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Abstract A comparative analysis of time series is not

feasible if the observation times are different. Not even a

simple dispersion diagram is possible. In this article we

propose a Gaussian process model to interpolate an

unequally spaced time series and produce predictions for

equally spaced observation times. The dependence between

two observations is assumed a function of the time differ-

ences. The novelty of the proposal relies on parametrizing

the correlation function in terms of Weibull and Log-logistic

survival functions. We further allow the correlation to be

positive or negative. Inference on the model is made under a

Bayesian approach and interpolation is done via the posterior

predictive conditional distributions given the closest m

observed times. Performance of the model is illustrated via a

simulation study as well as with real data sets of temperature

and CO2 observed over 800,000 years before the present.

Keywords Bayesian inference � EPICA � Gaussian

process � Kriging � Survival functions.

1 Introduction

The majority of the literature on time series analysis assumes

that the variable of interest, say Xt, is observed on a regular or

equally spaced sequence of times, say t 2 f1; 2; . . .g (e.g.

Box et al. 2004; Chatfield 1989). Often, time series are

observed at uneven times. Unequally spaced (also called

unevenly or irregularly spaced) time series data occur natu-

rally in many fields. For instance, natural disasters, such as

earthquakes, floods and volcanic eruptions, occur at uneven

intervals. As Eckner (2012) noted, in astronomy, medicine,

finance and ecology observations are often made at uneven

time intervals. For example, a patient might take a medica-

tion frequently at the onset of a disease, but the medication

may be taken less frequently as the patient gets better.

The example that motivated this study consists of time

series observations of temperature (Jouzel et al. 2007) and

CO2 (carbon dioxide) (Lüthi et al. 2008) which were

observed over 800,000 years before the present. The

European Project for Ice Coring in Antarctica (EPICA)

drilled two deep ice cores at Kohnen and Concordia Sta-

tions. At the latter station, also called Dome C, the team of

researchers produced climate records focusing on water

isotopes, aerosol species and greenhouse gases. The tem-

perature dataset consists of temperature anomaly with

respect to the mean temperature of the last millennium, it

was dated using the EDC3 timescale (Parrenin et al. 2007).

Note that the actual temperature was not observed but

inferred from deuterium observations. The CO2 dataset

consists of carbon dioxide concentrations, dated using

EDC3_gas_a age scale (Loulergue et al. 2007).

The temperature and the CO2 time series were observed

at unequally spaced times. Any attempt of comparative or

associative analysis between these two time series requires

them to have both been measured at the same times. For

example, regarding Figure 1.6 of the Intergovernmental

Panel on Climate Change (IPCC) first assessment report

(Houghton et al. 1990), it notes ‘‘over the whole period

(160 thousand years before present to 1950) there is a

remarkable correlation between polar temperature, as
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deduced from deuterium data, and the CO2 profile.’’

However from the data no correlation was calculated. The

reason is simple, a correlation measure is not possible

unless the data from both series have the same dates. The

aim of this paper is to propose a model to interpolate

unequal spaced time series and produce equally spaced

observations that will evaluate past climate research.

Our approach aims to produce equally spaced observa-

tions via stochastic interpolation. We propose a Gaussian

process model with a novel correlation function parame-

trized in terms of a parametric survival function, which

allows for positive or negative correlations. For the

parameter estimation we follow a Bayesian approach. Once

posterior inference on the model parameters is done,

interpolation is carried out by using the posterior predictive

conditional distributions of a new location given a subset of

size m of neighbours, similar to what is done in spatial data

known as Bayesian kriging (e.g. Handcock and Stein

1993,Bayraktar and Turalioglu 2005). The number of

neighbours m, to be used to interpolate, is decided by the

user. Renard et al. (2006) provided an excellent review of

the Bayesian thinking applied to environmental statistics.

The rest of the paper is organized as follows: We first

present a review of related literature in Sect. 2. In Section 3

we describe the model together with the prior to posterior

analysis as well as the interpolation procedure. In Sect. 4

we compare our model with alternative models and assess

the performance of our approach. Section 5 contains the

data analysis of our example that motivated this study, and

finally Sect. 6 contains concluding remarks.

Before we proceed we introduce some notations:

N ðl; r2Þ denotes a normal density with mean l and

variance r2; Ga ða; bÞ denotes a gamma density with

mean a=b; IGa ða; bÞ denotes an inversed gamma density

with mean b=ða� 1Þ; Un ða; bÞ denotes a continuous

uniform density on the interval ða; bÞ; Tri ða; c; bÞ denotes

a triangular density on ða; bÞ and mode in c; and Ber ðpÞ
denotes a Bernoulli density with probability of success p.

