
ORIGINAL PAPER

A comparison of clustering approaches for the study
of the temporal coherence of multiple time series

Francesco Finazzi • Ruth Haggarty •

Claire Miller • Marian Scott • Alessandro Fassò
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Abstract Two approaches for clustering of time series

have been considered. The first is a novel approach based

on a modification of classic state-space modelling while the

second is based on functional clustering. For the latter, both

k-means and complete-linkage hierarchical clustering

algorithms are adopted. The two approaches are compared

using a simulation study, and are applied to lake surface

water temperature for 256 lakes globally for 5 years of

data, to investigate information obtained from each

approach.
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1 Introduction

In environmental and ecological sciences, the correlation

or synchrony between major fluctuations in a set of time

series is often described as temporal coherence, (Lansac-

Tha 2008; Livingstone 2010; Salisbury et al. 2011). If

synchronous or coherent temporal patterns are observed,

then this may indicate the existence of common drivers and

pressures. Increasingly within ecology, there is a need for

statistical models which do not regard the individual time

series separately but rather recognise that common drivers

will impact at regional and sub-regional spatial scales.

Commonly it is the case that the sites at which the time

series’ are measured are spatially registered, so that iden-

tification of a set of temporally coherent time series can be

further explored spatially.

In this brief introduction, we focus on the freshwater

environment, specifically lakes. Globally, lakes are con-

sidered as sensitive indicators of environmental change,

impacted by both natural and anthropogenic drivers of

change. In particular the impact of climate change on

freshwater resources is critical and IPCC, UNEP and EEA

have all recognised the sensitivity of the global water cycle

to climate change and other pressures. Improved under-

standing of the observed changes is key to better man-

agement of aquatic resources. Such changes include

synchrony in the fluctuations observed, and also in the

changing seasonal patterns. Studies exploring the temporal

coherence of lakes in terms of hydrological features (flow),

bio-geochemistry (pH, alkalinity, chlorophyll, sulphates

and nitrates, organic carbon) and temperature are widely

undertaken. Each of these variables in turn respond to

global and regional covariates such as the North Atlantic

Oscillation, land management, global temperature and

precipitation.
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Department of Engineering, University of Bergamo, viale

Marconi 5, 24044 Dalmine, Italy

e-mail: alessandro.fasso@unibg.it

123

Stoch Environ Res Risk Assess (2015) 29:463–475

DOI 10.1007/s00477-014-0931-2

http://dx.doi.org/10.1007/s00477-014-0931-2


Classically in the ecological literature, the focus has

often been on a small number of times series, and the

analysis to find common patterns has used a pairwise

approach (often with a simple correlation coefficient).

Other approaches have made use of cross-wavelet analysis

(Grinsted et al. 2004; Labat 2010; Franco-Villoria et al.

2012) but still with a focus on a pairwise approach.

In a multiple time series setting, dynamic factor analysis

has been used (Calder 2007; Lopes et al. 2011; Muoz-

Carpena 2005) to identify common latent trends and for

prediction. In this work, we focus on clustering as an

approach to study the temporal coherence of multiple time

series, with a view to establishing methods that are

appropriate for any number of time series. In particular, a

novel clustering algorithm based on a modification to the

approach of state-space modelling is proposed and is

compared to functional clustering considering both

k-means and complete-linkage hierarchical algorithms. The

idea of combining state-space modelling and clustering is

not new and has been considered in Costa and Gonalves

(2011). The approach developed in Costa and Gonalves

(2011), however, seems to be suitable for small numbers of

time series, it is based on univariate models and does not

provide a way to estimate the optimal number of clusters.

The clustering approaches in this paper are illustrated on a

global lake temperature data set (see MacCallum and

Merchant 2013).

The rest of the paper is organized as follows: in Section

2, the concept of temporal coherence is defined. Sections 3

and 4 describe the state-space model at the basis of the

clustering approach and its estimation by means of a

modified version of the EM algorithm. Section 5 introduces

the functional clustering approach considering both the

k-means and the complete-linkage hierarchical algorithms.

Section 6 compares the novel clustering approach with

functional clustering and compares the performances of

both the approaches when a simulated data set is consid-

ered. Section 7 describes the clustering result for the global

lake temperature data set while conclusions are given in

Section 8.

2 Study of temporal coherence

In this paper, we consider a set of time series to be jointly

coherent when, apart from random noise, they share the

same temporal pattern along the entire temporal frame of

observation. In particular, the term ‘‘temporal pattern’’

refers to the direction of variation of the time series, and

the fixed characteristics of the time series, such as the

overall mean and the overall variability, are not considered

to be discriminant. For this reason, only standardized time

series will be analysed.

