin. The model also

underestimated precipitation by approximately 20 to 30 %

in the east of the Yangtze River Basin.

4.2 Bias correction for RegCM4.0

The accuracy of precipitation estimation with RegCM4.0

was improved significantly after bias correction (Fig. 4).

There were relatively large errors in several areas in the

RegCM4.0 precipitation simulation. For example, the

model overestimated precipitation in the source region of

the Yangtze River, overestimated precipitation in the

southern part of the upper Yangtze River and simulated a

false heavy rainfall center, and underestimated precipita-

tion in several areas in the middle and lower reaches of the

Yangtze River. Most of the biases in these areas were

Fig. 2 Comparison between

simulated data of RegCM4.0

and observed data:

a precipitation (filled bars, mm/

month) and b temperature (solid

and dashed lines, �C)
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removed after bias correction in precipitation; this result

demonstrates the effectiveness of the distribution transfer

method for precipitation correction.

The biases of temperature were adjusted with the linear-

scaling approach, which were operated with monthly cor-

rection values based on the differences between observa-

tion and simulation. Therefore, the historical RegCM4.0

simulations after bias correction would agree well in terms

of average annual mean temperature by definition. But this

did not mean all biases of temperature had been removed.

For example, the bias of the daily temperature range was

not considered in this method. Nonetheless, the same bias

correction methods for temperature and precipitation were

used in the future temperature projection.

4.3 VIC model calibration and validation

Most of the parameters of the VIC model can be deter-

mined based on land surface information (i.e., topography,

soil, and vegetation); however, several parameters must be

Fig. 3 Thirty-year average 2 m temperature (left column) and precipitation (right column): from observation data (upper panels), from

RegCM4.0 in the control period (middle panels), and the difference between the two (lower panels)
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determined through calibrations. Random autostart simplex

method was employed in model calibration. The parame-

ters in the different catchments of the Yangtze River Basin

were calibrated to reflect parameter heterogeneity in the

entire basin. The VIC model was calibrated and validated

with observed daily hydrographs from 11 catchments

(divided by the hydrological stations in Fig. 1) in the

Yangtze River Basin. Two indicators that reflect the per-

formance of VIC model were selected and defined as

Volume error (VE):

VE ¼ Qsim � Qobs

� �
=Qobs � 100 % ð3Þ

Nash–Sutcliffe efficiency (NSE) (Nash and Sutcliffe

1970):

NSE ¼ 1�
XN

t¼1

Qsim;t � Qobs;t

� �2

,XN

t¼1

Qobs;t � Qobs

� �2

" #

ð4Þ

where Qsim and Qobs are the simulated and observed

average streamflows over the period; Qsim,t and Qobs,t are

the simulated and observed streamflows at time t; and N is

the number of time steps in the period. VE reflects the

agreement between the simulated and observed runoff

volume, and NSE indicates the overall agreement of the

shape of the hydrograph in the period. The optimal values

for VE and NSE criteria are close to zero and 1,

respectively.

Fig. 4 Average annual rainfall

in the historical period from

RCM before bias correction (a),

after bias correction (b), and

observation (c)
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The observed streamflows for the period of 1970–1979

were used for calibration, and those from 1980 to 1989

were used for the validation of the model in 11 catchments

of the Yangtze River Basin. Table 1 shows the character-

istics of the 11 catchments and the calibration and vali-

dation results. The values of VE and NSE over the

validation period vary from -7.2 to 5.9 %, and 0.72 to

0.92, respectively. The parameters are therefore effective

for river flow simulation in the Yangtze River Basin. Under

the assumption that the parameter in the VIC model will

not change with the future climate change, the same

parameters can be used for hydrological simulation in

future period.

4.4 Future climate changes projected by RegCM4.0

Figure 5 shows the predicted changes in the bias-cor-

rected 30-year average temperature and precipitation.

The predicted increase in annual average temperature is

higher than 3.5 �C in most areas. The largest increase

(4–4.5 �C) is predicted to be in the source region of the

Yangtze River Basin, especially in autumn and winter.