2 Related literature

The study of unequally spaced time series has concentrated

on two approaches: models for the unequally spaced

observed data in its unaltered form, and models that reduce

the irregularly observed data to equally spaced observa-

tions and apply the standard theory for equally spaced time

series.

Within the former approach, Eckner (2012) defined

empirical continuous time processes as piecewise constant

or linear between observations. Others such as Jones

(1981), Jones and Tryon (1987) and Belcher et al. (1994)

suggested an embedding into continuous time diffusions

constructed by replacing the difference equation formula-

tion by linear differential equations, defining continuous

time autoregressive or moving average processes. Detailed

reviews of the issue appeared in Harvey and Stock (1993)

and Brockwell et al. (2007).

Within the latter approach there are deterministic

interpolation methods (summarised in Adorf (1995)), or

stochastic interpolation methods, the most popular method

was the linear interpolation with a standard Brownian

motion (e.g. Chang 2012, Eckner 2012).

In a different perspective, unevenly spaced time series

have also been treated as equally spaced time series with

missing observations. Aldrin et al. (1989), for instance,

used a dynamic linear model and predicted the missing

observations with the model. Alternatively, Friedman

(1962) and more recently Kashani and Dinpashoh (2012)

made use of auxiliary data to predict the missing obser-

vations. The latter one also compared the performance of

several classical and artificial intelligence models. In con-

trast, our proposal does not rely on any auxiliary data, we

make use of the past and future data of the same variable of

interest.

More general spatio-temporal interpolation problems

were addressed by Serre and Christakos (1999) using

modern geostatistics techniques and in particular with the

Bayesian maximum entropy method.

3 Model

3.1 Sampling model

Let fXtg be a continuous time stochastic process defined

for an index set t 2 T � IR and which takes values in a

state space X � IR. We will say that Xt1 ;Xt2 ; . . .;Xtn is a

sample path of the process observed at unequal times

t1; t2; . . .; tn, and n [ 0. In a time series analysis we only

observe a single path and that is used to make inference

about the model.

We assume that Xt follows a Gaussian process with

constant mean l and covariance function Cov ðXs;XtÞ ¼
Rðs; tÞ. In notation

Xt � GP ðl;Rðs; tÞÞ: ð1Þ

We further assume that the covariance is a function only of

the absolute times difference jt � sj. In this case it is said

that the covariance function is isotropic (Rasmussen and

Williams 2006). Typical choices of the covariance function

include the exponential Rðs; tÞ ¼ r2e�kjt�sj and the squared

exponential Rðs; tÞ ¼ r2e�kðt�sÞ2 , with k the decay param-

eter. These two covariance functions are particular cases of
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a more general class of functions called Matérn functions

(Stein 1999).

By assuming a constant marginal variance for each Xt,

we can express the covariance function in terms of the

correlation function Rðs; tÞ as Rðs; tÞ ¼ r2Rðs; tÞ. We note

that isotropic correlation functions behave like survival

functions as a function of the absolute time difference

jt � sj. For instance if ShðtÞ ¼ e�kta , with h ¼ ðk; aÞ, which

corresponds to the survival function of a Weibull distri-

bution, we can define a covariance function in terms of Sh

as Rðs; tÞ ¼ r2Shðjt � sjÞ. Moreover, for a ¼ 1 and a ¼ 2

we obtain the exponential and squared exponential

covariance functions, respectively, mentioned above.

Alternatively, if ShðtÞ ¼ 1=ð1þ ktaÞ, where again h ¼
ðk; aÞ (which corresponds to survival function of a Log-

logistic distribution) we can define another class of

covariance functions.

The correlation between any two states of the process,

say Xs and Xt, can take values in the whole interval ð�1; 1Þ.
However, the previous covariance functions only allow the

correlation to be positive. We can modify the previous

construction to allow for positive or negative correlations

in the process. We propose

Rr2;h;bðs; tÞ ¼ r2Shðjt � sjÞð�1Þbjt�sj; ð2Þ

with b 2 f1; 2g in such a way that b ¼ 1 implies a nega-

tive/positive correlation for odd/even time differences

jt � sj, and it is always positive regardless jt � sj being odd

or even, for b ¼ 2. Note that jt � sj needs to be an integer.

