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Abstract A scheme for meteorological drought analysis

at various temporal and spatial scales based on a spatial

Bayesian interpolation of drought severity derived from

Standardized Precipitation Index (SPI) values at observed

stations is presented and applied to the Huai River basin of

China in this paper, using monthly precipitation record

from 1961 to 2006 in 30 meteorological stations across the

basin. After dividing the study area into regular grids,

drought condition in gauged sites are classified into

extreme, severe, moderate and non drought according to

SPIs at month, seasonal and annual time scales respectively

while that in ungauged grids are explained as risks of

various drought severities instead of single state by a

Bayesian interpolation. Subsequently, temporal and spatial

patterns of drought risks are investigated statistically. Main

conclusions of the research are as follows: (1) drought at

seasonal scale was more threatening than the other two

time scales with a larger number of observed drought

events and more notable variation; (2) results of the Mann–

Kendall test revealed an upward trend of drought risk in

April and September; (3) there were larger risks of extreme

and severe drought in southern and northwestern parts of

the basin while the northeastern areas tended to face larger

risks of moderate drought. The case study in Huai River

basin suggests that the proposed approach is a viable and

flexible tool for monitoring meteorological drought at

multiple scales with a more specific insight into drought

characteristics at each severity level.

Keywords Drought assessment � Standardized

Precipitation Index � Bayesian interpolation � Temporal and

spatial patterns � Huai River basin

1 Introduction

The evaluation and quantification of drought condition in a

particular area has been an important aspect in water

resources planning and management in order to mitigate

the negative impacts of future occurrences. Various

drought indices have been developed to identify the

intensity of drought from several perspectives covering

meteorological, agricultural, hydrological and socio-eco-

nomic (Wilhite and Glantz 1985). Univariate indices are

usually used to identify a drought when the variable

exceeds a certain threshold value, such as precipitation

(Blenkinsop and Fowler 2007; Sylla et al. 2010), runoff

(Wang et al. 2011) and soil moisture (Wang 2005). At the

same time water balance acts as the principal basis of

multivariate indices with respect to two or more variables,

such as PDSI (Dai et al. 2004; Strzepek et al. 2010) and

Surface Moist Index (H) (Ma and Fu 2007). In terms of

meteorological drought, which is often expressed as a

function of precipitation at different scales, the Standard-

ized Precipitation Index (SPI) has been widely used since

McKee et al. (1993) first proposed it (Wu et al. 2007;

Akhtari et al. 2009; Subash and Ram Mohan 2011) for its

several advantages, including low requirement for data and
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good statistical consistency in both space and time (Gutt-

man 1998; Hayes et al. 1999).

Observed data from meteorological stations are

undoubtedly essential in a drought assessment process

based on precipitation measurements. However, it should

be kept in mind that available coverage and representing

capability of observed sites are constantly limited.

Although SPI has showed good performance monitoring

drought at a point scale with consistent climate data of

single station, appropriate interpolation techniques may be

needed for estimation of drought severity at ungauged

locations, which can provide more detailed information for

analysis on spatial variability (Loukas and Vasiliades 2004;

Smakhtin and Hughes 2007). In previous drought studies,

several traditional methods such as Thiessen polygons,

inverse distance, multiquadric, polynomial, and kriging

have been widely used for interpolating monthly or annual

precipitation data in a spatiotemporal analysis (Tase 1976;

Chang 1991; Karamouz et al. 2007; Rhee et al. 2008).

Akhtari et al. (2009) also attempted applying several geo-

statistical methods for interpolation of 1-month SPI at 43

climatic stations in the Tehran province of Iran, including

kriging, co-kriging and thin plate smoothing splines with

and without secondary variables, as well as Thiessen

polygons and weighted moving average (WMA), which

were then used to assess the derivation of maps of drought

indices.

Nevertheless it should be noted that little attention has

been paid to the treatment of uncertainty in any of these

traditional methods. Since interpolation outcome is actu-

ally a best guess of point drought severity, a deterministic

interpolation of SPI values from nearby stations can be

quite unreliable when trying to identify the drought

severity in ungauged areas. In this paper we extended the

existing methodology of SPI with a Bayesian interpolation

approach for meteorological drought assessment, aiming at

providing a more specific insight into drought character-

istics from identifying the probabilities of occurring

drought on various severity degrees. Based on SPI values

derived from observed data at gauged sites, a comprehen-

sive description of drought risks covering different drought

severities could be estimated to get a more reasonable

cognition of drought condition in ungauged areas. Then the

behaviors of drought risks in each severity category at

multiple temporal and spatial scales can be extracted and

analyzed respectively.