The center region is another ‘‘hotspot’’ where the future

temperature is predicted to increase more significantly in

summer and autumn. Annual precipitation is predicted to

increase in the northern region and decrease in the

southern region of Yangtze River’s mainstream. The

upper reach of the Yangtze River Basin will have the

most significant (more than 30 %) increase in precipita-

tion during spring and summer. Precipitation will

decrease by more than 10 % in the eastern and southern

regions of the Yangtze River Basin in autumn and winter;

this estimation indicates that droughts will become more

common in dry season.

4.5 Future changes in runoff

Future hydrological changes were assessed based on output

from VIC driven with the bias-corrected climate output from

RegCM4.0. To demonstrate the impact of bias correction on

model results, Fig. 6 shows the discharge of three main-

stream hydrological stations simulated by using VIC model

driven by the original and the bias-corrected output from

RegCM4.0, for the control period 1970–1999 and future

period 2070–2099. Without the bias correction, the model

overestimates both the peak streamflow and the base flow in

control period. The relative errors of mean annual runoff

during this period simulated by using VIC model driven by

the original outputs of RegCM4.0 were 60.3, 37.9, and

-17.1 %. These errors were reduced to -2.5, -10.4, and

-5.6 % after the bias-corrected climate was used. When the

same bias correction method was used to drive future

hydrologic simulations, a similar effect is found, with

reductions in the future base flow and peak flow (Fig. 6, right

column).

The temperature in the entire Yangtze River Basin will

increase in the future, and the uneven changes in precipitation

in the temporal and spatial distributions will cause uneven

changes in runoff. Therefore, the changes in runoff were esti-

mated in different catchments within the Yangtze River Basin.

Table 2 shows the predicted future changes in temper-

ature, precipitation, evaporation, and runoff obtained

through a comparison of the climate in the control

(1970–1999) and future (2070–2099) periods. Runoff will

increase throughout the year; the increase will be approx-

imately 30 % in spring in three catchments in the upper

reach of the Yangtze River Basin (e.g., Panzhihua, Xia-

odeshi, and Gaochang) mainly because of the 20 %

increase in precipitation. In the two catchments in the

northern part of the Yangtze River (Beibei and Xiantao),

Table 1 Characteristics of the

11 catchments and results of the

calibration and validation

Catchment River Lon Lat Area (*104 km2) Calibration

(1970–1979)

Validation

(1980–1989)

VE (%) NSE VE (%) NSE

Panzhihua Jinshajiang 99�560 26�540 23.3 -5.8 0.80 -6.5 0.81

Xiaodeshi Yalongjiang 101�500 26�450 11.8 -3.5 0.95 -3.8 0.90

Gaochang Minjiang 104�250 28�480 13.5 -4.0 0.93 -5.1 0.87

Beibei Jialingjiang 106�250 29�500 15.8 4.0 0.89 3.2 0.84

Wulong Wujiang 107�430 29�170 8.3 -6.6 0.71 -2.8 0.76

Xiantao Hanjiang 113�280 30�230 14.4 4.2 0.61 5.9 0.72

Taoyuan Yuanjiang 111�290 28�540 8.5 -6.6 0.82 -7.2 0.78

Xiangtan Xiangjiang 112�550 27�520 8.2 -0.9 0.91 -3.8 0.92

Cuntan Yangtze 106�360 29�370 86.7 -3.2 0.88 -4.3 0.87

Yichang Yangtze 111�140 30�400 100.6 -1.7 0.83 -4.7 0.84

Datong Yangtze 117�370 30�460 170.5 -0.8 0.81 -3.8 0.78
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precipitation and runoff will increase by approximately

10 %, with the most significant increase appearing in

spring (ranging from 15 to 20 %). The runoff in the

southern regions of the Yangtze River Basin (Wulong,

Taoyuan, and Xiangtan) will decrease following the

decrease in precipitation, especially in the dry season (with

20–40 % decrease in winter). This situation means that

severe droughts will become increasingly common in these

regions in the future.