For the covariance function (2) to be well defined, it

needs to satisfy a positive semi-definite (psd) condition.

Since the product of two psd functions is also psd (Stein

1999, p.20), we can split (2) into two factors: r2Shðjt � sjÞ
and ð�1Þbjt�sj

. The first factor is a psd covariance function

since it is a monotonically decreasing positive function.

The second factor defines a variance-covariance matrix for

any set of n points that is psd, with the first eigenvalue

being n and the rest zero. Therefore (2) is psd and (1) is a

well defined model.

3.2 Prior to posterior analysis

Let x ¼ ðxt1 ; xt2 ; . . .; xtnÞ be the observed unequally spaced

time series, and g ¼ ðl; r2; h; bÞ the vector of model

parameters. The joint distribution of the data x induced by

model (1) is a n-dimensional multivariate normal distri-

bution of the form

f ðx j gÞ ¼ 2pr2
� ��n=2jRh;bj�1=2

� exp � 1

2r2
ðx� lÞ0R�1

h;bðx� lÞ
� �

;
ð3Þ

where l ¼ ðl; . . .; lÞ is the vector of means, Rh;b ¼ ðrh;b
ij Þ is

the correlation matrix with ði; jÞ term r
h;b
ij ¼ Rr2;h;bðti; tjÞ=r2

and Rr2;h;b is given in (2).

We assign conditionally conjugate prior distributions for g

when possible. In particular we take independent priors of the

form l� N ðl0; r
2
lÞ, r2� IGa ðar; brÞ, k� Ga ðak; bkÞ,

a� Un ð0;AaÞ, and b� 1� Ber ðpbÞ.
The posterior distribution of g will be characterised via

the full conditional distributions. These are given below

and their derivation is included in the Appendix.

(a) The posterior conditional distribution of l is

f ðl j rest Þ

¼ N l

1
r2 x0R�1

h;bþ
l0

r2
l

1
r2 10R�1

h;b1þ 1
r2

l

;
1

r2
10R�1

h;b1þ 1

r2
l

 !�1
������

0

@

1

A;

where10 ¼ ð1; . . .; 1Þ of dimension n.

(b) The posterior conditional distribution of r2 is

f ðr2 j rest Þ

¼ IGa r2 arþ
n

2
; brþ

1

2
ðx�lÞ0R�1

h;bðx�lÞ
����

� �

(c) The posterior conditional distribution of b� 1 is

Ber ðp�bÞ with

p�b ¼ 1þ f ðx j b ¼ 1Þð1� pbÞ
f ðx j b ¼ 2Þpb

� ��1

(d) Finally, since there are no conditionally conjugate

prior distributions for h ¼ ðk; aÞ, its posterior con-

ditional distribution is simply f ðh j rest Þ /
f ðx j gÞf ðhÞ, where f ðx j gÞ is given in (3).

Therefore, posterior inference will be obtained by

implementing a Gibbs sampler (Smith and Roberts 1993).

Sampling from conditionals (a), (b) and (c) is straightfor-

ward since they are of standard form. However, to sample

from (d) we will require Metropolis-Hastings (MH) steps

(Tierney 1994). If h ¼ ðk; aÞ, we propose to sample con-

ditionally from f ðk j a; rest Þ and f ða j k; rest Þ.
For k, at iteration r þ 1 we take random walk MH steps by

sampling proposal points k� � Ga ðj; j=kðrÞÞ. This proposal

distribution has mean kðrÞ and coefficient of variation 1=
ffiffiffi
j
p

.

By controlling j we can tune the MH acceptance rate. For the

examples below we set j ¼ 10 inducing an acceptance rate of

around 30%. Such gamma random walk proposals for vari-

ables on the positive real line has been used successfully by

other authors (e.g. Barrios et al. 2013) showing good behav-

iour. For a, we also take random walk steps from a triangular

distribution with mode in aðrÞ, that is a� � Tri ðmaxf0; aðrÞ
�jg; aðrÞ;minfAa; aðrÞ þ jgÞ. With j ¼ 0:1 the acceptance
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rate induced in this case is around 32% for the examples

considered below. In both cases, the acceptance rates are

adequate according to (Robert and Casella 2010, ch.6).

