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Abstract In recent years, a large number of bank

destruction occur in the reservoir area under the effect of

water fluctuation, which may be lead to reservoir accumu-

lative landslide geological hazards finally. The paper con-

ducted the bank destruction forecasting study for

accumulative landslides in the Three Gorges Reservoir

Region, China utilizing back-propagation (BP) neural net-

work approach. A representative scenario of Jinle landslide is

then taken for analysis purposes. On the basis of the existing

data sets of bank destruction cases, the BP neural network

forecasting model and the corresponding programs for bank

destruction are both presented, whose forecasting result is

validated by two independent approaches, namely empirical

method and numerical modeling method. Furthermore, the

BP neural network model had obvious advantages over the

convention approaches in the aspects of the fast calculation

speed and high convenience. According to the bank

destruction forecasting scale presented above, the corre-

sponding revetment measures can be proposed to prevent the

occurring of the bank destruction, whose effectiveness has

been further validated by the actual engineering practice.

Keywords Accumulative landslide � Bank destruction

forecasting � BP neural network � Numerical modelling

1 Introduction

With the fast development of human activities, there are

more and more geological hazards occurring all over the

world, which are intensively interested by a great number of

scholars in the geological hazard field. Some of the causes

of geological hazards, such as landslide and bank destruc-

tion, are related to geo-hydrological hazards; as a result,

people began to realize the significant role of groundwater

and surface water to the stability of landslide. The Three

Gorges Reservoir Region in China is an example of an area

affected by landslides or related bank destruction.

In the aspects of landslide stability related to hydro-

logical changes, the research is focused on the impact of

reservoir or rainfall. Breth (1967) and Muller (1964) ana-

lyzed the impacts of reservoir water level changing on

landslide stability. Van Asch et al. (1996) analyzed the

meteorological and hydrological conditions triggering

shallow and deeper landslides in glacio-lacustrine deposits

in the French Alps. Deng et al. (2000) and Wu et al. (2001)

are interested in the mechanism or stability analysis on the

landslide in the reservoir area of the Three Gorges Project,

Yangtze River. Chen and Lee (2003) discussed the impacts

of the rainfall factors acting on the landslides, presenting a

dynamic model for rainfall-induced landslides. Hu (2005),

Franco and Claudio (2003) performed the study of the

impact of water fluctuation on reservoir landslide stability

separately. Panizzo et al. (2005) analyzed the great land-

slide events in Italian artificial reservoirs in detailed. Goren

and Aharonov (2009) examined a thermo-poro-elastic

approach on the stability of landslides. Kirschbaum et al.
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(2009) presented a stochastic methodology to compare the

landslide hazard algorithm for rainfall-triggered landslides

with an available inventory of global landslide events.

Zhang et al. (2010) and Guo et al. (2013) analyzed the

hydrological changes in the Yangtze River basin, China.

With respect to the consideration of different influential

factors on the stability of landslide, the landslide suscepti-

bility zoning work has inspired many studies at different

parts of the world (Vanwesten et al. 2003; Ercanoglu et al.

2004; De Graff et al. 2012; De Graff 1978). Michael-leiba

et al. (2003) proposed a GIS-based regional reconnaissance-

level assessment of landslide risk to the Cairns community to

provide information to the Cairns City Council for planning

and emergency management purposes.

It is well known that the reservoir water fluctuation will

change the hydrological conditions of the bank slope, which

would corresponds to increased risk of landslide hazard and

bank destruction. The main approaches for bank destruction

forecasting are empirical method or statistics method. The first

famous empirical formulas was presented by the Kachugin,

who proposed the calculation formula of reservoir bank

destruction forecasting (Kachugin 1949), and Kondratjev

(1956) discussed the influence depth of wave. As for the sta-

tistics method, Mosselman et al. (2000) carried out the study

on the effect evaluation of bank stabilization on bend scour in

Anabranches of Braided Rivers. Malik and Matyja (2008)

attempted to reconstruct bank erosion history by examining

the anatomical changes in exposed tree roots. Nevertheless,

due to the complexity and uncertainty of the landslide bank

destruction, there is always a deviation existing between the

forecasting results and the actual practice.