A natural way to study temporal coherence is to group

the time series into a suitable number of coherency clus-

ters, that is, two time series belong to the same cluster if

they are coherent with each other. The coherency study,

therefore, consists in the estimation of both the number of

clusters and the membership of each time series with

respect to the clusters.

Although the paper deals with spatially registered time

series, the spatial correlation across time series is not

explicitly modelled or forced in any way. The approaches

discussed in this paper, instead, enable spatio-temporal

data to be modelled where the interest is natural clusters of

seasonal patterns. When the results of these approaches are

mapped in geographic space they enable better under-

standing of the spatial context of the underlying natural

processes.

3 State space modelling

State-space modelling is a time series analysis technique

which is used to identify latent common temporal patterns

in time series. The minimal state-space model is the

following

y tð Þ ¼ Kz tð Þ þ e tð Þ
z tð Þ ¼ Gz t � 1ð Þ þ g tð Þ

ð1Þ

where y tð Þ is the N � 1 observation vector and z tð Þ ¼
ðz1 tð Þ; :::; zp tð ÞÞ0 is the p� 1 state vector, with

z 0ð Þ�N m0;R0ð Þ, where R0 is a known variance-covariance

matrix. The matrix K is a N � p matrix of coefficients

while G is a p� p stable transition matrix. Finally,

e tð Þ�N 0; r2
e IN

� �
is the N � 1 measurement error vector

while g tð Þ�N 0;Rg

� �
is the p� 1 innovation vector. If y tð Þ

includes missing data, then y tð Þ ¼ Lt yð1Þ tð Þ0; yð2Þ tð Þ0
� �0

,

where yð1Þ tð Þ and yð2Þ tð Þ denotes the sub-vectors of the data

and the missing data respectively while Lt is the permu-

tation matrix at time t. Moreover, n
1ð Þ

t þ n
2ð Þ

t ¼ N and

n
2ð Þ

t denotes the number of missing values in y tð Þ. Model (1)

is completely characterized by the parameter set

W ¼ K;G;Rg; r2
e ; m0

� �
.

The idea behind the state-space model of Eq. (1) is to

model each time series yi tð Þf g, i ¼ 1; . . .;N as a linear

combination of the latent time series zj tð Þ
� �

, j ¼ 1; . . .; p,

with weights of the linear combinations given by the row ki

of K.

3.1 Model estimation

Given the N � T matrix Y ¼ y 1ð Þ; . . .; y Tð Þð Þ, the estima-

tion problem consists in estimating both the parameter set
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W and the latent time series z tð Þf g. The Expectation

Maximization algorithm in conjunction with the Kalman

smoother algorithm represents a well known and largely

accepted solution to the estimation problem within the

maximum likelihood framework (see Shumway and Stoffer

(2006)). In order to make the model identifiable, however,

constraints must be imposed on the parameter set. For

instance, (Fassò and Finazzi 2011) consider a matrix K of

fixed coefficients, (Mardia et al. 1998) estimate K using

empirical orthogonal functions, (Calder 2007) use known

smoothing kernel convolution weights while Zuur et al.

(2007) introduce restrictions on K, Rg or m0.

Assuming, for the moment, that no constraints are

imposed on W, the closed form updating formulas at iter-

ation m of the EM algorithm are the following

R̂ mh i
g ¼ 1

T
S11 � S10Ĝ

m�1h i
S010

� �

Ĝ
mh i ¼ S10S�1

00

r̂2
e

� � mh i ¼ 1

NT
tr
XT

t¼1

Lt

M
m�1h i

t 0
n

1ð Þ
t �n

2ð Þ
t

0
n

2ð Þ
t �n

1ð Þ
t

r̂2
e

� � m�1h i
In2

t

0

@

1

AL0t

K̂
mh i ¼

XT

t¼1

Lt

yð1Þ tð Þ � zT
t

� �0

0
n

2ð Þ
t �1

 ! !

