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Abstract Tsunamis are disastrous events typically caus-

ing loss of life, and extreme damage to the built environ-

ment, as shown by the recent disaster that struck the East

coast of Japan in 2011. In order to quantitatively estimate

damage in tsunami prone areas, some studies used a

probabilistic approach and derived fragility functions.

However, the models chosen do not provide a statistically

sound representation of the data. This study applies

advanced statistical methods in order to address these

limitations. The area of study is the city of Ishinomaki in

Japan, the worst affected area during the 2011 event and

for which an extensive amount of detailed building damage

data has been collected. Ishinomaki city displays a variety

of geographical environments that would have significantly

affected tsunami flow characteristics, namely a plain, a

narrow coast backed up by high topography (terrain), and a

river. The fragility analysis assesses the relative structural

vulnerability between these areas, and reveals that the

buildings surrounding the river were less likely to be

damaged. The damage probabilities for the terrain area

(with relatively higher flow depths and velocities) were

lower or similar to the plain, which confirms the beneficial

role of coastal protection. The model diagnostics show

tsunami flow depth alone is a poor predictor of tsunami

damage for reinforced concrete and steel structures, and for

all structures other variables are influential and need to be

taken into account in order to improve fragility estimations.

In particular, evidence shows debris impact contributed to

at least a significant amount of non-structural damage.

Keywords Tsunami � Building damage � Fragility

functions � Ordinal regression

1 Introduction

The density of coastal populations is increasing, accom-

panied by increased human activities, developments, and

changes in land-use (Levy and Hall 2005), thus having an

effect on the impact of extreme events such as tsunamis.

After a tsunami attack, the resulting damage to structures is

a useful indicator of the vulnerability of exposed coastlines.

Buildings that can sustain tsunami forces can save lives,

and will contribute to the reduction of the financial losses

caused by the disaster. Two recent large scale events,

namely the 2004 Indian Ocean tsunami and the 2011 Great

East Japan tsunami, yielded improvements in data collec-

tion and availability, thus have stimulated research into

tsunami-induced damage estimations. The methods

involved the determination of threshold depths associated

with an observed damage level (Shuto 1993), qualitative

vulnerability assessments such as the PTVA method (Pa-

pathoma and Dominey-Howes 2003; Dominey-Howes and

Papathoma 2007), damage ratios (Leone et al. 2011;

Valencia et al. 2011), and fragility functions (a more

exhaustive review is available in Suppasri et al. 2013a, b).

Fragility functions are empirical stochastic functions,

which relate the probability for a building to reach or

exceed a given damage state, to a measure of tsunami

intensity. In comparison with other methods, fragility

functions provide quantitative and detailed information on

the probability of damage, therefore, they are one of the
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most advanced and informative tool for tsunami damage

estimation. Previous studies deriving and utilizing fragility

functions have found many factors to be influential on the

extent of building damage, both in terms of hazard (e.g.

flow depth) and structural vulnerability (e.g. structural

material), which can be defined here as the capacity of a

building to resist the impact of a given hazard (i.e. Ko-

shimura et al. 2009; Suppasri et al. 2011, 2012).

From a vulnerability standpoint, and in addition to the

construction type, a building’s likelihood to suffer high

levels of tsunami damage may be greatly affected by

environmental features. The recent findings by Suppasri

et al. (2013a, b) show that on a large scale, the dominant

type of coastline of a particular geographical area will

visibly affect the probability of buildings to suffer exten-

sive damage. In particular, it was found that due to the

amplification of the 2011 tsunami waves along the ria-type

Sanriku coast in Japan, the probability of building damage

was visibly increased, in comparison with the plain coast. It

is thought that geographical features at the city scale will

similarly influence building damage probability, by altering

the flow characteristics.