The paper is organized as follows. In Sect. 2 there is a

description of the study area and data used for the study,

then Sect. 3 provides information of the methodology

adopted. Section 4 discusses some of the major results of

the temporal and spatial variability of drought occurrence

in the basin. A summary and conclusions are given in

Sect. 5.

2 Study area and data

Huai River basin (30�550–36�240N, and 111�550–121�250E)

is located in eastern China (Fig. 1) between the Yangtze

River basin and the Yellow River basin. It flows through

five provinces (Hubei, Henan, Anhui, Shandong and Ji-

angsu Province) of China covering an area of 270,000 km2.

The population in the basin is around 170 million, and its

population density is approximately four times higher than

the nation’s average. The basin has a subtropical and warm

temperate climate in south and north of the Huai River.

Even though the mean annual precipitation reaches

883 mm, water resources per capita and per unit area is less

than one-fifth of the national average. To make it worse,

most of the annual precipitation (50–80 %) occurs between

June and September. Uneven distribution of precipitation

both temporally and spatially has been the main cause of

high drought frequency in this area.

Monthly precipitation data of a total of 30 meteorolog-

ical stations from 1961 to 2006 were collected from across

the basin, provided by the China Meteorological Admin-

istration (Beijing, China). The distribution of stations

(Fig. 1) is sufficient to cover the entire area and the records

are generally consistent both spatially and temporally.

Table 1 provides further details for all stations used in this

study, including station name, code, geographic coordi-

nates and length of record. Though records at most of the

stations spanned all of the 46 years, the records in Linyi

and Huaiyin needed to be extended to 2006. Multiple linear

regression equations were used to extend the original

records and interpolate several accidently missing months

in this paper. First, correlation coefficients between the

monthly precipitation observed at a given station and

nearby stations with longer records were calculated. Then,

the several sites with the highest correlation coefficients

were selected as reference stations and missing monthly

data at the station of interest were estimated by fitting

multiple linear regression equations. In this case, Juxian

and Rizhao turned out to be the best correlated stations

with Linyi, with the correlation coefficient reaching 0.86

and 0.83 respectively, while measurements in Huaiyin was

extended by Xuyi and Sheyang based on a correlation

coefficient of 0.84 and 0.85 for each station.

3 Methodology

The overall procedure for drought analysis in this paper can

be illustrated as three steps (Fig. 2): first, the entire area is

divided into regular grids by the latitude and longitude

lines, and drought conditions of gauged grids are classified

based on the SPI values of different time scales. Second,

the posterior probabilities of various drought severity
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degrees for ungauged grids are quantified by a Bayesian

interpolation. Finally, drought risks of various severities

and drought ranks for the entire area are evaluated, and the

temporal and spatial patterns of meteorological drought in

the basin then can be investigated statistically. A more

detailed description is presented in subsequent subsections.

3.1 Computation and classification of SPI

The SPI is computed by fitting a probability density

function of gamma distribution to the frequency distribu-

tion of precipitation summed over the time scale of interest

(Mishra and Desai 2005). This is performed separately for

each location in the basin at a particular time scale, with

each probability density function transformed into a stan-

dardized normal distribution. The calculation procedure for

the SPI series is carried out following the method described

by McKee et al. (1993) and Edwards and McKee (1997).

The SPI values at different time scales are useful for

monitoring various drought types. It is generally recog-

nized that shorter time scales show a better relationship

with agricultural drought while longer scales seem to be

more suitable for water resources management purposes

(Vicente-Serrano 2006; Raziei et al. 2009). The 1-month

(SPI-1), 3-month (SPI-3) and 12-month (SPI-12) time scale

are chosen for a further comparison of the inner and inter-

annual variability in this study, which are intended to

interpret drought characteristics monthly, seasonally and

annually respectively. In terms of drought category,

McKee et al. (1993) originally classified moderate, severe

and extreme drought with SPI values between -1.00 and

-1.49, -1.50 and -1.99, and less than -2.00. The threshold

value of SPI for moderate drought (-1.00) corresponds to a

probability of precipitation occurrence of 15.9 %. Several

previous studies (Vermes 1998; Łabędzki 2007) have

argued that this probability level is too low to detect pos-

sible dry events. Huai River basin is located in eastern

China where monsoon climate plays the dominating role.