Implementing these two MH steps for k and a is a

challenge since the probability of accepting the proposal

draw requires to evaluate the n-multivariate normal dis-

tribution (3) in two different values of the parameter. When

n is large, as is the case for the real data at hand, the

computational time required to invert an n-dimensional

matrix and to compute the determinant value increases at a

rate Oðn3Þ. To reduce the computational time, we suggest

that a subset of the time series data is to take, say 500, and

use the subset as a training sample to estimate the param-

eters of the model. We observed that the loss in precision in

the parameter estimation is minimal, and the computational

time is highly reduced. (Rasmussen and Williams (2006),

ch.8) provided a thorough discussion of different approxi-

mation methods.

3.3 Interpolation

Once the parameter estimation is done, that is, we have a

sample from the posterior distribution of g ¼ ðl; r2; h; bÞ,
we can proceed with the interpolation.

Within the Bayesian paradigm, interpolation of the

unequally spaced series, to produce an equally spaced

series, is done via the posterior predictive distribution. We

propose to interpolate using the posterior predictive con-

ditional distribution given a subset of neighbours. Let xs ¼
ðxs1

; . . .; xsm
Þ be a set of size m of observed points, such that

s ¼ ðs1; . . .; smÞ are the m observed times nearest to time t,

with sj 2 ft1; . . .; tng. If m ¼ n, xs ¼ x the whole observed

time series. Therefore, the conditional distribution of the

unobserved data point Xt given its closest m observations is

given by

f ðxt j xs; gÞ ¼ N xt j lt; r
2
t

� �
; ð4Þ

with

lt ¼ lþ Rðt; sÞRðs; sÞ�1ðxm � lÞ and

r2
t ¼ r2 � Rðt; sÞRðs; sÞ�1Rðs; tÞ;

where, as before, Rðt; sÞ ¼ Rðs; tÞ0 ¼ Cov ðXt;XsÞ and

Rðs; sÞ ¼ Cov ðXs;XsÞ.
As in standard linear regression models, we assume that

ðXt;XsÞ are a new set of variables (conditionally) inde-

pendent of the observed sample x. In this case, the posterior

predictive conditional distribution of Xt given xs is

obtained by integrating out the parameter vector g from (4)

using its posterior distribution, that is, f ðxt j xs; xÞ ¼R
f ðxt j xs; gÞf ðg j xÞ d g. This marginalization process is

usually done numerically via Monte Carlo.

To have an idea how the interpolation process works, let

us consider the specific case when m ¼ 2, so that xs ¼
ðxs1

; xs2
Þ consists of the two closest observations to time t.

Then, from (4) we obtain that E ðXt j xs; gÞ becomes

lt ¼ lþ
ðqt;s1

� qt;s2
qs1;s2
Þðxs1

� lÞ þ ðqt;s2
� qt;s1

qs1;s2
Þðxs2

� lÞ
1� q2

s1;s2

;

ð5Þ

where qt;s ¼ Corr ðXt;XsÞ ¼ Rðt; sÞ=r2. The conditional

expected value (5) is a linear function obtained as a

weighted average of the neighbour observations xs where

the weights are given by the correlations among xt, xs1
and

xs2
. The higher the correlation between xt and xsj

the more

important the observed value xsj
is, in determining the

conditional expected value of Xt, for j ¼ 1; 2. Finally, the

posterior predictive conditional expected value

E ðXt j xs; xÞ, which can be taken as the estimated inter-

polated point, is a mixture of expression (5) with respect to

the posterior distribution of g.

In general, for any m [ 0, the estimated interpolated

point at time t will be a weighted average of the closest m

observed data points, as sliding windows, with weights

determined by their respective correlations with the unob-

served Xt.

In the literature, what is known as linear interpolation,

arises when assuming a standard Brownian (or Wiener) pro-

cess for Xt, i.e., Xt is a Gaussian process with mean 0 and

variance-covariance function Rðs; tÞ ¼ minfs; tg. This

implies that the conditional distribution of Xt given its two

closest observations xs ¼ ðxs1
; xs2
Þ is a normal distribution

with mean lt and variance r2
t , where: lt ¼ fðs2 � tÞ=ðs2 �

s1Þgxs1
þ fðt � s1Þ=ðs2 � s1Þgxs2

and r2
t ¼ ðt � s1Þðs2 � tÞ=

ðs2 � s1Þ, if s1\t\s2; lt ¼ ðt=s1Þxs1
and r2

t ¼ ðt=s1Þ
ðs1 � tÞ, if t\s1\s2; and lt ¼ xs2

and r2
t ¼ t � s2, if

s1\s2\t.