In recent years, new technique such as artificial neural and

fuzzy inference system networks were employed for devel-

oping predictive models to estimate the needed objectives,

especially the advantages of neural network began to be

recognized. The importance of neural network model

applied into landslide susceptibility analyses has inspired

many studies, which have tackled the problem from various

points of view, especially in the fields of landslide suscep-

tibility assessment and mapping. Ermini et al. (2005),

Gómeza and Kavzoglu (2005), Nefeslioglu et al. (2008),

Pradhan and Lee (2010), Bui et al. (2012) conducted the

landslide susceptibility assessment by utilizing neural net-

work approaches. Furthermore, Lee et al. (2004), Melchiorre

et al. (2008), applied neural network method into the land-

slide susceptibility mapping or zonation. Neaupane and

Achet (2004) presented a case study of landslide monitoring

and evaluation at Okharpauwa in Nepal by using back-

propagation (BP) neural network for landslide monitoring.

Sisson et al. (2006) presented an examination of predictive

methodologies for the assessment of long-term risks of

hydrological hazards, with particular focus on applications

to rainfall and flooding, motivated by three data sets from the

Caribbean region. Pozdnoukhov and Kanevski (2008) pre-

sented the multi-scale support vector regression algorithm

model and to illustrate its use with an application to the

mapping of activity given the measurements taken in the

region of Briansk following the Chernobyl accident based on

data mining and machine learning approach. Mondino et al.

(2009) presented a workflow based on neural network

algorithms used both for image geometric correction and

classification. Yang et al. (2009) investigated the spatio-

temporal changes in streamflow of the Guizhou region and

their linkage with meteorological influences using the

Mann–Kendall trend analysis, singular-spectrum analysis,

Lepage test, and flow duration curves. Pradhan et al. (2010)

applied a GIS-based BP neural network model in the land-

slide-susceptibility mapping of Malaysia. Amongst them,

the BP neural network is the most popular approach, which is

used widely in the engineering practice. However, the neural

network is limited to be applied to the field of landslide

susceptibility assessment or mapping, and the application of

neural network in the field of bank destruction is seldom

mentioned. Eroglu et al. (2010) conducted the classifying

erosion risks of bare soil areas in the Hatila Valley Natural

Protected Area, Turkey utilizing high resolution images and

elevation data. Hsu et al. (2011) developed a probability-

based methodology to evaluate dam overtopping probability

that accounts for the uncertainties arising from wind speed

and peak flood. Ding et al. (2013) demonstrated an integrated

study by coupling a NPS pollution load estimation sub-

model with a distributed hydrological model to simulate the

hydrological processes and associated pollution load pro-

cesses in the Three Gorges Reservoir, China.

Though there are several existing methods of presenting the

bank destruction or stochastic approach; unfortunately, few of

them are able to take into account the bank destruction study

utilizing BP neural network approach based on detailed sce-

narios. This paper aims to propose a proved effective approach

for bank destruction forecasting using BP neural network

method based on a detailed case study in the Three Gorges

Reservoir Region, China. The above work can lay solid

foundation to determine the proper control schemes for res-

ervoir accumulative landslides.

2 Research background

2.1 General introduction

Jinle landslide is one of the typical accumulative landslides

in reservoir region, which is situated at Gaoyang Town,

Xingshan County, China (Exi Geo-engineering Investiga-

tion Institute of HuBei Province 2006; China University of

Geosciences 2007). It’s at the left bank of Xiangxi River,

primary sub-branch of Changjing River, about 30 km
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upstream distance from the Three Gorges Dam (see Fig. 1).

Jinle landslide is composed of two sections, namely No. I

landslide and No. II landslide, respectively. The total

length of the reservoir bank is about 546 m. These are four

long longitude profiles in the research area. Among them,

the 2–20 longitude profile in the No. II landslide is selected

as the main research object.