S�1
11

ð2Þ

where

S11 ¼
XT

t¼1

zT
t zT

t

� �0þPT
t

S10 ¼
XT

t¼1

zT
t zT

t�1

� �0þPT
t;t�1

S00 ¼
XT

t¼1

zT
t�1 zT

t�1

� �0þPT
t�1

M
m�1h i

t ¼ yð1Þ tð Þ � LtK̂
m�1h i

zT
t

� �
yð1Þ tð Þ � LtK̂

m�1h i
zT

t

� �0

þ LtK̂
m�1h i

PT
t LtK̂

m�1h i� �0

ð3Þ

and where

zT
t ¼ EW m�1h i z tð Þ j Yð Þ

PT
t�h ¼ VarW m�1h i z t � hð Þ j Yð Þ; h ¼ 0; 1

PT
t;t�1 ¼ covW m�1h i z tð Þ; z t � 1ð Þ j Yð Þ

are the output of the Kalman smoother at iteration m� 1 of the

EM algorithm. Note that, in Eq. (2), In2
t

is the identity matrix of

dimension n2
t and 0

n
1ð Þ

t �n
2ð Þ

t
is the matrix of all zeros of dimen-

sion n
1ð Þ

t � n
2ð Þ

t . At convergence, the EM algorithm provides

the estimated model parameter set Ŵ ¼ K̂; Ĝ; R̂g; r̂2
e ; m̂0

n o
.

4 A novel model-based clustering approach

In classic state-space modelling, the p� N components of

the latent vector z tð Þ represent the common temporal trends

and the role of the matrix K is to express each time series

y
i

tð Þf g as a linear combination of the common trends. If the

aim is to cluster the N time series with respect to their

temporal coherence, the role of the j-th component of z tð Þ
is to describe only the time series of the j-th cluster.

Assuming standardized time series, this is equivalent to

requiring the matrix K to have elements which can only be

zeros and ones. In particular, each row ki of K contains a

single element equal to one and the position of this element

identifies the membership of the time series with respect to

the clusters.

At this point, it is important to note that the updating

formula of Eq. (2) is not able to provide such a con-

strained matrix. In principle, the maximum likelihood

estimation of W by means of the EM algorithm can be

carried out considering the constrained parameter space

but it is not easy to derive closed form estimation for-

mula. For each iteration of the EM algorithm, on the

other hand, an exhaustive search of the constrained

matrix K that maximizes the likelihood (conditional on

the other model parameters) is prohibitive as the space

K 3K of all the N � p constrained matrices contains pN

elements. Since, in practical applications, N can be large

(102–106), we believe that even relying on optimization

methods (such as the simulated annealing algorithm) is

not enough to obtain estimation results in a reasonable

time since the optimization method should be applied for

each iteration of the EM algorithm. In the next para-

graph, the classic EM algorithm is adjusted so that the

estimated matrix K̂ meets the above mentioned con-

straint but the computational burden of model estimation

is not increased.

4.1 The modified EM algorithm

In order to adapt the EM algorithm so that a constrained

matrix K̂ 2 K is estimated, it is useful to understand how

the matrix K̂
mh i

is derived at the iteration m of the EM

algorithm. By considering Eq. (2), it can be noted that the

ij-th element k̂
mh i

ij of K̂
mh i

is obtained by evaluating a

weighted cross-covariance between the observed time

series y
i

tð Þf g and the estimated time series

zT
j;t

n o
¼ EW m�1h i zj tð Þ j Y

� �� �
. In the trivial case of N ¼

p ¼ 1 and no missing data, in fact, the scalar K̂
mh i � k̂ mh i is

given by
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k̂ mh i ¼
PT

t¼1 y tð Þ � zT
tPT

t¼1 zT
t

� �2þpT
t

Intuitively, k̂
mh i

ij is high (low) when the cross-covariance

between y tð Þ and zT
t is high (low).

In order to estimate K such that K̂ 2 K, the following

strategy is considered. At iteration m of the EM algorithm,

the the ij-th element of K̂
mh i

is given by

k
mh i

ij ¼
cijPp
j¼1 cij

ð4Þ

where

cij ¼ y
i

tð Þf g; zT
j;t

n oD Ef mð Þ
if y

i
tð Þf g; zT

j;t

n oD E
[ 0

0 otherwise

8
<

:

ð5Þ

In Eq. (5), �; �h i is the correlation operator while f mð Þ is a

function of iteration number m. In the simplest case,

f ðmÞ � m so that y
i

tð Þf g; zT
j;t

n oD E
, j ¼ 1; . . .; p is raised to

the power of m which is appropriate here. Other choices of

f ðmÞ are possible provided that f ðmÞ monotonically

increases with m.