Note that the linear interpolation model just described

does not rely on any parameter, so the estimated interpo-

lated point lt is a weighted average of the two closest

neighbours with weights given by the time distances,

whereas our proposal relies on parameters that need to be

estimated with the data and the estimated interpolated point

is a weighted average with weights given by the correla-

tions. Moreover, the linear interpolation only interpolates

using the two closest neighbours while our proposal con-

siders using the closest m [ 0 neighbours.

4 Simulation study

To assess how good our model behaves we carried out a

simulation study. Time series of length 1000 were gener-

ated under six different scenarios. We considered trended
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time series of the form Xt ¼ sinðt=50Þ þ �t, for

t ¼ 1; . . .; 1000, where �t follows an ARMAðp; qÞ pro-

cesses with N ð0; r2
0Þ errors and with autoregressive and

moving average coefficients equal to 0.5. The six scenarios

are the result of combining ðp; qÞ 2 fð1; 1Þ; ð1; 0Þ; ð0; 1Þg
and r2

0 2 f0:1; 1g. Scenarios 1 to 3 correspond to the low

variance and scenarios 4 to 6 to the high variance. The

simulated data are shown in Fig. 1.

For each of the scenarios, we randomly chose a proportion

p100% of the observations to be the ‘‘observed data’’ and

predicted the rest ð1� pÞ100% of the data with our Bayesian

interpolation model. We varied p 2 f0:1; 0:2; 0:5g.
The effectiveness of the interpolation is quantified via

the L-measure (Ibrahim and Laud 1994), which is a func-

tion of the variance and bias of the predictive distribution.

For the removed observations x1; . . .; xr we computed

LðmÞ ¼ 1

r

Xr

i¼1

Var ðxF
i jxÞ þ

m
r

Xr

i¼1

E ðxF
i jxÞ � xi


 �2
;

where xF
i is the predictive value of xi and m 2 ð0; 1Þ is a

weighting term which determines a trade-off between

variance and bias. The bias (B) itself can be obtained from

the L-measure through B ¼ Lð1Þ � Lð0Þ. Smaller values of

the L-measure and the bias indicate better fit.

We compare the performance of our model with two other

alternatives. One is the linear interpolation, which is the

result of assuming a standard Brownian motion process in the

data as described in the interpolation part of Sect. 3. The

other approach is to consider a random walk dynamic linear

model (Harrison and Stevens 1976) and treating the

unevenly observed data as an equally spaced time series with

missing observations. The missing observations are to be

predicted with the model. To be specific, the model has the

form xt ¼ lt þ mt and lt ¼ lt�1 þ xt with mt� N ð0; r2
mÞ

and xt� N ð0; r2
xÞ. This approach has been successfully

used by Aldrin et al. (1989) to interpolate copper contami-

nation levels in the river Gaula in Norway. We note that this

latter model can also be seen as a Gaussian process model for

integer times. Therefore the three competitors are Gaussian

process models with different specifications.

To specify the dynamic linear model we took indepen-

dent priors l1� N ð0; 1000Þ, r�2
m � Ga ð0:001; 0:001Þ

and r�2
x � Ga ð0:001; 0:001Þ. To implement our model we

specified the variance-covariance function (2) in terms of a

Log-logistic survival function. For defining the priors we

took l0 ¼ 0, r2
l ¼ 100, ar ¼ 2, br ¼ 1, ak ¼ bk ¼ 1, Aa ¼

2 and pb ¼ 0:5. Interpolations with our model were based

on the m ¼ 10 closest observed data points. In all cases we

ran Gibbs samplers for 10,000 iterations with a burn-in of

1,000, keeping one iteration of every third for computing

the estimates. The results are summarised in Table 1.

From Table 1 we can see that our model is the one that

produces estimates with the smallest variance (Lð0Þ)
among the three methods, for all scenarios, and when the

percentage of observed data is smaller (e.g. 10 and 20 %).

As the percentage of observed data increases (e.g. 50 %)
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Fig. 1 Simulated data. 1,000 observations under 6 scenarios. In the columns ðp; qÞ 2 fð1; 1Þ; ð1; 0Þ; ð0; 1Þg and in the rows r2
0 2 f0:1; 1g
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our proposal produces estimates with slightly higher bias

(B), but in general the bias is almost the same for the three

methods. Surprisingly, the linear interpolation, based on a

parameterless standard Brownian process, produced the

best estimates for the high error variance scenarios 4, 5 and

6, and when the proportion of observed data is 50 %. For

the other cases, the dynamic linear model is the second best

model.