2.2 Characteristics of the landslide

The shape of No. II Jinle landslide on the plane is similar to

the sole of a shoe. The east–west distance of the landslide

is about 583 m long and 95–217 m in north–south width,

with an average width of 140 m. The elevation of the

landslide crest is about 330 m. The toe of the landslide

reaches the riverbed of Xiangxi River, with an elevation of

140 m (see Fig. 2).

The boreholes exploration can reveal the thickness of

the sliding mass, which varies from 6.80 to 23.50 m, with

an average thickness of 16.20 m. Generally, the thickness

of the sliding mass is large in the front part of landslide and

small in the back part of the landslide, which can be clearly

shown in Fig. 2. The sliding mass covers an area of

8.16 9 104 m2, with a volume of 132.22 9 104 m3.

Fig. 1 Engineering geological plane of Jinle landslide. 1 Artificial

earth fill; 2 Colluvium and diluvium deposit of Quaternary; 3 Debris

of landslide; 4 Eluvium and diluvium deposit of Quaternary; 5

Jurassicstratum; 6 Boundary of landslide; 7 Geological boundary; 8

Test pit; 9 Borehole; 10 Longitude profile; 11 Road; 12 Houses.
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2.3 Substance constituent of landslide

As for the sliding mass, the upper layer substance of the

Jinle landslide is composed of grayish and brownish yellow

broken and gravelly soil. The underlying layer is the

feldspar fine sandstone and a few argillaceous siltstone

blocks with plastic silty clay filled, whose block size varies

from 2 to 20 cm, angular, with high block content, about

60–80 %.

With respect to the sliding zone, based on the explora-

tion of 10 boreholes and TJ2 test pit, the soil of sliding

zone is composed of purplish-red plastic silty clay mixed

with gravel, whose gravel content is about 20–30 %; its

size varies from 0.2 to 4 cm, subrounded. There is clear

slickenside and polish surface in the gravel. The thickness

of the sliding zone varies from 0.1 m to 0.8 m.

The sliding bedrock is composed of medium to large

thickness layer grayish yellow feldspar fine sandstone and

thin to medium-thickness layer purplish red argillaceous

siltstone.

2.4 Geo-hydrological condition analysis

There sliding mass is composed of grayish and brownish

yellow broken and gravelly soil and rock gravels, with high

content of cohesive soil. The components of the gravel are

feldspar sandstone and argillaceous siltstone, whose argil-

laceous content and density will increase after weathering,

which weakens the permeability of the landslide mass. In

order to find out the exact permeability coefficient, the

water injection test was carried out by Exi Geo-engineering

Investigation Institute of HuBei Province (2006).

The main supply of the groundwater in the Jinle land-

slide area is atmospheric precipitation, where the slope is

steep, which is beneficial to centralized drainage of surface

water. The groundwater flows from the landslide area

towards to the Xiangxi river valley.

3 BP neural network for reservoir bank destruction

forecasting

Neural networks may be used as a direct substitute for auto

correlation, multivariable regression, linear regression, trig-

onometric and other statistical analysis and techniques (Singh

et al. 2003). A trained neural network can be thought of as an

‘‘expert’’ in the category of information it has been given to

analyze. This expert can then be used to provide projections

given new situations of interest and answer ‘‘what if’’ ques-

tions (Yılmaz and Yuksek 2008). Amongst the traditional

neural network methods, BP neural network algorithm is one

of the common neural network algorithms which have been

widely accepted in many engineering fields. It is constructed

by the hierarchy structure, including one input layer, one

output layer and one or multiple hidden layers. The node of

one layer can only be connected with the nodes of the adjacent

0

J x-a
J x-s

J x-a

J x-s

J x-a

Q4
col+del

Xiangxi River

Cross-section direction

NE85 degree

E
le

va
tio

n 
a.

s.
l.(

m
)

Horizontal Distance(m)

150

200

250

300

350

400

50 100

400

350

300

250

200

150

E
le

va
tio

n 
a.