Therefore, existing fragility functions have given to date

a very useful indication of relative building fragility,

according to various parameters. However, from a statis-

tical standpoint these have fallen short of giving truly

reliable estimations of tsunami damage probability. The

first issue with existing curves lies in the assumptions that

are made regarding the statistical distribution of the

response (i.e. damage). Following the methodology used

for the derivation of seismic fragility functions (Porter

et al. 2007), this distribution is often assumed to be normal

or lognormal, leading to a linear least squares fitting of the

curve. However, this assumption is by nature erroneous, as

damage state is a discrete, ordinal response and the

aforementioned distribution is only applicable to continu-

ous variables (Rossetto et al. 2013). In addition, many of

the assumptions associated with the linear least squares

fitting (such as homoscedasticity and independence of the

errors) typically do not hold when applied to the available

tsunami damage data (Charvet et al. 2013). The second

issue is the level of data aggregation, which leads to the

dismissal of a significant amount of points when linear

least squares regression is used. Indeed, this procedure does

not recognise that some bins have a higher number of

buildings than others, and cannot deal with the bins which

do not contain any damaged buildings, or only contain

damaged buildings (due to the fact the inverse normal

distribution function does not converge for probabilities of

0 or 1). In addition, depending on the level of data

aggregation significant information may not be captured by

the model (Charvet et al. 2014). The building damage

analysis conducted by Reese et al. (2011) was the first

study in the tsunami engineering field which implemented

more realistic stochastic models to represent damage

probability. The authors used generalized linear models

(GLM), as described in Mc Cullagh and Nelder (1989),

more specifically logistic regression, to derive fragility

functions based on building damage in Samoa (after the

2009 tsunami). GLM relax many assumptions associated

with the simple linear model, and allow the response var-

iable to follow a number of distributions, thus addressing

the shortcomings of linear regression analysis. Logistic

regression allows the response to be modelled as a discrete,

binary outcome (i.e. a given damage state is either reached

or exceeded or not), however it does not take into account

the ordered nature of damage state. This may lead to

inconsistent results in some cases, such as fragility func-

tions that cross – thus implying the damage states DSi?1

may be reached before DSi as the intensity measure

increases, which is impossible. A logical improvement

from this method would be to assume the response follows

a multinomial distribution, a generalization of the binomial

distribution which allows the outcome to belong to one of

n ordered categories (1, 2,…, n). Multinomial distributions

can represent either ordered or unordered outcomes, in the

case of an ordered outcome (i.e. damage state) ordinal

regression may be used (Gelman and Hill 2007).

The aims of this study are therefore:

• To assess potential differences in the probability of

building damage according to geographical location at

the city scale. The case study will be Ishinomaki city,

as it suffered the most extensive damage after the 2011

Japan tsunami and three representative types of

geographical features are present: a ‘‘plain’’ area, a

‘‘terrain’’ area (were buildings are concentrated on a

narrow band between the ocean and high topography),

and a ‘‘river’’ area (buildings located close to the river

banks and beyond);

• To use more realistic estimations methods of building

damage probability by applying GLM, more specifi-

cally ordinal regression, to the extensive disaggregated

dataset of building damage following the 2011 Great

East Japan tsunami, available for Ishinomaki city.

2 Data and methods

2.1 Presentation of the data

The extensive database of building damage in Ishinomaki

city (56,950 buildings) following the 2011 tsunami was used

for the present analysis. The information available for most

individual buildings includes geographical localization,

measured tsunami flow depth, level of damage observed (as
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described in Table 1), and construction material. Consider-

ing the modified scale and damage description in Table 1,

DS2 and DS3 essentially represent levels of non-structural

damage (i.e. damage to walls), DS4 and DS5 represent levels

of structural damage (i.e. damage to columns).

In some cases, information regarding the building’s

structural material is missing. When this is the case, the

corresponding data points are dismissed for the analysis.

Indeed, as mentioned previously construction material has

been consistently found to be an important parameter in

determining the severity of tsunami damage, therefore

should be taken into account. In addition, the removal of

points with missing information does not negatively affect

the power of the statistical analysis as the total number of

data points remaining is large enough. According to Green

(1991), when performing regression analysis with one

predictor variable (in our case, tsunami flow depth) and

expecting a strong relationship between the predictor and

the response variable (i.e. between flow depth and damage

state), the effect size can be considered large, leading to a

minimum sample size of 24 points. Finally, for a number of

buildings in the database, the damage observed is obvi-

ously not due to tsunami forces, i.e. (DS = DS0|h = 0),

h being the tsunami flow depth measured from ground

level. In such cases, the points have also been dismissed.

With regards to the damage scale, it can be seen that the

original DS5 and DS6 do not represent mutually exclusive

damage states, nor do they necessarily represent an increase

in tsunami intensity. Rather, they represent different failure

modes of the structure. In order to apply GLM analysis to the

data, such requirements must be met (Mc Cullagh and Nelder

1989), therefore in this study these two levels will be

aggregated transforming the given seven-state (DS0–DS6)

into a six-state damage scale (DS0–DS5).

2.2 Geographical data split

During a tsunami attack, the damage to buildings is

strongly determined by the tsunami loads/forces acting on

the structure. Reviews such as FEMA (2008), Chock et al.