4.6 Future changes in hydrological extremes

Figure 7 shows the changes in the annual maximum daily

discharge (maximum of 7 and 15 days water volume at

Fig. 5 Predicted future changes

in 2 m temperature (left panels)

and precipitation (right panels):

averaged annually (top panels)

and in each of the four seasons

(MAM, JJA, SON, DJF)
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Cuntan station). It indicates that flood frequency and

magnitude are likely to increase significantly in the future.

The characteristics of extreme floods will differ by the end

of the twenty-first century. For the maximum daily dis-

charge and maximum 7 days water volume, the original

extreme flood with return periods of 50, 20, and 10 years

will change into floods with return periods of approxi-

mately 15, 7, and 3 years. For the maximum 15 days water

volume, the original extreme flood with return periods of

50, 20, and 10 years will change into floods with the return

period of approximately 10, 5, and 3 years. Analysis of the

characteristics of extreme floods at Yichang and Datong

stations provided similar results; thus, the results of the

frequency changes in these two stations are not presented.

Considering all the stations in the different regions of the

Yangtze River, the climate changes have a distinct impact

on the frequency of extreme floods; the floods with return

periods of 50, 20, and 10 years in the present-day period

will change into floods with return periods of 10–20, 5–10

and less than 5 years in the end of twenty-first century.

An increase is projected for the selected return periods

in all sub-basins. Most sub-basins will increase for flood

events with a longer return period. Compared with the

changes in the annual mean runoff, a more significant

increase in extreme flood events is projected even in some

of the sub-basins with a decreasing trend in precipitation

and runoff.

5 Summary and conclusion

The outputs of the RegCM4.0 were interpolated to pro-

duce long-duration sequences of daily precipitation and

temperature for the Yangtze River Basin. Bias corrections

were applied to the control (1970–1999) and future

(2070–2099) periods simulations. With the bias-corrected

Fig. 6 The discharge of three mainstream hydrometric stations

(Cuntan, Yichang, and Datong) during control period (1970–1999,

left) and future period (2070–2099, right) simulated by using VIC

model driven by the original and the bias-corrected output from

RegCM4.0 and the observed climate data (no observation in the future

period)
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daily precipitation and temperature series, the daily dis-

charge in 11 sub-basins of the Yangtze River Basin was

simulated by using the VIC model. The impacts of climate

change on hydrologic characteristics, especially on

extreme hydrological events in the Yangtze River Basin,

were then assessed.

In the future period, the annual average temperature will

increase by more than 3.5 �C in most areas. The largest

increase (4–4.5 �C) is predicted to exist in the source

region of the Yangtze River Basin, especially in autumn

and winter. The center region is another ‘‘hotspot’’ where

the future temperature is predicted to increase more sig-

nificantly in summer and autumn. This was consistent with

the results of Chen et al. (2011a, b) who projected the

future climate over China based on the weighted average of

28 GCMs under A1B scenario. Annual precipitation is

predicted to increase in the northern region and decrease in

the southern region of Yangtze River’s main stream. The

upper reach of the Yangtze River Basin will have the most

significant (more than 30 %) increase in precipitation in

spring and summer. Precipitation will decrease by more

than 10 % at the eastern and southern regions of the

Yangtze River Basin in autumn and winter. This prediction

indicates that droughts will become increasingly common

during dry seasons in this region. Huang et al. (2011)

predicted that precipitation of the Yangtze River Basin

would be dominated by an increasing trend based on out-

puts from the HadCM3 model under scenarios A2 and B2.

The future changes in temperature and precipitation will

affect the future hydrological cycle. Runoff from areas in

the upper reach of the Yangtze River will increase

throughout the year by as much as 30 % during spring.

Runoff from catchments in the northern part of the Yangtze

River Basin will increase by approximately 10 %, whereas

that in the southern part will decrease (especially in dry

season) following the decrease in precipitation.

The impacts of climate change on extreme hydrological

events are the focus of this study. The frequency changes in

extreme flood characteristics at Cuntan, Yichang, and Datong

stations indicate that the impacts of climate change on

extreme flood events are significant under the future scenario.