Most of the rainfall occurs from April to September and

drought may also occur during the same season. With a

highly variable moisture condition both inner-annual and

inter-annual, precipitation deficit less than the threshold

value of SPI = -1.0 may also need attention. So we fol-

low the classification with SPI B-0.5 taken as the

threshold of drought (Łabędzki 2007), which is shown in

Table 2.

3.2 Estimation of posterior probability at point scale

Along the latitude and longitude lines, we generally divide

the rectangular area covering Huai River basin into 1,269

grids (0.2� 9 0.2�), with each grid taken as a single point

during assessment. The location of each grid can be

determined by a two-dimensional vector, i.e., x = [m, n],

m ¼ 1; 2; . . .; 27 denotes the latitudinal location, and n ¼
1; 2; . . .; 47 denotes the longitudinal location.

First, drought severity of the grids covering observed

stations are acquired by the classification of SPI values. It

can also be described as a 4-dimension vector containing

risks of four severity degrees

Fig. 1 Location of Huai River

Basin in China and the used

meteorological stations

Stoch Environ Res Risk Assess (2014) 28:1985–1998 1987
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PðCjX; tÞ ¼

½1; 0; 0; 0� if SPIðX; tÞ� � 2

½0; 1; 0; 0� if �2\SPIðX; tÞ� � 1:5
½0; 0; 1; 0� if �1:5\SPIðX; tÞ� � 0:5
½0; 0; 0; 1� if SPIðX; tÞ[ � 0:5

8
>><

>>:

ð1Þ

where C is the drought severity degrees, C1, C2, C3 and C4

are associated with extreme, severe, moderate and non

drought severity respectively; t is the calculated time per-

iod, measured by month in this case; X is the location of

gauged grid, considered as an aforementioned two

dimensional vector.

Then the posterior probability of each drought severity

at ungauged grid x is estimated based on a Bayesian clas-

sifier (Le et al. 1997; Shin and Salas 2000) as follows

P C j x; tj
� �

¼
PN j

i¼1
1

r2 Xið Þ

� �
GKFðXiÞ

P4
j¼1

PN j

i¼1
1

r2ðXiÞ

� �
GKFðXiÞ

;