(2011) highlight the different force components that typi-

cally act on a structure as the tsunami flows inland, these

different types of forces can be classified as follows:

• Hydrostatic forces (largely determined by the flow depth),

• Hydrodynamic forces (largely determined by flow

depth and velocity),

• Debris impact forces (debris velocity, mass and stiffness),

• Scour (mainly determined by soil characteristics, flow

approach angle and cyclic inflow/outflow).

In order to produce a meaningful regression analysis, it is

intended to group buildings which have been subjected to similar

tsunami actions. Unfortunately, forces and velocities cannot be

retrieved in the field survey, and the only parameter that can be

directly measured is the flow depth, which drives mainly the

hydrostatic load. Therefore, we choose to subdivide the densely

urbanized part of Ishinomaki city into different geographical

areas, based on environmental characteristics, inundation frames

produced from numerical simulations (courtesy of Dr Bricker,

Tohoku University) and field surveys (Haraguchi and Iwamatsu

2011). It is thought that each of these areas will display different

characteristics which will affect the principal mechanisms of

inundation therefore the relative forces and probability of dam-

age. Three main inundations types can be distinguished:

(1) Flooding of the plain/flat land (P), with no major

obstacle to the flow—typically the inundation dis-

tance is large, but the flow depth is moderate (i.e. less

than 5 m).

Table 1 Classification and description of building damage for Ishinomaki city

Damage

State

(survey)

Modified

scale

(this study)

Classification Description Condition

DS1 DS1 Minor damage No significant structural or non-structural

damage, only minor flooding

Possible to use after minor floor

and wall clean up

DS2 DS2 Moderate damage Slight damage to non-structural

components

Possible to use after moderate

reparation

DS3 DS3 Major damage Heavy damage to some walls but no

damage in columns

Possible to use after major

reparations

DS4 DS4 Complete damage Heavy damage to several walls and some

columns

Possible to use after complete

reparation and retrofitting

DS5 DS5 Collapse Destructive damage to walls (more than

half of wall density) and several

columns (bent or destroyed)

Loss of functionality (system

collapse). Non-repairable or

great cost for retrofitting

DS6 Washed away Washed away, only foundations

remained, total overturn

Non-repairable, requires total

reconstruction

Note that a building which has not suffered any damage will be assigned a damage state of 0
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(2) Flooding of coastal areas against higher terrain (T),

typically the inundation distance is smaller due to the

higher topography blocking flow ingress, but runup

and flow depths are greater. In contrast with the plain,

this area benefited from coastal protection (seawalls,

control forest, breakwater).

(3) Flooding along the river (R)—the tsunami waves

travel at higher speed along the river channel and are

thus capable of reaching further inland through this

process. They can also be amplified due to a

bottleneck effect when high topography is present

on either sides of the river. However, the character-

istics of flooding on either side of the river banks will

be mainly determined by the water height above the

dyke, and head difference.

Throughout the whole area surveyed, scour (Fig. 1)

and debris impact (Fig. 2) appear to be sporadically

present, however the amount of data available (location

of visible scour and/or debris impact) is very limited and

does not allow for deciding whether such effects were

significant at the city scale in comparison to other types

of forces, nor do they provide enough information to

define specific geographical areas of action for scour and

debris impact. The locations of these effects are shown

in Fig. 3, we expect that if such mechanisms of damage

are significant a pattern will be present in the model

errors. Moreover, in most cases (see Fig. 2a, b) the

evidence suggests that the impact of debris triggered

damage to walls and non-structural components, thus if

this effect is significant the error graphs corresponding to

intermediate damage states (i.e. DS2 and DS3, see def-

initions in Table 1) would display some obvious trends.

2.3 Ordinal regression method

2.3.1 Model

Stochastic models all comprise a systematic component

(i.e. the fitted function), and a random component, which

describes the distribution of the response around its mean.

Simple linear regression assumes the response variable

follows a normal (or log-normal) distribution, and that it is

linearly related to an explanatory variable through a set of

regression parameters (that is, the mean and standard

deviation of the normal (log-normal) distribution function).

GLM are a generalization of this concept, this time the

response can follow one of a number of distributions—in

this study, a multinomial distribution (which corresponds

to the random component of the model):

Yi;k �
YI

i¼0

Nk!