In summary, we can say that our method is superior for

sparser datasets with large spacing in the observations, and

for the other cases our method produced comparable results

to the other two approaches.

5 Data analysis

We now apply our stochastic interpolation method to the

dataset that motivated this study. The temperature dataset

consists of 5,788 observations, whereas the CO2 dataset

contains 1,095 data points spread in an observations range

of 800,000 years before present. The data are shown in the

two top panels of Fig. 2. The two series show similar

patterns that visually seem to be highly correlated. How-

ever, a simple Pearson’s correlation coefficient is impos-

sible to compute since the observation times are different.

To see the observation time differences between the two

series, we computed the observed times lags, i.e., ti � ti�1

and plotted them versus ti, for i ¼ 1; . . .; n. These are

shown in the two bottom panels in Fig. 2, respectively.

As can be seen from Fig. 2, the temperature series was

measured very frequently close to the present time and

becomes less frequently observed as we move away from

the present. On the other hand, the CO2 series shows an

inverted behaviour, being measured less frequently close to

the present and measured relatively more frequently in

older years. The temperature series was observed with a

minimum of 8 years of difference, a maximum of 1364

years and a median time of 58 years, whereas the CO2

series was observed every 9 years as a minimum, 6029

years as a maximum and with a median observation time of

586 years.

To compare, we implemented our model with the

covariance function defined in terms of both, the Weibull

and Log-logistic survival functions. We took the same prior

specifications as in the simulation study, i.e., l0 ¼ 0,

r2
l ¼ 100, ar ¼ 2, br ¼ 1, ak ¼ bk ¼ 1, Aa ¼ 2 and

pb ¼ 0:5. Posterior inference is not sensitive to these

choices because the amount of data is so large that it

overrides any prior information. Since we do not have the

real values we want to predict as in the simulation study,

we computed the L-measure for the observed data points

instead. Additionally, we vary the number of neighbour

Table 1 L-measures for m 2
f0; 0:5; 1g and bias (B) for the

three competing models, for the

six scenarios (S), and for three

poportions of observed data p

S p ¼ 10 % p ¼ 20 % p ¼ 50 %

Lð0Þ Lð0:5Þ Lð1Þ B Lð0Þ Lð0:5Þ Lð1Þ B Lð0Þ Lð0:5Þ Lð1Þ B

Gaussian process model

1 0.03 0.04 0.06 0.03 0.02 0.03 0.04 0.02 0.02 0.02 0.03 0.01

2 0.03 0.04 0.05 0.03 0.02 0.03 0.04 0.02 0.01 0.02 0.03 0.02

3 0.03 0.04 0.05 0.02 0.02 0.03 0.04 0.03 0.01 0.02 0.03 0.02

4 2.00 3.26 4.51 2.51 1.98 3.18 4.37 2.39 1.06 1.79 2.52 1.46

5 1.28 2.06 2.83 1.55 1.32 2.01 2.70 1.38 1.18 1.90 2.61 1.43

6 1.00 1.66 2.31 1.31 1.39 2.03 2.68 1.29 1.21 1.86 2.51 1.30

Standard Brownian process model

1 3.25 3.26 3.28 0.03 1.74 1.75 1.76 0.02 0.82 0.83 0.83 0.01

2 3.25 3.26 3.27 0.02 1.74 1.75 1.76 0.02 0.82 0.83 0.83 0.01

3 3.25 3.26 3.27 0.02 1.74 1.75 1.76 0.02 0.82 0.83 0.83 0.01

4 3.26 4.81 6.37 3.12 1.74 2.96 4.19 2.45 0.82 1.48 2.14 1.31

5 3.25 4.22 5.18 1.93 1.74 2.48 3.22 1.47 0.82 1.42 2.01 1.19

6 3.25 4.30 5.34 2.09 1.74 2.56 3.38 1.64 0.82 1.47 2.11 1.29

Dynamic linear model

1 0.03 0.04 0.06 0.03 0.02 0.03 0.04 0.02 0.01 0.02 0.03 0.01

2 0.02 0.03 0.04 0.02 0.02 0.02 0.03 0.02 0.01 0.02 0.02 0.01

3 0.03 0.03 0.04 0.02 0.02 0.02 0.03 0.02 0.01 0.02 0.02 0.01

4 2.22 3.46 4.71 2.49 2.42 3.60 4.78 2.36 1.07 1.74 2.41 1.34

5 1.37 2.13 2.89 1.52 1.35 2.02 2.69 1.34 1.27 1.89 2.51 1.24

6 1.06 1.87 2.68 1.62 1.40 2.04 2.69 1.29 1.29 1.93 2.56 1.27
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observations m 2 f2; 4; 10; 20g to compare among the

different predictions obtained. The numbers are reported in

Table 2. In all cases Gibbs samplers were run for 20,000

iterations with a burn-in of 2,000 and keeping one draw

every 10th iteration to reduce autocorrelation in the chain.