When y
i

tð Þf g; zT
j;t

n oD E
is raised to a power greater than

one, the differences between the correlations are amplified

and, for each row vector k
mh i

i , due to the normalization in

Eq. (4), only one element of k
mh i

i converges to 1 when

m!1. Even if, in general, K̂
mh i 62 K, in practice, with the

exception of rounding errors, the matrix K̂
mh i

converges to

an element of the spaceK after a small number of iterations.

Once the parameters Ŵ are estimated, the matrix K̂

directly gives the membership of the N time series with

respect to the p clusters. The role of the exponent f mð Þ in

Eq. (5) is similar to the ‘‘temperature’’ parameter of the

simulated annealing algorithm. In particular, f mð Þ is

gradually increased with m in order to avoid convergence

to poor local maxima of the likelihood function. This is

necessary for two reasons: first, the matrix K is jointly

estimated with the rest of the model parameters in W and

with the latent z tð Þf g. Secondly, K is randomly generated

when the initial value W 0h iof W is set.

Note that the estimation heuristic defined by (4) and (5)

does not guarantee that the EM algorithm converges to a

global maximum of the likelihood function. However, the

same holds for the unconstrained parameter set W and the

standard EM algorithm. Moreover, the same estimation

heuristic does not guarantee that the likelihood of the

observed data does not decrease when moving from Ŵ mh i to

Ŵ mþ1h i, a condition which is satisfied by the standard EM

algorithm. Nonetheless, the heuristic is able to provide

sound estimation results at the same computational burden

of the standard EM algorithm. Poor local maxima can be

avoided by repeatedly perturbing W 0h i and by considering

the estimated parameter set Ŵ related to the highest like-

lihood. Finally, it is worth noting that, as soon as the matrix

K̂
mh i

stabilizes, the algorithm proceeds as the standard EM

algorithm with all its properties.

5 Functional clustering

In the functional clustering approach, time series are described

in terms of linear combinations of basis functions. The coeffi-

cient vectors of the linear combinations are then clustered using

a suitable clustering algorithm, here the k-means and complete-

linkage hierarchical algorithms will be implemented.

The observed time series are described through the

following model

yi tð Þ ¼ Gi tð Þ þ ei tð Þ

where Gi is a smooth curve and ei is an independent ran-

dom error term, i ¼ 1; . . .;N.

The curve Gi is a spline function of degree d (see de

Boor (2001)). Since any spline function can be expressed

as a linear combination of B-splines, the following func-

tional form for the spline si t; bið Þ is considered:

si t; bið Þ ¼
XKþd�1

l¼1

bi;lBl tð Þ

where bi ¼ bi;1; . . .; bi;Kþd�1

� �0
is a vector of real-valued

coefficients, B1ðtÞ; . . .;BKþd�1ðtÞð Þ is the B-spline basis

functions and K is the number of knots and d is the degree

of the polynomial.

As detailed in Ignaccolo et al. (2008), the bi vector is

estimated by means of the least squares method and the Gi

curve is approximated by Ĝi tð Þ ¼ si t; b̂i

� �
.

If the polynomial degree d, the number of knots K and the

knot positions are the same for all the time series, then the B-

spline basis functions are fixed and the spline coefficients bi

describe the same features for each of the time series.

Two clustering algorithms are considered here, namely

the k-means algorithm and the complete-linkage hierar-

chical algorithm.

5.1 K-means algorithm

Functional clustering based on the k-means algorithm has

been introduced in Abraham et al. (2003) and a similar

approach which used partitioning around mediods rather

than means has been applied in Ignaccolo et al. (2008). K-
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means is applied to the spline coefficient vectors in the

RKþd�1 space and the clustering result directly provides

the clustering of the time series. For a given number of

clusters, in order to reduce the influence of the starting

values, the k-means algorithm is applied M times.

5.2 Complete-linkage hierarchical algorithm

In the complete-linkage hierarchical clustering algorithm

(Henderson 2006), the distance between the curves Gi tð Þ,
i ¼ 1; . . .;N is first estimated. The distance between two

curves (denoted i and q) can be written as

diq ¼ ðbi � bqÞ
0
Wðbi � bqÞ ð6Þ

In the above expression, W is a symmetric matrix the

elements of which are given by wl;m ¼
R

BlðtÞBmðtÞ0dt,

with l;m ¼ 1; . . .;K þ d � 1. For each set of basis func-

tions, W can be evaluated using numerical integration, if

necessary, and the functional distance matrix D with entries

diq can be computed. Standard linkage criteria for hierar-

chical clustering can then be applied to the elements of D.