Yi;k!
P DS ¼ dsijxkð ÞYi;k : ð1Þ

And the fragility function, or systematic component, is

expressed through a ‘‘link’’ function g which is itself a

function of a linear predictor g, expressed as follows:

gðliÞ ¼ gi ¼ h0;i þ
Xp

j¼1

hi;jXj: ð2Þ

In Eq. (1) (Forbes et al. 2011), Yi,k corresponds to the counts

of buildings being at damage level dsi (i 2 N; 0 � i � 5)

for each value of the tsunami intensity measure xk; and Nk is

the total number of buildings. In Eq. (2) (Mc Cullagh and

Nelder 1989, p. 27), Xj are the p explanatory variables that can

be used for the regression analysis, and {h0,i,…, hi,j} are

parameters of the model to be estimated. In the case of

Fig. 1 Examples of visible

scour in Ishinomaki city—

locations shown in Fig. 3
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Ishinomaki city, the only hazard parameter that has been

measured is the tsunami flow depth, therefore X1 = h and the

linear predictor is a simple linear function of flow depth.

Generally, for regression based on binary or multinomial

outcomes, the appropriate link functions g are the logit, probit

or complementary loglog functions (Fig. 4) as described in

Rossetto et al. (2013).

For binomial and multinomial models, the variance

function associated with the distribution is a function of the

mean l:

var½Y� ¼ /lð1� lÞ: ð3Þ

In Eq. (3), / is the theoretical dispersion parameter

which is assumed to have a value of 1 when the data clo-

sely follows the chosen distribution (here, multinomial).

In ordinal regression analysis, the ordering of the cate-

gorical outcome is taken into account by taking a special

case of multinomial outcome and assuming the fragility

curves corresponding to different damage states have the

same slope hj but different intercepts h0,i. Therefore, the

observed probabilities of reaching or exceeding a given

damage state can be substituted in Eq. (2) and expressed as

a function of the linear predictor g, thus expressing the

required fragility function li, as follows:

g lijhkð Þ ¼ h0;i þ h1hk: ð4Þ

The method used to find the parameter values in Eq. (4)

for the cumulative distribution function to be fitted to the

data is the maximum likelihood estimation (MLE). MLE

is the standard way of performing GLM regression ana-

lysis and is an iterative procedure that will find the opti-

mum combination of parameter values—in other words,

through the link function the likelihood L(h|Y)of obtaining

the actual observations by fitting the mean curve li is

maximized. A detailed description of MLE is outside the

scope of this paper, but the interested reader can refer to

Mc Cullagh and Nelder (1989), or Myung (2003) for a

description of the practical implementation of this

method.

2.3.2 Diagnostics

Following the recommendations of Rossetto et al. (2013),

diagnostics need to be performed to assess the relative and

absolute goodness-of-fit of the fragility curves. Because a

number of different link functions can be chosen, the next

step will be to assess relative goodness-of-fit by using the

Akaike information criterion (AIC) (Akaike 1974):

AIC ¼ 2q� 2 lnðLÞ; ð5Þ

Where q is the number of parameters in the model, and

L is the maximized likelihood function of the mean curve.

This measure essentially sums the deviance (-2ln(L)),

which is a measure of the overall error, simultaneously

taking into account the number of parameters in each

model. The best fit corresponds to the model which has the

smallest AIC.

Finally, the absolute goodness-of-fit can be assessed by

comparing the observed and expected (model) probabilities

for each damage state. A model that fits the data perfectly

will result in equal expected and observed probabilities,

thus a linear trend along the 45� line. A decent model

should result in most points being close to such line,

without any obvious non-linear trend.

Fig. 2 Examples of visible

debris impact in Ishinomaki

city—locations shown in Fig. 3
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3 Results and discussion

Because we dispose of only one explanatory variable h, it

is possible to run the analysis directly with the counts of

buildings for each value of h where measurements are

available. As such, the sample size n indicated in Table 2

corresponds to the total number of points used for the

regression, the total number of buildings in each class

being given by N.

3.1 Plain

20,682 buildings were surveyed in the P area of Ishinomaki

City, after the considerations highlighted in Sect. 2.1 and

removal of incomplete or erroneous data (e.g. missing

information on building material, damage unexplained by

flow depth), 15,736 buildings were analyzed.

Table 2 shows the different AIC values, by link function

chosen and construction material. The fragility curves

corresponding to the models with the smallest AIC are

plotted in Fig. 5, along with the corresponding data. An

initial examination of the curves shows that the vulnera-

bility of wooden and masonry structures is higher than the

vulnerability of RC and steel buildings. However, we can

also see that the behavior of the data is erratic for RC

buildings, extremely scattered for steel buildings, whereas

the trend is much more obvious for wood and masonry

structures. For the latter types of buildings, there is very

little or no data points classified as DS4, resulting in equal

estimations of the probability of damage for both DS4 and

DS5. It is very likely that many buildings which had

actually reached level DS4 were classified as DS5 in the

field, due to the slightly subjective description of damage

provided for these levels. For example, ‘‘Heavy damage to

Fig. 3 Map of the city of

Ishinomaki with locations of the

buildings surveyed and outline

of the three areas under

investigation (in green, to the

West: the P area, in blue, to the

North: the R area, in red, to the

East: the T area). Scour and

debris impact points are also

shown
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several walls and some columns’’ (DS4) can easily be

classified as being ‘‘Destructive damage to walls (more

than half of wall density) and several columns (bend or

destroyed)’’ (DS5). To an extent, the definitions of DS4 and

DS3 can trigger a similar issue (‘‘damage to some walls’’—

DS3, ‘‘damage to several walls’’—DS4).