s.
l.(

m
)

150 200 250 300 350 400 450 500 550 600

col+delQ4
(  )

(   )

Blocks with plastic silty clay filledGravelly soil(  )

Legend

(   )Q4
col+del col+delQ4

Jurassic stratum(predominant
lithology:Argillaceous siltstone)

Jurassic stratum(predominant
lithology:Feldspar fine sandstone)

J x-a J x-s

175m

145m

Fig. 2 Typical 2–2 longitude profile of No. II Jinle landslide (Li et al. 2012)
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layers. At present, the neural network has been applied to the

field of landslide susceptibility assessment or mapping, and

the application of neural network in the field of bank

destruction could be developed as well.

3.1 Data collection for BP neural network

The data sets for accumulative landslide bank destruction

forecasting are sourced from the consultative evaluation

reports from the China Railway Eryuan Engineering Group

Co. LTD (2008) and the model tests results from Xu et al.

(2007). The cohesion and internal friction angles are

determined utilizing the approach presented by Lu et al.

(2009). The original data sets are listed in Table 1. In this

paper, the width of bank destruction is defined by Kachugin

(1949) in his paper related to the bank destruction fore-

casting, in which the width of bank destruction is the hor-

izontal distance from the intersection point of normal high

water level and slope surface to the crown of the slope.

3.2 Data preprocessing

It is necessary to conduct the data transformation because

of the different magnitude order and units of the six factors,

namely X1–X6, which are the angle of bank slope,

difference of water level, rainfall intensity, particle content,

friction angle and cohesion, respectively. More and more

evidences from the documents and engineering practice

show that the scale of bank destruction are significant

influenced by the external conditions, such as the change of

the water level of river, rainfall intensity, etc. Also, some

inherent properties of bank slope including the angle of

bank slope, particle content, friction angle and cohesion of

soil, should be seriously considered. Therefore, the above

external conditions and inherent properties of slopes,

including angle of bank slope, difference of water level,

rainfall intensity, particle content, friction angle and

cohesion, have been widely accepted as the crucial factors

influencing the result of bank destruction. Then these six

significant factors can be chosen as the main factors

adopted in the input layer.

Normalization processing is a good way of obtaining the

dimensionless numbers, which can eliminate the unrea-

sonable phenomena so as to improve the accuracy of data

processing. The normalization processing could be repre-

sented by the Eq. 1.

x�ij ¼
xij �min1� j� nðxijÞ

min1� j� nðxijÞ �min1� j� nðxijÞ
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ;

ð1Þ

Table 1 Original data sets for neural network analysis

No. Angle of

bank slope

(�)

Difference of

water level (m)

Rainfall

intensity

(mm/h)

Particle

content

(%)

Friction

angle u
(�)

Cohesion

C (kPa)

Width of bank

destruction (m)

Remark

X1 X2 X3 X4 X5 X6 Y

1 31.00 12.55 12.00 0.25 33.76 25.44 13.08 China Railway Eryuan

Engineering Group Co. LTD

(2008)
2 5.00 13.33 12.00 0.35 32.55 23.54 11.82

3 25.00 21.07 12.00 0.35 33.87 25.12 9.33

4 18.00 19.67 12.00 0.25 32.43 25.36 3.25

5 41.00 20.34 12.00 0.25 33.32 23.64 5.57

6 32.00 20.00 12.00 0.30 32.01 26.71 9.69

7 29.00 16.27 12.00 0.30 33.66 25.83 12.06

8 24.00 17.30 12.00 0.30 32.56 23.80 10.27

9 15.00 33.53 24.00 59.40 32.63 24.42 3.95 Xu et al. (2007)