j ¼ 1; 2; . . .; 4

ð2Þ

where PðC j x; tj Þ is the posterior probability of the jth

drought severity degree at unagauged grid x during t, val-

uing between 0 and 1; Nj denotes the number of observa-

tions around x which has been classified as the jth drought

severity degree by Eq. (1); Xi is the ith gauged grid around

x, i ¼ 1; 2; . . .;N j; GKF(Xi) is Gaussian kernel function

given by

GKFðXiÞ ¼ exp �D2ðXi; xÞ
2r2ðXiÞ

� �

ð3Þ

where DðXi; xÞ is the Euclidean distance between grid

x = [m, n] and Xi, D2ðXi; xÞ equals x� Xik k; rðXiÞ is the

Bayesian
interpolation

averaged spatially

Dividing grids

Ungauged gridsGauged grids

SPI

Drought
condition

Drought risks of
different severities

Regional drought
risks and ranks

Spatial patterns of
drought distribution

Observed
precipitation

averaged temporally

Temporal patterns
of regional drought

Fig. 2 Overall procedure for drought analysis in this study

Table 2 Classification of the SPI values and drought category

SPI Drought category

C0.49 Non drought

-0.50 to -1.49 Moderate drought

-1.50 to -1.99 Severe drought

B-2 Extreme drought

Table 1 Characteristics of the meteorological stations

Station

name

Station

code

Starting

year of

record

Ending

year of

record

Geographic

coordinates

Longitude

E

Latitude

N

Baofeng 57181 1961 2006 113.05 33.88

Bengbu 58221 1961 2006 117.38 32.95

Bozhou 58102 1961 2006 115.77 33.87

Dangshan 58015 1961 2006 116.33 34.42

Dongtai 58251 1961 2006 120.32 32.87

Fuyang 58203 1961 2006 115.82 32.92

Ganyu 58040 1961 2006 119.12 34.83

Gaoyou 58241 1961 2006 119.45 32.80

Gushi 58208 1961 2006 115.67 32.17

Hezhe 54906 1961 2006 115.43 35.25

Huaiyin 58144 1961 2001 119.03 33.60

Huoshan 58314 1961 2006 116.32 31.40

Juxian 54936 1961 2006 118.83 35.58

Kaifeng 57091 1961 2006 114.38 34.77

Linyi 54938 1961 1997 118.35 35.05

Liuan 58311 1961 2006 116.5 31.75

Rizhao 54945 1961 2006 119.53 35.38

Shangqiu 58005 1961 2006 115.67 34.45

Sheyang 58150 1961 2006 120.25 33.77

Shouxian 58215 1961 2006 116.78 32.55

Suxian 58122 1961 2006 116.98 33.63

Xihua 57193 1961 2006 114.52 33.78

Xinyang 57297 1961 2006 114.05 32.13

Xuchang 57089 1961 2006 113.85 34.02

Xuyi 58138 1961 2006 118.52 32.98

Xuzhou 58027 1961 2006 117.15 34.28

Yanzhou 54916 1961 2006 116.85 35.57

Yiyuan 54836 1961 2006 118.15 36.18

Zhengzhou 57083 1961 2006 113.65 34.72

Zhumadian 57290 1961 2006 114.02 33.00
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width of the Gaussian kernel function, which controls the

radial influence sphere of the function as a scaling factor.

In interpolation issues, results obtained for every grid will

become identical as rðXiÞ ! 1, and vary dramatically as

rðXiÞ ! 0. Taking the non-uniform distribution of stations

into account, the width parameter is often estimated sepa-

rately for each data centre. The r-nearest neighbors heu-

ristic method suggested by Moody and Darken (1989) is

applied in this case

rðXiÞ ¼
1

r

Xr

j¼1

Xi � Xj

�
�

�
�

 !1
2

ð4Þ

where Xj are the r-nearest neighbors of station Xi.

3.3 Estimation of regional drought risks and regional

drought ranks at basin scale

Based on the posterior probabilities calculated at a point

scale, we may also need to assess drought condition at

larger spatial scales, which will be useful in making public

decisions or issuing warning notices. Regional drought

risks at a basin scale or in any interested area of the basin

can be obtained by averaging point values as

PB C j tj
� �

¼
PNg

i¼1 P C j Xi; tjð Þ þ
PNu

j¼1

PNg
i¼1 P C j xi; tjð Þ

Ngþ Nu
;

j ¼ 1; 2; 3; 4

ð5Þ

where PBðC j tj Þ is the regional drought risks of jth drought

severity during time t; Ng and Nu are the numbers of

gauged and ungauged grids in the basin.

The PB index reflects not only the average risks of each

drought severity, but also the spatial pattern of drought in

the basin. Since in a particular time period, the sum of

PBðC1 tj Þ, PBðC2 tj Þ, PBðC3 tj Þ and PBðC4 tj Þ reaches 1

regularly, a higher value of PB with the dominating

drought severity expresses a more significant coherence of

spatial distribution, which implies the drought may exert its

influence in a larger area. On the other hand, a lower value

of PB with the dominating drought severity expresses

smaller differences between drought risks of each severity,

which may imply a more noticeable spatial variability.

Then the regional drought rank (RDR) is further iden-

tified for a macroscopic comprehension of drought condi-

tion across the basin, which is calculated as

if PB C1 tj
� �

� 0:5; then RDRðtÞ ¼ 3

else if PB C1 tj
� �

þ PB C2 tj
� �

� 0:5; RDRðtÞ ¼ 2

else if PB C1 tj
� �

þ PB C2 tj
� �

þ PB C3 tj
� �

� 0:5;
RDRðtÞ ¼ 1

else RDRðtÞ ¼ 0

where RDR(t) is the rank of regional drought severity

during time t. RDR(t) = 3, RDR(t) = 2 and RDR(t) = 1

respectively represent drought severity levels of extreme,

severe and moderate. To make sure the ranking process is

taken in a sequential order, PBðC1 tj Þ is added to PBðC2 tj Þ
when identifying severe drought and PBðC1 tj Þ þ PBðC2 tj Þ
is added to PBðC3 tj Þ when identifying moderate drought.