The diagnostics plots in Fig. 6 reveal that indeed the

model’s fit to the data is poor for RC and steel buildings,

which is expected given the amount of scatter in the data and

indicates that flow depth is not a good predictor of tsunami

damage for these types of structures. The differences

between the observed and expected probabilities become

more pronounced as the damage level increases, the worse

estimations corresponding to damage states that are repre-

sentative of structural damage (DS4 and DS5). For wooden

buildings, the observed and predicted probabilities are con-

sistent however a trend is present, particularly obvious in the

high probability regions (l[ 0.6) with the model system-

atically overestimating damage probability for non-struc-

tural damage (DS2 and DS3), and systematically

underestimating damage probability for structural damage

(DS4 and DS5). The opposite is true in the low probability

region (l\ 0.6). This is likely due to the action of one or

several missing variables, which if known should be inclu-

ded in the model (2). This hypothesis is supported by the

observations from Yu et al. (2013), who noted in the context

of flood damage analysis that sediment flow velocity, flood

Fig. 4 Link Functions to be used with the multinomial distribution

Table 2 AIC (5) obtained for the buildings in the P area, with values

corresponding to the best fitted model are in bold

Material/link function Probit Logit Comp. loglog

RC (n = 47; N = 214) 199.62 197.95 199.44

Steel (n = 49; N = 761) 398.79 403.55 369.54

Wood (n = 56; N = 14,048) 11,198 2,469 4,292

Masonry (n = 49; N = 713) 367.94 255.23 226.24

Fig. 5 Damage probability data

and fragility functions derived

for the P area (Plain), for the

four structural types (RC—logit,

Steel—comp. loglog, Wood—

logit, Masonry—comp. loglog)

Stoch Environ Res Risk Assess (2014) 28:1853–1867 1859

123



duration and sediment load have are likely to influence

damage estimations. The underestimations may be due to

the action of debris, as mentioned in Sect. 2.2 they were

likely to have a significant influence on at least non-struc-

tural elements (photographic evidence), possibly also for

structural damage and collapse, although visual evidence for

this is harder to detect on post-tsunami survey images. The

potential misclassifications highlighted previously are also

likely to influence such trend, for example we can observe

that some of the non structural high damage probability data

in Fig. 5 is shifted to the right (leading to overestimation of

DS2 and DS3), while it is shifted to the left for DS5. Finally,

the diagnostic plots in Fig. 6 show a very good fit for DS1

for all structures, with a probability of 1. This is because the

probability of a building to experience at least minor

flooding (see Table 1) is intrinsically linked to the inunda-

tion depth and will reach its maximum as soon as the flow

interacts with any building.

3.2 Terrain

22,810 buildings were surveyed in the T area of Ishinomaki

City, after the considerations highlighted in Sect. 2.1 and

removal of incomplete data, 18,289 buildings were

analyzed.

Table 3 indicates the AIC values for different building

construction types in the T area, and different link func-

tions. The fragility curves corresponding to the models

with the smallest AIC are plotted in Fig. 7, along with the

corresponding data.

Again the probability of damage given by the model is

higher for wooden and masonry structures (in comparison

with the other structural types), whereas scatter in the data

for RC and steel buildings is important. Similarly to the

fragility curves derived for the P area, there is little or no

difference between the damage probabilities corresponding

to DS4 and DS5. The exact same remarks made for the

diagnostics of the P area (Sect. 3.1) can be made for the

diagnostics of the T area (Fig. 8).

3.3 River

13,458 buildings were surveyed in T area of Ishinomaki

City, after the considerations highlighted in Sect. 2.1 and

removal of incomplete data, 11,150 buildings were

analyzed.

Fig. 6 Diagnostic plots

corresponding to the fragility

curves shown in Fig. 5 (P area)

Table 3 AIC (5) obtained for the buildings in the T area, with values

corresponding to the best fitted model are in bold

Material/link function Probit Logit Comp. loglog

RC (n = 68; N = 278) 258.84 261.55 281.94

Steel (n = 71; N = 947) 419.81 437.25 505.14

Wood (n = 85; N = 16,438) 663.46 798.76 3,261

Masonry (n = 71; N = 626) 316.75 134.05 169.66
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Table 4 indicates the AIC values for different building

construction types in the R area, and different link func-

tions. The fragility curves corresponding to the models

with the smallest AIC are plotted in Fig. 9, along with the

corresponding data.