Convergence of the chain was assessed by comparing the

ergodic means plots of model parameters for multiple

chains, which justified that the number of iterations was

adequate (Cowles and Carlin 1996). The numbers below

are based on 1,800 draws.

Several conclusions can be derived from Table 2. In all

cases, the variance (Lð0Þ) attains a minimal value for

m ¼ 10. As a function of m, the bias (B) steadily increases

for the temperature dataset but decreases for the CO2

dataset. This opposite tendency can be due to the fact that

the temperature data have more data points than the CO2
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Fig. 2 Time series plots. Temperature (top left), CO2 (top right); observed time differences, in the temperature series (bottom left), and in the

CO2 series (bottom right)

Table 2 L-measures for m 2
f0; 0:5; 1g and Bias (B) for the

three competing models and for

the six scenarios (S)

m Weibull Log-logistic

Lð0Þ Lð0:5Þ Lð1Þ B Lð0Þ Lð0:5Þ Lð1Þ B

Temperature

2 1.479 1.991 2.504 1.025 1.476 1.990 2.505 1.029

4 1.450 1.974 2.498 1.045 1.446 1.975 2.505 1.059

10 1.442 1.964 2.486 1.043 1.427 1.959 2.491 1.064

20 1.439 1.969 2.498 1.059 1.424 1.960 2.496 1.072

CO2

2 60.572 87.100 113.628 53.056 59.651 86.232 112.812 53.161

4 60.395 87.069 113.744 53.349 59.907 86.519 113.130 53.223

10 60.353 87.353 113.554 53.202 59.134 85.664 112.195 53.061

20 60.422 86.537 113.252 52.830 59.740 86.149 112.558 52.818
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Fig. 3 Correlation function estimates in the temperature dataset. Weibull (left) and Log-logistic (right)
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Fig. 4 Temperature interpolation. Observed data (top), interpolation every 1,000 years (middle) and every 100 years (bottom)
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data so prediction is based on observations that are farther

apart in the CO2 data.

Comparing the Weibull versus the Log-logistic choices,

we can say that they provide almost the same predictions.

The bias is slightly smaller for the Weibull, but the vari-

ance is slightly larger. In Fig. 3 we present posterior esti-

mates for the two correlation functions induced by these

two alternatives. The Log-logistic function (right panel)

shows a slower rate of decay than the Weibull function (left

panel), allowing for higher correlation in observations

further apart. A similar result occurs for the CO2 dataset.

Although our model allows for positive and negative

covariance, in both datasets posterior estimates of the

parameter b is 2 which implies a positive correlation within

observations. We decided to choose the Log-logistic model

for producing interpolations with m ¼ 10 because it

achieves the smallest variance.

We computed interpolated time series with a regular

spacing of 100 and 1000 years. They are included in Figs. 4

and 5 for temperature and CO2, respectively. In each fig-

ure, the top graph corresponds to the original observed

data, the middle graph to the interpolation with 100 years

spacing and the bottom graph to the interpolation of 1,000

years gap. Visually we can see that the interpolation with

100 years and the original data are practically the same,

whereas for the higher spacing (1,000 years) the interpo-

lation is smoother, losing some extreme (peak) values. We

refrained from including prediction intervals in the figures

to show the path of the series better. Posterior intervals are

so narrow they make the graph difficult to read. In fact, the

95 % probability intervals have an average length of 1.90

for the temperature, and 12.90 for the CO2 datasets, with

negligible differences between interpolations at 100 and

1,000 years.

Finally, we present an empirical association analysis

between the two interpolated series at 100 years spacing.

For each time t we have 1,800 simulated values from the

predictive distribution for both series, temperature and CO2.

For each draw we computed three association coefficients:

Pearson’s correlation, Kendall’s tau and Spearman’s rho

(e.g. Nelsen 2006). The sample means are 0:86, 0:66 and

0:85, with 95% probability intervals, based on quantiles,

ð0:858; 0:872Þ, ð0:647; 0:667Þ and ð0:843; 0:859Þ, respec-

tively. The three measures can take values in the interval
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Fig. 5 CO2 interpolation.