5.3 Stopping criteria

Well developed methods exist as to how to choose the

optimal number of clusters. The L-curve and gap statistic

(Tibshirani et al. 2001) approaches are considered here. Both

the gap statistic and L-curve use the within cluster disper-

sion, Wj, to determine the number of clusters. For the L-curve

approach a plot of Wj versus j is produced. As the number of

clusters increases, Wj will decrease monotonically. How-

ever, the first value of j at which Wj reaches a minimum and

stabilises indicates where there has been the largest increase

in goodness of fit and hence which is the optimum number of

clusters. The gap statistic compares the average within

cluster dispersion for the observed data, with the average

within cluster dispersion for a null reference distribution

which assumes there is no clustering within the sites.

The L-curve is easy to compute but differences between

the estimates for different numbers of clusters are not

normalized for comparison and often the shape is unin-

formative regarding the optimal number of clusters. The

gap statistic is time consuming as a result of the simula-

tions required. However, can provide clearer guidance for

the optimal number of clusters.

6 Simulation study

In order to compare the clustering approaches discussed

above, a simulation study is carried out. The aim of the

simulation study is to show that the novel model-based

approach performs as well as the classic clustering

approach based on functional data analysis and that it can

be used to detect small differences between clusters. As the

main focus of interest in this work is to investigate clusters

which are primarily based on differences in phenologies of

the time series rather than long term trends, the following

simulation model is considered.

6.1 Data generation

Five clusters are simulated by generating, for each cluster,

nj ¼ 5; 10; 20; 40; 80 time series considering the equation

y
j
kj

tð Þ ¼ sin
2p
52

t þ j� 1ð Þu
� 	

þ ej; t ¼ 1; . . .; 260

where u ¼ p=6 is a constant phase, t is time in weeks with

data simulated for 5 years, ej�N 0; r2
j

� �
is a i:i:d: random

noise with standard deviation rj ¼ 0:1; 0:2; 0:3; 0:4; 0:5 and

kj ¼ 1; . . .; nj for j ¼ 1; . . .; 5. Each cluster, thus, is charac-

terized by a different number of time series, a different

phase of the sine function and a different noise variance.

6.2 Model-based clustering

The model-based clustering approach is used here to

cluster the data set simulated in the previous paragraph. In

order to estimate both the number of clusters p and the

cluster membership, for each p ¼ 2; . . .; 10 the model is

estimated 50 times by perturbing the initial values of the

model parameters. The solution that gives the highest

observed data log-likelihood is retained. The log-likelihood

of the retained solution is reported in Table 1 as a function

of p where it can be noted that the log likelihood stabilizes

at p ¼ 5, the number of the actual clusters. In particular, for

p [ 5, the extra-clusters are empty, that is, p� 5 columns

of the matrix K̂ are vectors of all zeros.

For p ¼ 5, the number of time series in each cluster is

exactly equal to nj, j ¼ 1; . . .; 5 and the cluster membership

of each time series is exactly as simulated. The result is

depicted in Fig. 1 in terms of both the time series of each

cluster and, for each cluster, the average time series.

Table 1 Model-based clustering results for the simulated data set.

Observed data log-likelihood and number of empty clusters with

respect to number of clusters

No. of clusters 2 3 4 5 6

Log-likelihood 100948 120643 120936 130053 130055

No. of empty clust. 0 0 0 0 1

No. of clusters 7 8 9 10

Log-likelihood 130048 130052 130052 130055

No. of empty clust. 2 3 4 5
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Two features of the model-based clustering approach are

worth discussing further. First, the approach provides an

accurate result even when the clusters are heterogeneous in

terms of number of time series in each cluster. Secondly,

the clusters are allowed to be empty, a result which is used

in the identification of the optimum number of clusters.

When the optimum number of clusters is identified, any

additional clusters are, in fact, supposed to be empty and

when an empty cluster is added the change in observed log-

likelihood is negligible. Finally, the result does not depend

on the choice of parameters such as the number of knots or

the spline order as in functional clustering.

6.3 Functional clustering

In order to cluster the simulated time series of paragraph

6.1 using the functional clustering approach, K ¼ 54

equally spaced knots are defined over the temporal range

1; 260½ � and cubic splines (d ¼ 3) are considered. This

provides approximately 1 knot every 4/5 weeks and this

choice enables key features of the data to be captured while

eliminating local variability.

The k-means algorithm is applied to the spline coeffi-

cient vectors M ¼ 10 times in order to reduce the influence

of the starting values.