In this area, scatter in the data for RC and steel buildings

is still important, and the model cannot provide a satis-

factory fit to the data, as shown also by the large departure

from the perfect estimations line in Fig. 10. However, from

this figure we can also see that there are less model

Fig. 7 Damage probability data

and fragility functions derived

for the T area (Terrain), for the

four structural types (RC—

probit, Steel—probit, Wood—

probit, Masonry—logit)

Fig. 8 Diagnostic plots

corresponding to the fragility

curves shown in Fig. 7 (T area)
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misclassifications for all damage states in comparison with

the results obtained for the plain and terrain areas (RC and

steel buildings in Figs. 6 and 8, respectively), yielding a

slightly improved damage probability estimation. In addi-

tion, the trend that was visible for the wooden buildings of

the aforementioned areas is no longer present, despite some

underestimation of damage probability for higher damage

states (Fig. 10). This indicates that flow depth, while still

not a satisfactory predictor of tsunami damage, performs

visibly better in the R area. A likely reason for this might

be the dominant mechanism of inundation along the river

banks, namely dyke overtopping (as mentioned in Sect.

2.2). Indeed, while the tsunami height and velocities may

increase in the river channel, the velocities of the water

inundating the shores and beyond will be mainly deter-

mined by the head difference between the overtopping

water surface and the ground, following a process similar

to river flooding. As such, the flow velocity would be

related to flow depth, which would allow the model to

capture this effect through h and explain the slightly

enhanced goodness-of-fit. Similarly to the fragility curves

derived for the P and T areas, there is little or no difference

between the damage probabilities corresponding to DS4

and DS5; and the estimations for DS1 are again very

satisfactory.

3.4 Fragility comparisons between the three

geographical areas in Ishinomaki city

The results of this study show that for all three areas, the

correlation between flow depth and damage probability

observations for steel and RC buildings is low, yielding a

poor fit of the fragility curves, particularly in the case of

structural damage. The scatter is less pronounced for

masonry buildings, and best for wooden buildings, despite

a trend being present around the perfect predictions line in

the diagnostics plot.

Therefore, in order to assess if the different geographical

characteristics of Ishinomaki City (i.e. plain, terrain and

river) significantly altered building damage probability, we

choose to compare the fragility curves corresponding to the

structural material for which the most reliable estimations

have been obtained, namely wooden buildings. Represen-

tative damage levels for comparison are DS3 and DS5,

because they express probabilities for extensive non-

structural and structural damage, respectively.

A first examination of the fragility functions in Fig. 11

shows that the most vulnerable area to tsunami damage,

Table 4 AIC (5) obtained for the buildings in the R area, with values

corresponding to the best fitted model are in bold

Material/link function Probit Logit Comp. loglog

RC (n = 37; N = 395) 172.74 179.86 209.33

Steel (n = 38; N = 668) 192.11 203.16 244.71

Wood (n = 41; N = 9,622) 479.86 641.40 504.61

Masonry (n = 34; N = 465) 115.02 101.38 133.31

Fig. 9 Damage probability data

and fragility functions derived

for the R area (River), for the

four structural types (RC—

probit, Steel—probit, Wood—

probit, Masonry—logit)
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both structural and non-structural, appears to be the plain;

whereas the probability of damage for the buildings bor-

dering the river is visibly lower than both in the plain and

terrain areas. A common assumption usually made for

binomial and multinomial distributions is that the theoret-

ical dispersion parameter / associated with the variance

function takes the value of 1 (Eq. (3), Sect. 2.3.1), so the

resulting variance is independent of any deviations from

the fit and could be underestimated. Because of the sys-

tematic deviations observed for wooden buildings in

Figs. 6, 8, and 10, and to prevent misleadingly narrow

confidence intervals, we have chosen to use instead an

estimated dispersion parameter /̂ (Fahrmeir and Tutz

2001), expressed as:

/̂ ¼ 1

N � p

XN

m¼1

Xn

k¼1

r̂2
mk: ð6Þ

In Eq. (6), r̂ represents the Pearson residuals (see Mc

Cullagh and Nelder 1989; Fahrmeir and Tutz 2001), which

similarly to deviance, are a measure of the model’s error. In

the case of DS5, the confidence intervals for the plain and

terrain areas overlap, indicating that the probability of a

wooden building to suffer heavy structural damage (col-

lapse) is similar in both areas. In the case of DS3, the

buildings of the plain area appear significantly more vul-

nerable to tsunami-induced non-structural damage for flow

depths higher than 0.5 m, whereas for flow depths higher

than 1 m the confidence intervals corresponding to the

fragility curves of the buildings from the terrain and river

areas start to overlap. This may indicate that buildings from

the terrain and river areas are possibly equally likely to

suffer non structural damage for higher tsunami flow

depths.