Observed data (top),

interpolation every 1,000 years

(middle) and every 100 years

(bottom)
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½�1; 1�, so they all imply a positive moderate to strong

dependence between the two time series. Further studies of

causality are needed to see whether the temperature changes

in the planet are caused by the CO2 levels.

6 Conclusions

We have developed a new stochastic interpolation method

based on a Gaussian process model with the correlation

function defined in terms of a parametric survival function.

We allow for positive or negative auto correlation to better

capture the nature of time dependence of the data. Infer-

ence of the model is Bayesian. Therefore all uncertainties

are taken into account in the prediction (interpolation)

process. Within the Bayesian paradigm, interpolation is

done by posterior predictive conditional distributions. This

approach allows us to produce inference beyond point

interpolation. Our proposal for interpolation is so flexible

that the user can decide the number of neighbouring

observations m to be used to interpolate. We have shown

that our model is a good competitor against the other two

alternatives, producing smaller variance without loss in

bias.

We illustrated our method with two real sets of data. The

first is the temperature and the second is the CO2 datasets,

both from the Dome C in Antarctica. As we noted in the

introduction, the IPCC report of 1990 talked about the

‘‘correlation’’ between the temperature and the CO2 data

for the past 160,000 years without ever actually calculating

the correlation itself. The same state of affairs continues to

the latest report of the IPCC. For example, Masson-Del-

monte et al. (2013) simply report the Dome C data sepa-

rately for the temperature and the CO2 data but never

together as the data does not allow for any proper bivariate

analysis. Our method provides a way out of this dilemma.

Not only will this method of reconstruction allow us to

calculate simple correlation it will also allow us to do time

series analysis in the time domain. This means, we will be

able to work out stationarity of the dataset for the whole

period or any subperiod we choose to study. This will allow

us to analyse the data to deduce if there is causality using

Granger’s casualty test. The latter methodology has been

successfully applied in economics. For example, Sims

(1972) applied the method to ask whether changes in

money supply cause inflation to rise. For his work, Sims

won the Nobel Memorial Prize in Economic Sciences in

2011. A similar analysis could provide a method to cal-

culate the short run and the long run impact of CO2 (or any

other green house gas) on surface temperatures.

Our method can also be used for unequally spaced time

series in financial data. For example, in illiquid stock

markets, many stocks do not trade daily. Thus, calculating

‘‘beta’’ of a stock when it is not traded regularly is a

problem. There are ‘‘standard’’ methods like that proposed

by Scholes and Williams (1977). That essentially uses a

simple average between three observations with an assumed

autocorrelation structure. Our procedure is more general

and, in addition to a point estimate, it also provides interval

estimation. There are other areas such as astronomy and

medical sciences where the method described could be

applied when unequally spaced time series naturally occur.
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Appendix: Derivation of the full conditional

distributions

The basic idea is to write the likelihood (3) as a function of

the parameter in turn.

(a) For l: The likelihood function is proportional to

likðl j rest Þ / exp � 1

2r2
l210R�1

h;b1�2lx0R�1
h;b

� 
� �
:

The prior distribution is proportional to

f ðlÞ / exp � 1

2r2
l

l2 � 2ll0

� �
( )

:

Multiplying these two factors we get that the con-

ditional posterior is proportional to

f ðl j rest Þ / exp

(

� 1

2

1

r2
10R�1

h;b1þ 1

r2
l

 !

� l2 � 2l
x0R�1

h;b=r
2 þ lo=r

2
l

10R�1
h;b1=r2 þ 1=r2

l

 !)

:

Completing the perfect square trinomial we identify

the kernel as a normal density. Filling in the nor-

malising constants we obtain the full conditional.

(b) For r: Removing the constants ð2pÞ�n=2jRh;bj from

likelihood (3) and by noting that the prior is

proportional to

f ðr2Þ / ðr2Þ�ðarþ1Þ
e�br=r2

;

we then combine the likelihood with the prior and

identify the kernel of an inverse gamma density.

Filling in the normalising constants we get the full

conditional.

(c) For b: Noting that b can only take two values, f1; 2g,
we evaluate the likelihood in each of them and

586 Stoch Environ Res Risk Assess (2015) 29:577–587

123



multiply by the prior probabilities 1� pb and pb,

respectively. Renormalising the posterior probabili-

ties we obtain the full conditional.
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