3.4 Detection of temporal and spatial patterns

Trends of the regional drought risks at different time scales

are investigated with the Mann–Kendall (MK) statistical

test (Mann 1945; Kendall 1975), which has been widely

used for its superior applicability for non-normally dis-

tributed data as a rank-based non-parametric method (Yue

et al. 2002). Time series of the regional drought risks are

successively treated as follows

S ¼
Xn�1

i¼1

Xn

j¼iþ1

sgnðPBj � PBiÞ ð6Þ

where S performs as the main test statistic in the method, n

is the length of the sequential data set of PB, and

sgnðhÞ ¼
1 if h[ 0

0 if h ¼ 0

�1 if h\0

8
<

:
ð7Þ

Mann (1945) and Kendall (1975) have documented that

when n C 8, the statistic S is approximately normally

distributed with the mean 0 and the variance as follows

VðSÞ ¼ nðn� 1Þð2nþ 5Þ �
Pn

i¼1 tiiði� 1Þð2iþ 5Þ
18

ð8Þ

where ti denotes the number of ties of extent i. The stan-

dardized test statistic is computed by

Z ¼

S� 1
ffiffiffiffiffiffiffiffiffiffi
VðSÞ

p S [ 0

0 S ¼ 0
Sþ 1
ffiffiffiffiffiffiffiffiffiffi
VðSÞ

p S\0

8
>>>><

>>>>:

ð9Þ

Using a significant level of 5 %, a significant trend will

be found if Zj j[ 1:96. Positive and negative values of

Z indicate upward and downward trends respectively.

In addition, drought severity maps are constructed by

displaying the spatial distribution of mean point drought

risks in four degrees in the basin, which can be calculated as

�P C j xj
� �

¼
PT

t¼1 P C j x; tjð Þ
T

or

�P C j Xj
� �

¼
PT

t¼1 P C j X; tjð Þ
T

ð10Þ
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where T is the length of the research time period.

4 Results and discussion

4.1 Cross validation of the Bayesian interpolation

method

In order to evaluate the validity of the proposed Bayesian

interpolation method, cross validation technique was

applied and drought condition of 1997–2006 at the 30

gauged grids were assessed by the Bayesian method, WMA

(Akhtari et al. 2009) and ordinary kriging method (Go-

ovaerts 1997) respectively. The interpolated SPI values

were obtained by WMA and kriging method while the

posterior probabilities of each drought degree were

obtained by the Bayesian method. Then, drought ranks

were classified and compared with the observed values.

Rank value of 0, 1, 2 and 3 represent non, moderate, severe

and extreme drought respectively. For WMA and kriging

method, it was classified according to Table 2, and for the

Bayesian method it was identified with the calculation

procedure of RDR as mentioned before. Performance of the

interpolation methods were evaluated by the frequency of

differences in drought ranks at all gauged stations during

the 10 years.

As shown in Table 3, the difference of zero means the

drought rank is captured accurately and 1–3 means the

level of error in interpolated drought rank. No dramatic

difference was found among the results of the three

methods and interpolation accuracy over 80 % can be

gained in most cases. At both monthly and seasonal time

scale, the frequencies of zero difference suggest that the

Bayesian method can achieve better accuracy than WMA

but slightly worse than kriging method. Very similar results

were observed from SPI-12 series between the Bayesian

method and WMA except that more 2-class differences

were presented by WMA. Although kriging acquired lower

total numbers of difference at all the three time scales, it

should be noted that much more three-class differences

have been observed from kriging method while none has

been found from the Bayesian method. It suggests that

kriging method performed worst in capturing extreme

droughts. Generally speaking, the results indicate that the

Bayesian method was slightly better, or at least no less

skillful, than WMA and kriging method in this case.

4.2 Temporal characteristics of regional drought risks

After the calculation of SPI and posterior probabilities,

regional drought risks in the study area were estimated

covering the period from January 1962 to December 2006.

Behaviors of drought risks for each severity including

‘‘Extreme’’, ‘‘Severe’’, ‘‘Moderate’’ and ‘‘Non’’ derived

from SPI-1, SPI-3 and SPI-12 series (PB-1, PB-3 and PB-

12) are separately shown in Figs. 3, 4 and 5. Several sta-

tistical indices of each time series including the max value,

the mean value, the variability coefficient Cv and the

skewness Cs were also calculated for a further comparison

(Table 4). The maximum value of ‘‘Extreme’’ risk was

0.8242 in PB-3 series which occurred in January 1974 as

the most significant extreme drought in the basin, while the

peaks in PB-1 and PB-12 reached only 0.5512 and 0.4552.