The original extreme floods with 50, 20, and 10 year return

periods will change into floods with no more than 20, 10, and

5 year return periods. The changes in extreme flood events

will have significant impacts on flood control systems. The

reservoir system and hydropower stations along the Yangtze

River would likely be required to spill more water because of

the increase in the extreme flood events in the future.

A regional climate and hydrological model system was

constructed in this study by integrating a global climate model

(ECHAM5) with a regional climate model (RegCM4.0) and a

distributed hydrological model (VIC) to study the impacts of

climate change on water resources and extreme flood events

in the Yangtze River Basin. Assessment of the uncertainties

related to the GCM, RCM, emission scenario, bias correction

method, and hydrological model was not conducted and is

Table 2 Projected changes between 2070–2099 and 1970–1999 in

temperature (T), precipitation (P), evaporation (E), and runoff (R)

Catchment Variable Spring Summer Autumn Winter

Panzhihua T (�C) 4 3.9 5 4.8

P (%) 25.8 13.8 4.1 -0.7

E (%) 20 15.4 23.8 9

R (%) 28.4 8.1 2.2 8

Xiaodeshi T (�C) 3.8 3.9 4.9 4.7

P (%) 29.7 20.4 4.6 2.8

E (%) 16.5 16.8 25.8 1.9

R (%) 36.2 24.3 4.6 2.8

Gaochang T (�C) 3.3 3.5 4.5 3.8

P (%) 31.4 12.2 3.8 16

E (%) 19.3 8.9 19.5 5.1

R (%) 33.4 20.9 0.9 10.9

Beibei T (�C) 3.3 3.8 4.4 3.3

P (%) 17.2 7.6 -3.4 8.2

E (%) 10.2 3.8 11.1 13.1

R (%) 15.1 15.2 1.4 0.4

Wulong T (�C) 3.7 4.1 4.4 3.3

P (%) 11.4 -11.7 17.6 -11

E (%) 8.7 -2.4 1.5 6.3

R (%) 1 -15.4 -20.4 -33.2

Xiantao T (�C) 3.9 3.9 4.1 3.4

P (%) 16.5 1.9 -3.6 5.4

E (%) 11.2 1.5 6.2 19

R (%) 19.6 3.4 1.5 12.6

Taoyuan T (�C) 3.8 4 4.3 3.3

P (%) 8.6 -6.5 -13.9 -8.7

E (%) 3 -1.3 -2.4 2.2

R (%) -2.1 -7.1 -12.6 -22.4

Xiangtan T (�C) 3.8 3.5 3.8 3.1

P (%) -4.4 -2.1 -19.6 -22.7

E (%) -6.1 0.2 -3.4 -6.2

R (%) -28.7 -7.5 -10.1 -39.3

Cuntan T (�C) 3.6 3.8 4.7 4.1

P (%) 21.9 11.7 0.8 0.9

E (%) 15.4 9.8 17.8 8

R (%) 22 13.3 0.6 0.7

Yichang T (�C) 3.6 3.9 4.7 4

P (%) 20.6 9.2 -0.5 -0.3

E (%) 14.5 8.2 15.7 8

R (%) 19.6 10.4 -0.6 -1.5

Datong T (�C) 3.7 3.8 4.4 3.7

P (%) 12.8 4.3 -4 -5.4

E (%) 9.5 3.9 9.1 7.3

R (%) 9.2 4.5 -2.1 -12

Stoch Environ Res Risk Assess (2015) 29:693–707 703

123



Fig. 7 Projected changes in the

annual maximum daily

discharge (a), 7d (b) and 15d

(c) water volume at Cuntan

station in the Yangtze River

Basin
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beyond the scope of this study. However, conscious choices

were made to reduce the uncertainty. For example, as GCMs

were recognized as the largest source of uncertainty in climate

projection (Chen et al. 2011a, b; Kay et al. 2009; Woldeme-

skel et al. 2012), we chose the ECHAM5 model that has a

climate sensitivity close to multi-model ensemble to drive the

regional climate model. We expect this study to establish a

foundation for follow up research that includes comprehen-

sive ensemble simulations to assess and address model-rela-

ted uncertainties.
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