K-means and complete-linkage hierarchical algorithms

identify four clusters as optimal via the gap statistic and the

L-curve (Fig. 3), with the curve classifications under both

functional clustering approaches being the same. Note that

the L-curve does not actually stabilize after a given number

of clusters. Nonetheless, the last large step in the L-curve

occurs when moving from three to four clusters. These four

clusters (see Fig. 2) are comprised of three groups of curves

being correctly classified as clusters where nj ¼ 20; 40; 80,

Fig. 1 Simulated data

clustering result using the

model-based approach.

Individual time series (light

line) and cluster average (dark

line)
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while the fourth is a combination of the simulated clusters

with 5 and 10 curves. The fifth cluster is not identified

using the functional clustering approaches. This is probably

due to the fact that the fifth cluster only includes 5 curves

and the L-curve does not seem to be very sensitive to

detecting clusters with a small number of curves when

differences between the clusters are small.

7 ARC-Lake data analysis

The ESA ARC-Lake project (http://www.geos.ed.ac.uk/

arclake/) aims to exploit the scanning capability of the

Along Track Scanning Radiometers (ATSRs) instrument

on-board the Envisat satellite in order to derive observa-

tions of the lake surface water temperature (LSWT), for

major lakes, globally, for the temporal period 1991–2010

in order to demonstrate the usefulness of these observations

to climate science and to the study of climate change.

When the LSWT is analysed in order to study climate

change, a fundamental aspect is to understand which lakes

are temporally coherent with each other. If a global change

is underway, it should be easier to detect the common

change by analysing groups of temporally coherent lakes

instead of all the lakes as a whole. In this section, therefore,

the above developed clustering approaches are applied to

the LSWT time series of the ARC-Lake data set in order to

cluster the lakes into homogeneous groups with respect to

their temporal coherence.

The data product ALIDxxxx_PLREC9D_TS366LM

(see MacCallum and Merchant (2013)) includes the daily

lake-average LSWT for 256 lakes around the globe and it is

considered for data analysis.

The length of the time series represents a crucial aspect as

the longer the time series the higher the probability that the

time series differ at some instants in time. For this reason, the

Fig. 2 Simulated data

clustering result using the

functional clustering approach

(both k-means and complete-

linkage hierarchical algorithms).

Spline for each time series (light

line) and cluster average (dark

line)

Fig. 3 L-cuve related to the simulated data set
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LSWT for the period 2006–2010 is considered as 5 years is a

short period of time when compared to the dynamics of

global change. The LSWT is averaged over seven days as

there is a relatively small amount of variability at the daily

level if compared to the long-term variability.

Since the lakes differ both in altitude above mean sea level

and in volume, the time series of each lake is standardized to

have zero mean and unit variance. This allows the removal of

local effects not related to the global or regional climatology.

Lakes from the same region but characterized by different

altitudes, in fact, may have a different overall average

LSWT, while lakes different in size may have a different

inertia and thus a different variability. Nonetheless, they

should exhibit the same temporal pattern.

7.1 Model-based clustering

Model (1) is fitted with both G and Rg constrained to be

diagonal matrices. Model estimation is carried out using

the D-STEM software (see Finazzi and Fassò (2014))

available at code.google.com/ p/d-stem/.

Starting from p ¼ 2, the model-based clustering tech-

nique is applied to the ARC-Lake data set and p is

increased until an empty cluster is obtained. As in the

simulation study, for each value of p the model is estimated

50 times and the estimation result related to the highest

log-likelihood is retained. The average computing time for

model estimation is around 90 seconds on a standard laptop

machine. From Table 2 it can be noted that the log-likeli-

hood stops substantially increasing between p ¼ 11 and

p ¼ 12. In particular, the solution related to p ¼ 12 is

characterized by an empty cluster. Thus, p ¼ 11 is con-

sidered as the optimum number of clusters. The number of

time series in each cluster is reported in Table 3. Note that

one cluster only includes one time series.

The clustering result displayed as estimated cluster

averages is shown in Fig. 4. The average time series are

given by zT
t

� �
¼ EŴ z tð Þ j Yð Þ
� �

.