10 15.00 44.45 36.00 93.71 31.64 22.70 3.30

11 15.00 63.43 48.00 78.40 33.06 24.04 4.20

12 25.00 25.43 24.00 93.71 33.47 25.42 84.47

13 25.00 31.07 12.00 78.40 32.17 25.23 4.60

14 25.00 61.10 36.00 59.40 34.69 24.61 8.45

15 40.00 19.66 36.00 78.40 32.61 22.78 54.60

16 40.00 25.51 48.00 93.71 34.37 24.73 53.35

17 40.00 36.58 12.00 59.40 32.67 24.94 3.82

18 55.00 17.16 48.00 59.40 34.16 23.29 46.41

19 55.00 35.56 24.00 78.40 32.37 25.09 48.30

20 55.00 53.14 12.00 93.71 32.43 25.00 11.05
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where x�ij is the standardized data; xij is the original data;

min and max are the minimum value and the maximum

value in the original data.

The standardized data sets are listed in Table 2.

3.3 Neural network forecasting model for bank

destruction

3.3.1 Model establishment

BP neural network can be applied in the field of forecasting

the bank destruction, and the corresponding BP neural

network graph is shown in Fig. 3.

3.3.2 Parameters setting

The number of the input layer and output layer depend on

the practical problem of the application fields. For the

forecasting the bank destruction in this paper, there are six

elements in the input layer, namely X1–X6, respectively;

the output layer only one element, namely Y. However, the

number of the hidden layer must be determined by the

demands of the users. It is noted that unreasonable element

number will cause the increasing of the studying period or

more susceptible to errors. Therefore, it is crucial to choose

the optimal element number of hidden layer. At present, the

optimal element number of hidden layer is often deter-

mined by the Kolmogorov’s theory, which can be expres-

sed as follows:

m ¼ 2� nþ 1; ð2Þ

Table 2 Standardized input data for BP neural network

No. Angle of

bank slope

(�)

Difference of

water level (m)

Rainfall

intensity

(mm/h)

Particle

content

(%)

Friction

angle u
(�)

Cohesion

C (kPa)

Width of bank

destruction (m)

Remark

X1 X2 X3 X4 X5 X6 Y

1 0.52 0.00 0.00 0.00 0.69 0.68 0.121029 China Railway Eryuan

Engineering Group Co. LTD

(2008)
2 0.00 0.02 0.00 0.00 0.30 0.21 0.105516

3 0.40 0.17 0.00 0.00 0.73 0.60 0.074858

4 0.26 0.14 0.00 0.00 0.26 0.66 0.000000

5 0.72 0.15 0.00 0.00 0.55 0.23 0.028564

6 0.54 0.15 0.00 0.00 0.12 1.00 0.079291

7 0.48 0.07 0.00 0.00 0.66 0.78 0.108471

8 0.38 0.09 0.00 0.00 0.30 0.27 0.086432

9 0.20 0.41 0.33 0.63 0.32 0.43 0.008619 Xu et al. (2007)

10 0.20 0.63 0.67 1.00 0.00 0.00 0.000616

11 0.20 1.00 1.00 0.84 0.46 0.33 0.011697

12 0.40 0.25 0.33 1.00 0.60 0.68 1.000000

13 0.40 0.36 0.00 0.84 0.17 0.63 0.016622

14 0.40 0.95 0.67 0.63 1.00 0.48 0.064024

15 0.70 0.14 0.67 0.84 0.32 0.02 0.632233

16 0.70 0.25 1.00 1.00 0.89 0.51 0.616843

17 0.70 0.47 0.00 0.63 0.34 0.56 0.007018

18 1.00 0.09 1.00 0.63 0.82 0.15 0.531396

19 1.00 0.45 0.33 0.84 0.24 0.60 0.554666

20 1.00 0.80 0.00 1.00 0.26 0.58 0.096035

Fig. 3 BP neural network for forecasting the bank destruction
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where m is the number of the hidden layer, and n is the

number of the input layer elements.

For the case study in this paper, there are six input layer

elements, i.e., n = 6. Hence, m is equal to 13 according to

Eq. 2. Due to the setting of the number of the hidden layer

elements is relative complicated. Correspondingly, three

groups, including m = 12, 13 and 14, are conducted the

data training as so to select the best one.