The maximum values of ‘‘Severe’’ and ‘‘Moderate’’ risk

based at inner-annual scale SPIs were also much higher

than that of annual values. Although the average values of

both ‘‘Extreme’’ and ‘‘Severe’’ risks in PB-3 series were

smaller than PB-12, it is quite noticeable that Cv values of

those were much larger than series of PB-1 and PB-12,

which reflected a more remarkable variation. A similar

behavior can be observed in Cs values. Time series of

‘‘Extreme’’ and ‘‘Severe’’ risks at all the three time scales

were positively skewed since the existence of a few

extraordinary large values when drought occurred, and the

larger Cs values of PB-3 may imply a more threatening

situation than drought at other two time scales. Mean

values of ‘‘Non’’ risk, which could indicate the overall

probability of various drought events, showed that PB-3

series also had a lowest value of ‘‘Non’’ drought risks.

Judging from the max values and distributing patterns, the

PB-3 series that reflected the characteristics of seasonal

precipitation displayed a most acute drought condition in

the study period. More specific information about drought

events in recent decades are discussed in the section below

when assessing drought ranks.

Table 3 The frequency of differences in interpolated drought ranks

at 30 gauged stations from 1997 to 2006

Interpolation

method

Frequency of

differences

%

0 1 2 3 0 1 2 3

SPI-1 series

Bayesian 3,205 386 9 0 89.03 10.72 0.25 0.00

WMA 3,183 406 11 0 88.42 11.28 0.31 0.00

Kriging 3221 361 7 11 89.47 10.03 0.19 0.31

SPI-3 series

Bayesian 3,241 357 2 0 90.03 9.92 0.06 0.00

WMA 3,224 374 2 0 89.56 10.39 0.06 0.00

Kriging 3,272 312 12 4 90.89 8.67 0.33 0.11

SPI-12 series

Bayesian 2,750 788 62 0 76.39 21.89 1.72 0.00

WMA 2,749 774 76 1 76.36 21.50 2.11 0.03

Kriging 2,884 666 40 10 80.11 18.50 1.11 0.28

1990 Stoch Environ Res Risk Assess (2014) 28:1985–1998
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In order to investigate the long-term trends of drought

risks, MK test was applied on PB series over two time-

frames using a 5 % significance level: (1) all records of

each PB series from January 1962 to December 2006; (2)

records of each month extracted separately from each PB

series from 1962 to 2006. Results of the trend tests are

presented in Table 5 and the Z values larger than 1.96 or

smaller than -1.96 are bolded as significant trends. We

found little evidence of significant trends in the tests of

complete PB records except a downward trend of

‘‘Extreme’’ risks in PB-3. Otherwise, series of PB-1 and

PB-12 also showed downward trends but failed to exceed

the threshold value -1.96. More significant trends had

been detected after separating records to 12 months,

including three upward trends and four downward trends.

Both series of January PB-3 and July PB-12 revealed a

noticeable downward trend of ‘‘Severe’’ risks, as well as

‘‘Moderate’’ risks of Jun PB-1 series. However, the series

PB-3 showed a upward trend of ‘‘Moderate’’ risks and a

downward trend of ‘‘Non’’ risks in April, while the series

PB-1 and PB-12 showed a upward trend of ‘‘Moderate’’

risks and ‘‘Severe’’ risks respectively in September.

4.3 Assessment of regional drought ranks

Figure 6 further displays the time series of RDR based on

SPI-1, SPI-3 and SPI-12 (RDR-1, RDR-3 and RDR-12),

which have been subsequently obtained from drought risks

of ‘‘Extreme’’, ‘‘Extreme ? Severe’’, ‘‘Extreme ? Severe ?

Moderate’’. The number of drought events for each RDR and

the corresponding percentages are listed in Table 6. Con-

sistent with time behaviors of the three PB series, more

drought events were observed in RDR-3 series spreading

over every severity degree, with five extreme droughts, 21

severe droughts and 151 moderate droughts. The total

number of drought events detected from seasonal time scale

was 6.67 and 9.08 % more than that at monthly and annual

scales. There were five time periods involved with extreme

Fig. 3 Time behaviors of regional drought risks based on SPI-1 values for each severity in Huai River basin from Jan 1962 to Dec 2006

Stoch Environ Res Risk Assess (2014) 28:1985–1998 1991
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drought (Dr = 3) including February 1968, January 1970,

January 1974, February 1977 and February 1984 in the RDR-

1 series, as well as 4 months including January 1963,

December 1987, November 1995 and December 1999 in the

RDR-12 series. The one occurred in January 1974 was most

serious with risks of extreme drought and severe drought

reaching 0.8242 and 0.1758 respectively.

The RDR-12 series tended to mirror the drought con-

dition from a long-term perspective. Although more

droughts were detected at inner-annual time scales because

of the huge variation of monthly precipitation in a hydro-

logic year, RDR-12 series showed stronger persistence.