Table 2 ARC-Lake data set clustering result using the model-based

approach. Observed data log-likelihood and number of empty clusters

No. of clusters 2 3 4 5

Log-likelihood 140437 220478 250644 300663

# empty clust. 0 0 0 0

# clusters 6 7 8 9

Log-likelihood 320897 340045 360101 380330

# empty clust. 0 0 0 0

# clusters 10 11 12 13

Log-likelihood 390568 400928 400925 400938

# empty clust. 0 0 1 2

Fig. 4 ARC-Lake data set

clustering result using the

model-based approach -

Estimated cluster averages

divided by latitude bands
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Figure 5 shows the time series of the singleton cluster

and cluster 6. Although the two clusters have many simi-

larities, they are also characterized by differences that

prevent them from being in the same cluster. The arrows in

Fig. 5 identify the discrepancies between the singleton

cluster and the time series of cluster 6.

The clustering result is represented on the map of Fig. 6

for Central and South America. This and subsequent

figures focus on a small area to facilitate the comparison

across the clustering approaches. The reader may refer to

the supplementary material for the global maps. The

numbers displayed on the map describe the cluster mem-

bership of the lakes while the colour of the number is

related to the Köppen climate classification (Peel et al.

2007). The Köppen classification, however, is based on

both temperature and precipitation while the climate

boundaries are defined by the local vegetation. The clas-

sification, thus, can give a hint on the spatial distribution of

the clusters but the clusters are not expected to perfectly

match the climate zones. For further information on the

cluster classification codes see: http://koeppen-geiger.vu-

wien.ac.at/.

The singleton cluster is related to the volcanic lake Toba

in Sumatra, which surrounds the resurgent dome of the old

volcano now known as Samosir island. Since the volcano is

inactive or at least dormant, the LSWT discrepancies are

probably due to local climatic conditions. Possibly, the

large area of the resurgent dome may interfere with the

remote sensing reading of the LSWT for this lake.

7.2 Functional clustering

As in the simulation study, time series are described using

cubic splines considering K ¼ 54 equidistant knots.

K-means and complete-linkage hierarchical algorithms are

subsequently applied.

For both the algorithms, the L-curves decrease smoothly

and so are uninformative as to the optimal number of

clusters. The gap statistic identifies 11 clusters as optimal

for the k-means algorithm and 7 clusters when the com-

plete-linkage hierarchical algorithm is applied. The number

of curves in each cluster are included in Table 3 for both

the algorithms.

A graphical sensitivity analysis was used to assess the

influence of the number of knots/basis functions on the

statistically optimal number of clusters identified by each

method. The L-curve was computed for a broad range of

potential numbers of basis functions. Within a reasonable

range of the number of basis functions, the choice had little

effect on the shape of the L-curve/gap statistic and hence

the number of clusters chosen. At the more extreme values,

when very few or many basis functions were used there

was a difference in the number of clusters identified as

optimal. The approach we decided on was to choose a

number of basis functions whereby the key features of the

data were captured by the curve fitted but local variation

was not incorporated.

Figure(s) 7 and 8 represent the spatial distribution of the

clusters for k-means and complete-linkage hierarchical

clustering algorithms, respectively in Central and South

America. The cluster averages curves are reported in Figs.

Fig. 5 ARC-Lake data set clustering result using the model-based

approach - Temporal discrepancies (arrows) between cluster 2 and 6

Fig. 6 ARC-Lake data set clustering result using the model-based

approach - Spatial distribution of the clusters in Central and South

America. Numbers represent the cluster membership while colours

are related to the Köppen classification (see legend)
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9 and 10 divided by latitude bands. In this area of Central

and South America the number of clusters and the distri-

bution are very similar. the main difference is that the

k-means algorithm identifies a slightly larger number of

clusters in Central America. Cluster numbers are simply

labels and cannot be compared across the approaches.

7.3 Result comparison

In order to attempt to quantify how similar the clustering

results are, the Adjusted Rand Index (ARI) is computed for

all pairs of clustering algorithms. The ARI, which is

developed in Hubert (1985), is a measure of agreement

between two partitions which is corrected for the possi-

bility that agreement between two sets of clusters may

simply be due to chance. It is an index which is based upon

counting the pairs of curves on which two clusterings agree

or disagree and is bounded at 1, corresponding to perfect

agreement. A value of 0 indicates no agreement.

The ARI for the k-means algorithm and the model-based

approach is 0.72, indicating a large degree of agreement

between the partitions. For the complete-linkage hierar-

chical and the model-based approach the ARI is 0.48,

which again indicates a general degree of agreement

between the clusters identified. The ARI value for the two

functional clustering algorithms is slightly lower at 0.38,

however, this smaller value may be due to the different

numbers of clusters, and the presence of a cluster con-

taining two unusual curves which is identified using the

complete-linkage hierarchical algorithm, but not by

k-means.