3.3.3 Studying of neural network

The original codes for neural network can be developed to

determine the best number of the hidden layer elements.

The training sample in Table 3 are used to conduct the

BP neural network simulation under different number of

the hidden layer, namely m = 12, 13 and 14. Furthermore,

the fitting graph of simulation values and actual values can

be represented in Fig. 4 under the error analysis, where the

horizontal axis is training data and the vertical axis is the

simulation results. The square of coefficient of correlation

are 0.9875, 0.9880 and 0.9874 under the m = 12, 13 and

14 separately. Therefore, m = 13 is best choice because of

its lowest error.

4 Forecasting and validation utilizing BP neural

network

4.1 Forecasting of bank destruction utilizing BP neural

network forecasting model

The forecasting of bank destruction in Jinle landslide can

be conducted utilizing the trained BP neural network

model. The data for bank destruction of Jinle landslide by

BP neural network forecasting model is presented in

Table 4. Furthermore, Fig. 5 illustrates that the forecasting

presented above has fast convergence and low training

error.

The result of above BP neural network program shows

that the final width of the bank destruction of Jinle land-

slide (2–2 cross-section) is 1.4444. The exact width value

then can be obtained by Eq. 1 and Table 2, which is equal

to 120.56 m.

Table 3 Cross-reference of simulation results under different num-

ber of the hidden layer and actual value

No. Simulation results Actual value

m = 12 m = 13 m = 14

1 0.216067 0.075108 0.158011 0.121029

2 0.08699 0.056215 0.097115 0.105516

3 0.053772 0.109357 0.002582 0.074858

4 0.04113 0.037989 0.037643 0.000000

5 0.038539 0.025592 0.0618 0.028564

6 0.063722 0.074732 0.074758 0.079291

7 0.042933 0.087927 0.127203 0.108471

8 0.049068 0.098366 0.031381 0.086432

9 0.035101 0.014496 0.030126 0.008619

10 -0.00919 -0.02514 -0.00421 0.000616

11 0.014248 0.019427 0.013469 0.011697

12 0.991343 0.961022 0.995418 1.000000

13 0.009819 0.056346 -0.02473 0.016622

14 0.061138 0.08081 0.058348 0.064024

15 0.620941 0.659205 0.644495 0.632233

16 0.620717 0.620249 0.617965 0.616843

17 0.039292 0.068423 0.030513 0.007018

18 0.526764 0.542451 0.53721 0.531396

19 0.547489 0.535528 0.505267 0.554666

20 0.094763 0.047465 0.139494 0.096035

Fig. 4 Comparison among simulation values and actual values

Table 4 Data for bank destruction of Jinle landslide by BP neural

network prediction model

Categories of parameters Value

Before

normalization

After

normalization

Angle of bank slope (�) 36 0.620000

Difference of water level (m) 30 0.342964

Rainfall intensity (mm/h) 54.8 1.188889

Particle content (%) 0.2902 0.000430

Friction angle (�) 33 0.445684

Cohesion (kPa) 24.5 0.449297
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4.2 Validation of bank destruction by independent

approaches

In order to validate the affectivity of BP neural network

forecasting model in the aspect of bank destruction, two

independent approaches, namely empirical method and

numerical modeling method, are conducted the bank

destruction study separately.

The first approaches for landslide bank destruction fore-

casting is the empirical formulas for reservoir bank

destruction. There are several empirical formulas methods in

reservoir bank destruction field. Amongst them, Kachugin

(1949) is widely used in the reservoir bank destruction

forecasting in China, whose basic calculation model is

shown in Fig. 6. The parameters used for reservoir bank

destruction forecasting approach presented by Kachugin

(1949) can be obtained from the component of the sliding

mass and geometric feature presented in Fig. 2.