Fig. 10 Diagnostic plots

corresponding to the fragility

curves shown in Fig. 9 (R area)

Fig. 11 Comparison between fragility functions representative of

structural and non-structural damage states, for wooden buildings

across the three areas of study. The 95 % confidence intervals for the

buildings of the Plain are displayed with long dashes (dark green), of

the Terrain with small dashes (dark red), and of the River with a

dotted line (dark blue)
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This result may at first appear to be in slight contra-

diction with the results obtained by Suppasri et al. (2013a,

b), who highlighted a higher damage probability for the

buildings of the ‘‘ria’’ coast, (in comparison with the

‘‘plain’’ coast), due to the propensity of this type of

coastline (saw-toothed) to amplify tsunami waves. The

present analysis focuses on the main city of Ishinomaki, not

the ria coast to the North. The T area in this study displays

Fig. 12 Other areas particularly

likely to experience high levels

of tsunami damage in

Ishinomaki city

Fig. 13 Fragility curves for

specific local areas which were

likely to experience higher

levels of damage, for all three

areas the logit link function was

chosen for it provided a

relatively better fit through AIC

comparison
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a similar inland topography (i.e. mountainous), however,

only a small proportion of the buildings in the city of

Ishinomaki analyzed in this study are bordering a ria

coastline (to the southeast in Fig. 3). The rest of the city is

facing Ishinomaki Bay and is characterized by a relatively

smooth coastline.

In addition, despite the relatively higher flow depths

measured in the T in comparison with the P area, the for-

mer benefited from coastal protection along most of the

seafront (breakwater, seawell and control forest). These

visibly contributed to reduce flow depths and velocities

inland, which could have contributed to reduce the severity

of tsunami damage.

3.5 Other areas

The fragility analysis was also conducted separately for

small areas which were thought to be particularly suscep-

tible to tsunami damage (and for which enough points were

available), namely:

• The river island approximately 1 km from the river

mouth, in the direct path of the fast tsunami flow

travelling along the river and the river banks which

were not protected by a dyke,

• Terrain A for it is unprotected, backed up by high

topography blocking the advancement of the tsunami

and close to the river mouth,

• Terrain B for it is located on the border of a canal and

backed up by high topography.

These areas are represented in Fig. 12, only wooden

buildings were used due to the low number of data points

available for other types of structures. The results (Fig. 13)

show that the curves are driven by a majority of data points

corresponding to a 100 % damage probability exceedance

for all damage levels. In other words, in these areas the

probability of reaching or exceeding structural damage

levels (wood) is very high. For example, there is certainty

of collapse for the buildings located in Terrain A for water

depths as low as 2 m. Non-structural damage is almost

certain (approx. 90 %) for wooden buildings located in the

other aforementioned areas, for water depths as low as

0.5 m, as well as collapse from about 3 m.

4 Conclusions

The present study focused on the analysis of the disaggre-

gated, extensive database of damage caused by the 2011

Great East Japan tsunami for the city of Ishinomaki in order

to derive fragility functions and assess the differences in

building fragility according to their geographical location.

More precisely, three main areas were identified in the city

of interest: the plain, terrain and river areas, each of them

being representative of different characteristics of the tsu-

nami flow. The only explanatory variable available was the

tsunami flow depth, measured during field surveys after the

event. Advanced statistical methods were used in order to

address the shortcomings of previous stochastic models in

giving reliable estimations of probability of damage

exceedance due to tsunami. More specifically, ordinal

regression presents many advantages over simple linear

regression, notably the relaxation of assumptions associated

with the latter, the use of individual points without unnec-

essary dismissal (i.e. inverse normal distribution function

not converging), and the distribution of the response which

is allowed to be discrete and ordered (thus consistent with

the damage scale). While a comparable measure of good-

ness-of-fit for the previously published models and current

(ordinal) model cannot be used due to differences in

parameter estimation procedure and modeled response type,

such considerations are important for the following reasons:

• The violation of statistical assumptions leads to the

impossibility of making further inference about the data

(e.g. confidence intervals), and/or creates bias in the

parameters,

• The use of all the dataset increases the power of the

analysis,

• The use of individual data points (instead of data

aggregated into bins) does not hide any information, i.e.

it does not make any assumption on appropriate bin

width, and distribution within each bin—which will

affect the shape of the curve,

• The response, if it is not related to a latent continuous

normally distributed variable, cannot be appropriately

modelled by a continuous (normal) distribution.