Even if each algorithm provides a different clustering

result, the temporal patterns they identify are similar.

Figure 11 shows a comparison of the results with respect

to two clusters which are apparently the same although

they have different labels. The cluster averages are very

similar with a propensity of the model-based approach to

detect high frequency features of the temporal pattern.

Table 3 Number of time series/curves in each cluster given by the

three approaches

State-space 60 45 44 32 27 15 14 8 5 5 1

K-means 47 36 35 32 25 23 21 15 12 5 5

Complete-

linkage

136 44 32 25 12 5 2

Fig. 7 ARC-Lake data set clustering result using the functional

clustering approach and k-means algorithm - Spatial distribution of

the clusters in Central and South America. Numbers represent the

cluster membership while colours are related to the Köppen

classification (see legend)

Fig. 8 ARC-Lake data set clustering result using the functional

clustering approach and the complete-linkage hierarchical algorithm -

Spatial distribution of the clusters in Central and South America.

Numbers represent the cluster membership while colours are related

to the Köppen classification (see legend)
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Fig. 9 ARC-Lake data set

clustering result using the

functional clustering approach

and the k-means algorithm -

Estimated cluster averages

divided by latitude bands

Fig. 10 ARC-Lake data set

clustering result using the

functional clustering approach

and the complete-linkage

hierarchical algorithm -

Estimated cluster averages

divided by latitude bands
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This is due to the fact that the model-based approach

does not involve any kind of smoothing of the original

time series.

For the northern and the southern hemispheres it can be

noted that the main difference between the cluster averages

is the time of the peaks. In particular, the lower the distance

to the Earth poles the later the peak in the LSWT. Lakes

close to the Arctic Circle are characterized by periods of

time during which the lake surface is frozen and the tem-

perature is considered to be 0 	C. This produces the flat

‘‘segments’’ which can be seen in the left images of Fig. 11.

Although it is clearly an artefact produced by the mea-

surement process, the model-based approach can reproduce

the temporal pattern accurately. The basis functions used in

the functional clustering approach, on the other hand,

produce ripples where the time series should be flat. Both

the clustering approaches highlight the difference between

the Central Africa lakes and the Eastern Africa lakes. The

time series related to the Central Africa lakes, in particular,

present a double peak in winter due to the drier period in

January and February which characterizes the Central

Africa region.

8 Conclusions

The study of the temporal coherence of ecological time

series is an important aspect of understanding the syn-

chrony of major fluctuations in the attributes of interest and

their relationships to common drivers and pressures. This is

an extremely important issue in many fields, including

weather and climate, made more challenging by the

development of sensor networks and earth observation

systems, which deliver very large data sets at high spatial

and temporal frequencies. The statistical requirements in

this context include models that are suitable for high

dimensional noisy data with spatial and temporal correla-

tions and software that is computationally efficient and able

to handle large data sets. The new approach to state-space

modelling proposed here which enables clustering, has

been illustrated to successfully cluster both simulated and

LSWT time series’ and to provide clustering results which

are consistent with those given by functional clustering

approaches. In terms of data processing, the model-based

approach does not require the observed time series to be

converted into curves and thus the clustering result is not

Fig. 11 Subset of the ARC-Lake data set clustering result using the model-based and the functional clustering approaches. Time series/splines

(light line) and cluster average (dark line)

474 Stoch Environ Res Risk Assess (2015) 29:463–475

123



influenced by the choice of the spline order, the number of

knots and their positions. On the other hand, smoothing can

be useful when highly noisy time series are to be clustered,

in which case the model-based approach might overesti-

mate the number of clusters.

Spatial correlation can be introduced in order to avoid

the proliferation of clusters when considering noisy time

series. The simulation study developed in this work,

however, has shown that both the clustering approaches are

robust with respect to moderate levels of noise.

The approaches have been used on standardized time

series as the main aim was to study their temporal coher-

ence. If the interest is on the actual (non-standardized) time

series, functional clustering can be applied straightfor-

wardly while the model-based approach would require the

introduction of additional model parameters.

The length of the time series is recognised to have an

influence on the clustering result. Longer time series are

expected to group into a larger number of clusters as the

longer the time series the higher the probability they differ

at some time point or time period. The choice of the time

series length is strictly related to the aim of the analysis and

to some features of the time series such as stationarity,

seasonality and trends.

Future developments, driven by applications, will

include a multivariable model and models which include

covariates with differing spatial and temporal support and

scale.
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