The calculation formula of reservoir bank destruction

prediction by Kachugin (1949) can be written as follows:

S ¼ N
Aþ hp þ hb

tan a
þ hs � hb

tan b
� Aþ hp

tan c

� �
; ð3Þ

where S is the final width of bank destruction (m); N is a

coefficient related to the component of the rock and soil;

A is the range of the water fluctuation (m); hp is the

influence depth of wave(m); hb is the climbing height of the

wave (m); hs is the height of the slope from the normal high

water level (m), a is the stable angle of the shoal within the

water fluctuation and wave influence range (�); b is the

stable slope angle above the water level (�); c is the original

angle of the bank slope (�).

On the basis of the component of the sliding mass,

considering the ratio of soil and gravels, the coefficient

N should be 0.9, the coefficient a is equal to 13� and the

coefficient b is equal to 28�. The water level fluctuates

from 175 to 145 m; as a result, the coefficient A is equal to

30 m. The height of the slope at the normal high water

level (hs) and the original angle of the bank slope (c) can be

measured in Fig. 2; therefore, hs is equal to 25 m and c
should be 30�. On the basis of the site monitoring data

related with the maximum instantaneous wind and blowing

distance of the wind, the climbing height of the wave (hb)

is equal to 0.84 m and the influence depth of wave (hp) is

equal to 2.00 m by utilizing the empirical equations.

Substitute the above parameters into the classical

equations presented by Kachugin (1949), the final width of

bank destruction can be calculated, which is 119.03 m (see

Fig. 7).
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In order to further validate the effectiveness of the

presented bank destruction forecasting approach by BP

neural network, another independent approach called

numerical modeling can be utilized to conduct the com-

parison analysis. A typical numerical model set by Geo-

Studio software can be performed based on the engineering

geological model. As a suite of applications for geotech-

nical and geo-environmental modelling, GeoStudio soft-

ware includes several modules including SLOPE/W,

SEEP/W and SIGMA/W etc., which are widely used in the

fields of geotechnical, geo-environmental, civil and mining

engineering (Li et al. 2012).

During the numerical modeling on bank destruction

forecasting, the SLOPE/W module can be utilized to con-

duct the slope analysis, the SEEP/W is used to analyze the

groundwater seepage and the SIGMA/W is employed to

carry out the stress and deformation analysis.

The model adopted by numerical modelling approach is

the same with the above model, whose calculation

boundary and calculation process can be found in detailed

in the paper presented by Li et al. (2012). The searching

potential sliding surface obtained from the numerical

modeling is shown in Fig. 8. The potential sliding surface

in Fig. 8 indicates the scale of reservoir bank destruction.

In this numerical model, the final width of bank destruction

is 119.71 m.

On the basis of the analysis by utilizing above two

independent approaches, namely empirical method and

numerical modeling method, the final width of bank

destruction are 119.03 and 119.71 m. The corresponding

value we got by the BP neural network forecasting method

is 120.56 m (see Fig. 9). Therefore, the percentage error

between the forecasting model and the two independent

methods are only 1.29 and 0.71 %, respectively, which no

doubt validate the high accuracy.

Furthermore, the BP neural network model had obvious

advantages over the convention approaches in the aspects

of the fast calculation speed and high convenience.

4.3 Bank destruction forecasting for whole landslide

By utilizing the presented new reservoir bank destruction

forecasting methods above, the similar steps done in typical

2–2 longitude profile of No. II Jinle landslide can be per-

formed in other cross sections of the reservoir bank. In

order to represent the whole bank destruction scale of Jinle

landslide region, nine more cross-section are selected to

conduct the bank destruction forecasting, namely from 7–70

to 15–150, respectively (see Fig. 10). The corresponding

results of the typical cross sections can be obtained in the

Table 5.

On the basis of the results of the above sections of the

reservoir bank destruction forecasting, the bank destruction

forecasting scale in the studying area can be accomplished

(see Fig. 10), which can be used as the significant basis for
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the protection scheme of Jinle landslide region. The similar

accumulative landslides also can be conducted the bank

destruction analysis utilizing the presented forecasting

model.

According to the bank destruction forecasting scale

presented above, the corresponding revetment measures

can be proposed to prevent the occurrence of the bank

destruction. This recommended control scheme is much

more economical scheme than that of the retaining work.