There were six drought periods longer than 10 months,

namely August 1966–August 1967, October 1976–August

1977, July 1978–June 1979, June 1981–June 1982, August

1988–May 1989 and July 1999–May 2000, with three of

them longer than a year. The most serious drought event

occurred in August 1966–August 1967, during which time

the basin suffered from severe drought (Dr = 2) in 9 of the

13 months.

4.4 Spatial patterns of mean point drought risks

As mentioned above, the PB index implies the general spatial

distributing pattern in the basin. The time series of the

drought risks for ‘‘Extreme’’ shows that the regional extreme

risk value never reached 1 (Figs. 3, 4, 5), which means that

an extreme drought covering the entire basin had never

happened during the study period. However, the risk of

‘‘Extreme ? Severe’’ at monthly scale (PB-1) reached one

twice on January 1963 and December 1987, when the whole

basin suffered from either extreme or severe drought. At the

seasonal scale (PB-3), severe or worse droughts influencing

the whole basin also occurred three times including February

1968, January 1974 and February 1977. In addition, behav-

iors of ‘‘Extreme ? Severe ? Moderate’’ risk have shown

Fig. 4 Time behaviors of regional drought risks based on SPI-3 values for each severity in Huai River basin from January 1962 to December

2006

1992 Stoch Environ Res Risk Assess (2014) 28:1985–1998

123



different patterns at different time scales, reaching one for

52, 86 and 6 times in PB-1, PB-3 and PB-12 series respec-

tively. ‘‘Non’’ risk decreased to zero when those droughts

influencing the entire basin with spatially various severity

occurred.

Spatial patterns of drought condition were further

depicted by geographical distribution of mean point

drought risks. Mean values of extreme, severe and mod-

erate drought risks in each grid based at the three time

scales are illustrated separately in Figs. 7, 8 and 9 as

drought severity maps. Among the three ‘‘Extreme’’ charts,

Figs. 7a and 9a obviously display an upward trend of

‘‘Extreme’’ risk from north to south of the basin, while

Fig. 8a suggests a more significant increasing trend from

southeast to northwest. The spatial variability of ‘‘Severe’’

risk at monthly time scale (Fig. 7b) shows a similar pattern

with Fig. 8a, reaching its maximum values in northwestern

area. And Fig. 8b generally reveals an upward trend of

‘‘Severe’’ risk from north to south as ‘‘Extreme’’ charts

Fig. 5 Time behaviors of regional drought risks based on SPI-12 values for each severity in Huai River basin from January 1962 to December

2006

Table 4 Statistical indices of the regional drought risk series

Drought severity Max Mean Cv Cs

PB-1 series

Extreme 0.5512 0.0131 5.1568 6.0122

Severe 0.6771 0.0429 2.7531 3.1911

Moderate 1.0000 0.2328 1.2644 1.1257

Non 1.0000 0.7112 0.5127 –1.0020

PB-3 series

Extreme 0.8242 0.0147 5.4608 6.9677

Severe 0.6522 0.0372 3.1424 3.5964

Moderate 1.0000 0.2952 1.2133 0.8568

Non 1.0000 0.6530 0.6196 –0.6707

PB-12 series

Extreme 0.4552 0.0202 3.1987 4.0838

Severe 0.3446 0.0506 1.4886 1.5598

Moderate 0.7705 0.2380 0.7587 0.4561

Non 1.0000 0.6912 0.3810 –0.7279

Stoch Environ Res Risk Assess (2014) 28:1985–1998 1993

123



Fig. 7a and 9a. Other than that, ‘‘Severe’’ risks at annual

time scale (Fig. 9b) reveal two centers of high risk val-

ues—northwest corner and part of the central areas. From

spatial distributions of the mean point drought risks of

‘‘Extreme’’ and ‘‘Severe’’ in study period, we can generally

conclude that southern and northwestern parts of the basin

tended to face a larger risk of extreme and severe drought

events at the three time scales. However, very different

distributions can be observed from ‘‘Moderate’’ maps.

Figure 8c displays an upward trend of ‘‘Moderate’’ risk

from southwest to northeast, and the highest risk values

emerge in the eastern and northeastern parts respectively in

Figs. 7c and 9c, which suggests that moderate drought was

more likely to occur in these two parts of the basin.