The fitted curves indicated that in all three areas, dam-

age probabilities for wooden and masonry structures were

visibly higher than for RC and steel structures. These

results are consistent with previous studies examining the

influence of construction material on building damage

probability. Comparisons between the three areas for

wooden buildings show that the plain appears to be the

most vulnerable area to tsunami damage (non-structural),

followed by the terrain and finally the river area. For

structural damage, the probabilities of building collapse in

the plain and terrain areas are not significantly different

from each other but significantly higher than for the river

area. Initially the damage probabilities in the terrain area

were expected to be higher than in the plain, due to the

potentially higher flow depths and velocities. These results

are testimony of the effectiveness of coastal protection

(breakwater and forest present along a portion of the

T area), as the terrain area could have been expected to

suffer more severe damage due to relatively higher flow
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depths and velocities. While coastal protection cannot

prevent tsunami-induced damage, it can reduce its magni-

tude. The presence of the old Kitakami river allowed the

tsunami to travel further inland with greater speed, there-

fore increasing the extent of the affected area and the

amount of damaged buildings. However, the tsunami-

induced river flood did not increase the magnitude of tsu-

nami damage (i.e. more buildings were damaged but they

were not comparatively more damaged), in fact this area

displayed the lowest damage probabilities for all building

types and all damage states.

It is important to note that the present geographical split is

based on the 2011 tsunami, which is extremely rare [corre-

sponding to a level 2 tsunami—one in a hundred years event or

less frequent (Shibayama et al. 2013)]. It is expected that

smaller, more frequent tsunamis (i.e. level 1 events) would not

match the inundation extent of the 2011 event; thus the

‘‘plain’’, ‘‘terrain’’ and ‘‘river’’ areas would have to be rede-

fined to match the corresponding zones of action for the spe-

cific hydrodynamics. For example, areas which may be

characterized by river flooding for relatively small tsunamis

are better characterized as ‘‘plain’’ or ‘‘terrain’’ for large,

infrequent tsunamis such as the one under investigation in this

study. In order to obtain fragility estimations by geographical

area for such scenarios, numerical inundations modeling,

combined with Monte Carlo simulations (e.g. Dias et al. 2009;

Yu et al. 2013) can be carried out in order to reassess geo-

graphical boundaries for a range of realistic incoming wave

height distributions (Kim et al. 2013).

The diagnostics reveal that in all cases, flow depth is a

poor predictor of tsunami damage for RC and steel struc-

tures, the goodness-of-fit of the model decreasing as the

damage level increases, and the most scatter being

observed for structural damage (i.e. DS4 and DS5). The

diagnostics also show that the model, based on flow depth

only, captures more of the variation for wooden and

masonry buildings, yielding a better fit. However, some

effect which is not captured by the model triggers slight

systematic under and overestimations of damage proba-

bility. This uncertainty cannot be explained by a lack of

data points, or any aggregation of the database which

typically hides a lot of information, so these results

strongly indicate variables other than flow depth are key in

the determination of tsunami-induced damage, notably the

variables that drive other determinant tsunami forces: flow

velocity (hydrodynamic load), scour, and debris (size,

stiffness). This hypothesis is supported by visual evidence

(non-structural damage triggered by debris impact in

Fig. 2, scour-induced structural damage in Fig. 1); and by

the fact that the uncertainty visibly decreases for the

damage probability estimations in the river area, where

overtopping was the main mechanism of inundation thus

velocity is largely explained by flow depth. Thus, adding

these variables is crucial to improving fragility estimations.

In addition, there is possibility that the uncertainty in flow

depths measurements increases for higher damage states;

for example, when a building is washed away there is no

possibility to measure flow depth directly at the (previous)

location of the structure, and the value is usually assumed

to be the same as the closest possible site where it could be

retrieved. Further improvements should also include a

representation of uncertainty in the parameters used, as

described for instance by Yu et al. (2013).

While the use of GLM and ordinal regression for the

determination of tsunami damage probability has the

potential to bring considerable improvements to damage

and loss estimations from a stochastic modeling point of

view, the model estimations will only ever be as good as

the data and further effort should now concentrate on the

collection, estimation and inclusion of such influential

variables in order to improve fragility estimations to be

used for risk assessment in the future.
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