Figure 11 presents a contrast of the Jinle landslide

before and after the implement of revetment measure. At

present, the control measures of Jinle landslide have been

performed over 5 years. During this long period of reser-

voir water fluctuation, the fact shows that the good

defending effect of the control measures presented above,

which can be used as a reference for the similar reservoir

landslides in the Three Gorges Reservoir Region.

5 Results analysis and discussion

There are several methods used to conduct the reservoir

bank destruction forecasting, but most of them are empir-

ical methods or numerical modeling methods, which need a

lot of parameters to draw or calculate the scale of bank

destruction. How to get the exact parameters is the crucial

and difficult problem for the conventional in the bank

destruction forecasting.

Fig. 8 Reservoir bank

destruction forecasting graph of

No. II Jinle landslide by

numerical modeling method
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The paper conducted the bank destruction forecasting

study for accumulative landslides in the Three Gorges

Reservoir Region, China utilizing BP neural network

approach, which is much more practical to be applied into

the engineering practice. This work can lay solid founda-

tion to determine the proper control schemes for reservoir

accumulative landslides.

The bank destruction forecasting scale in the studying

area in Fig. 10 is of great importance to the decision-

makers, i.e., the bank destruction forecasting scale at least

should be covered within the engineering protection, and

the corresponding control measures can be put forward

against the influences of the adverse factors presented

above.

Furthermore, we can clearly find out the shape of the

sliding zone of No. II Jinle landslide is the sidestep shape.

Once the bank slope is unstable, the retrogressive staged

sliding will occur, which will cause the catastrophic

sliding of the whole landslide. For the landslide with the

similar type sliding zone, it is quite significant to conduct

the corresponding optimal reservoir bank defending

measures.

Legend

Scale
0 100 200 300 m

N

Scale of reservoir bank destruction forecasting

X
iangxi R

iver

No.  landslide

No.  landslide

7

8

9

10

11

12

13

14

15

7

8

9

10

11

12

13

14

15

175m

145m
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Table 5 Bank destruction prediction scale of the whole Jinle land-

slide region

No. of cross

sections

Prediction scale of bank destruction

Final width of bank

destruction (m)

Highest altitude of bank

destruction (m)

7–70 39.24 191.04

8–80 36.20 194.47

9–90 84.38 197.08

10–100 105.62 193.94

11–110 73.14 205.17

12–120 23.30 181.97

13–130 19.22 180.63

14–140 19.61 182.15

15–150 22.52 184.42

Stoch Environ Res Risk Assess (2014) 28:1465–1477 1475

123



6 Conclusions

Jinle landslide is located at the geological hazards active

region, which is under the influence region of the Three

Gorges Reservoir. Therefore, it is quite important to dis-

cuss the impact of water fluctuation on the stability of bank

landslide.

The paper presented a new forecasting model for band

destruction for the accumulative landslides utilizing BP

neural network approach. On the basis of the analysis by

utilizing two independent approaches, namely empirical

method and numerical modeling method, the final width of

bank destruction are 119.03 and 119.71 m. The value we

got by the BP neural network is 120.56 m. Therefore, the

percentage error between the forecasting model and the

two independent methods are only 1.29 and 0.71 %,

respectively. The results from both the empirical formulas

method and the numerical model method well validated the

high accuracy of the presented new forecasting model. In

addition, the BP neural network model had obvious

advantages over the convention approaches in the aspects

of the fast calculation speed and high convenience.

The results show that the BP neural network approach is

much more practical to be applied into the engineering

practice, which can lay solid foundation to determine the

scale of bank destruction as well as the corresponding

optimal control schemes for reservoir accumulative

landslides.

With the results by the bank destruction and corre-

sponding control measures, in the past 4 years, Jinle

landslide has been kept in the stable state under long period

reservoir water fluctuation. Therefore, the effectiveness of

control measures of Jinle landslide has been further vali-

dated by the actual engineering practice.
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