5 Conclusions and discussion

The main objective of this research was to develop a

scheme for analyzing meteorological drought condition at

multiple temporal and spatial scales based on a spatial

interpolation of the SPIs of observed station data in the

study basin. The results of cross validation suggest that the

proposed Bayesian interpolation method is an effective

approach for identifying drought severity at ungauged

grids. Besides the satisfying accuracy, the main merit of the

method is the probabilistic interpretation of outcome.

Compared with other deterministic approaches, the prob-

abilistic results of drought risk on various severity degrees

can provide a more insightful view for the reliability of the

quantification and ranking of drought characteristics, which

is inevitably limited by data quality and interpolation

accuracy. For point drought evaluation, a higher risk value

of the dominating drought degree suggests a higher reli-

ability of drought ranking. At regional scale, the spatially

averaged drought risks also reflect the spatial coherence of

drought severity.

Temporal and spatial characteristics of drought risks at

various temporal and spatial scales were evaluated in four

severity categories including extreme, severe, moderate

and non drought. Results of regional drought risks indicate

that time behaviors of ‘‘Extreme’’ and ‘‘Severe’’ risks at

seasonal scale (PB-3) have showed more notable variation

than that at monthly and annual scales. The maximum

value of ‘‘Extreme’’ risk (0.8242) in the basin was also

observed in PB-3 series. The trend tests did not reveal

many significant trends with a significance level of 5 %.

The three PB series generally displayed a consistent result

of decreasing ‘‘Extreme’’ risks and increasing ‘‘Moderate’’

risks, but failed to pass the significance test except a

downward trend of ‘‘Extreme’’ risks in PB-3. However,

more significant trends were found when we examined the

records of each month separately. The three upward trendsT
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of ‘‘Moderate’’ or ‘‘Severe’’ risk at various time scales and

one downward trend of ‘‘Non’’ risks at seasonal scale

suggested that more attention should be paid on drought

management in April and September.

The results of RDR assessment further demonstrate that

drought at seasonal scale played a more threatening role

than the other two time scales in study period, with five

extreme droughts, 21 severe droughts and 151 moderate

droughts. In terms of annual scale, dry events clearly

exhibited stronger persistence though fewest droughts were

detected without any of them reaching ‘‘extreme’’ severity.

Six dry periods altogether were detected from RDR-12, in

which the basin suffering from drought durations longer

than 10 months.

As far as the influencing range of drought was con-

cerned, behaviors of PB series indicate that an extreme

drought spanning the entire basin never occurred during the

study period, but meanwhile droughts influencing the entire

basin with spatially various severities have occurred in 52,

86 and 6 months derived from monthly, seasonal and

Fig. 6 Time behaviors of

regional drought rank based on

SPI-1 (RDR-1), SPI-3 (RDR-3)

and SPI-12 (RDR-12) in Huai

River basin from January 1962

to December 2006. Rank values

of 3, 2 and 1 indicate extreme,

severe and moderate drought

respectively
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annual time scales respectively. The results of mean point

drought risks have also revealed a variable spatial distri-

bution of drought risks during the analyzed period. Gen-

erally, there were larger risks of extreme and severe

drought in southern and northwestern parts of the basin

while northeastern areas tended to face larger risks of

moderate drought.

The case study in Huai River basin suggests that the

proposed approach is a viable and flexible tool for

assessing and monitoring meteorological drought at various

temporal and spatial scales. Drought condition explained

by risks of various severity degrees instead of single state

can serve as a helpful reference for regional drought

management and water resources planning. Nevertheless, it

should be kept in mind that drought evaluation is vitally

relied on the integrity and validity of observed data and

results can be highly diverse up to the subjective definition

of drought severity, which requires cautious treatment in

applications.

Table 6 Frequencies and percentages of each rank of regional

drought in Huai River basin from 1962 to 2006

Regional drought rank Drought severity Frequency %

RDR-1 series

3 Extreme 4 0.74

2 Severe 17 3.15

1 Moderate 120 22.22

0 Non 399 73.89

RDR-3 series

3 Extreme 5 0.93

2 Severe 21 3.89

1 Moderate 151 27.96

0 Non 363 67.22

RDR-12 series

3 Extreme 0 0.00

2 Severe 15 2.78

1 Moderate 113 20.93

0 Non 412 76.30

Fig. 7 Spatial distribution of mean point drought risks based on SPI-

1. a Extreme, b severe, c moderate

Fig. 8 Spatial distribution of mean point drought risks based on SPI-

3. a Extreme, b severe, c moderate
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