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Abstract With rapid advances of geospatial technolo-

gies, the amount of spatial data has been increasing

exponentially over the past few decades. Usually collected

by diverse source providers, the available spatial data tend

to be fragmented by a large variety of data heterogeneities,

which highlights the need of sound methods capable of

efficiently fusing the diverse and incompatible spatial

information. Within the context of spatial prediction of

categorical variables, this paper describes a statistical

framework for integrating and drawing inferences from a

collection of spatially correlated variables while account-

ing for data heterogeneities and complex spatial depen-

dencies. In this framework, we discuss the spatial

prediction of categorical variables in the paradigm of latent

random fields, and represent each spatial variable via

spatial covariance functions, which define two-point simi-

larities or dependencies of spatially correlated variables.

The representation of spatial covariance functions derived

from different spatial variables is independent of hetero-

geneous characteristics and can be combined in a

straightforward fashion. Therefore it provides a unified and

flexible representation of heterogeneous spatial variables in

spatial analysis while accounting for complex spatial

dependencies. We show that in the spatial prediction of

categorical variables, the sought-after class occurrence

probability at a target location can be formulated as a

multinomial logistic function of spatial covariances of

spatial variables between the target and sampled locations.

Group least absolute shrinkage and selection operator is

adopted for parameter estimation, which prevents the

model from over-fitting, and simultaneously selects an

optimal subset of important information (variables). Syn-

thetic and real case studies are provided to illustrate the

introduced concepts, and showcase the advantages of the

proposed statistical framework.

Keywords Categorical data � Data fusion � Kernel

methods � Geostatistics � LASSO

1 Introduction

With the continuing advancement of spatial data acquisi-

tion and dissemination technology, a large amount of

spatial data from diverse sources often are available for

many geographical or environmental research problems. In

the mapping of tree species distribution, for example,

measurements of environmental conditions, such as ele-

vation, temperature, soil nutrients and moisture, are often

available in addition to the witness tree data. These diverse

environmental conditions are known to influence the tree

species occurrences, and spatial distribution of each of

them provides a partial yet insightful view to the distri-

bution of tree species. It would be ideal to fuse these

diverse partial information efficiently to achieve a
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comprehensive view. These spatial information, however,

often demonstrates incompatible heterogeneities with each

other in terms of nature (continuous or categorical),

intrinsic quality (soft or hard data), spatial scales, and

sample locations. Together with complex spatial depen-

dence and inter-dependence structures among spatial vari-

ables, these incompatibilities or heterogeneities render

fusing these diverse sources of spatial information a rather

challenging problem.

The principle of data fusion is generic and has been

widely used in many disciplines; it is basically to integrate

multiple sources of information at best in order to achieve a

better inference over what each single source could pro-

vide. Despite the simplicity in statements, the precise

objectives of data fusion and ways to achieve them are

diverse in different fields, and usually tied with specific

applications (Bogaert and Fasbender 2007). In the context

of spatial prediction of categorical variables, we describe a

statistical and computational framework for efficiently

fusing multiple sources of spatially distributed data, while

explicitly accounting for the (inter-)dependence structures

in a spatial setting and flexibly accommodating for the

heterogeneities across multiple data sources.

Categorical spatial data commonly are encountered in

research projects in, for example, geosciences, environ-

mental science, natural resource management, decision

support systems and planning. Typical examples of such

data include land use classes, vegetation species, or

socioeconomic census data, such as gender and ethnicity

groups. A successful spatial prediction of categorical

variables can benefit many areas of research, such as spa-

tial data classification and change detection (Tso and

Mather 2009; Atkinson and Lewis 2000; Foody 2002;

Atkinson 2012), spatial data mining (Miller and Han 2003)

and spatial uncertainty modeling (Zhang and Goodchild

2002; Goodchild et al. 2009; Yoo and Trgovac 2011; Li

et al. 2012). With the availability of auxiliary spatial

information, a key task in the spatial prediction of cate-

gorical variables is to estimate the posterior probability of

class occurrences at a target location (where the actual

class is unknown) jointly conditioned on all observed class

labels and the observations of auxiliary spatial variables.

The discrete nature of categorical spatial variables, such as

sharp boundaries and complex geometrical characteristics,

limits applications of standard statistical methods that have

been developed for continuous variables. Considerable

efforts have been devoted from different disciplines to

improve the spatial prediction of categorical variables by

incorporating auxiliary information and (inter-)dependence

structures in a spatial setting. As efforts of adapting kriging

family of geostatistical methods for categorical variables,

indicator kriging (IK) is perhaps the most frequent method

for estimating the posterior (conditional) probability of

class occurrence at any target location (Journel 1983).

Based on IK, several variants have been developed to

improve the prediction accuracy of primary categorical

variables. Indicator co-kriging (ICK), for example, is a

natural extension of IK for multivariate cases (Journel and

Alabert 1989; Goovaerts 1997) in which auxiliary variables

are incorporated into the predictive process via (cross-

)covariance functions of primary categorical variables and

auxiliary variables. Practical applications of ICK, however,

are cumbersome owing to a number of (cross-)covariance

functions [often through the linear model of coregional-

ization (Goulard and Voltz 1992)] to be jointly fitted.

When auxiliary variables are linearly related to the class

occurrence of primary categorical variables, they can be

incorporated into IK system as deterministic linear func-

tions (non-stationary mean). This is referred to as indicator

kriging with external drift (IKED) (Goovaerts 1997),

whose implementation in practice is challenging since it is

often problematic to simultaneously estimate the parame-

ters of external drift and the covariance function of the

stochastic component. As a hybrid method of kriging and

multiple regression models, regression-kriging (RK)

(Hengl et al. 2004, 2007) has been developed to combine a

regression of the dependent variables on auxiliary variables

with kriging of the regression residuals. An indicator var-

iation of RK, regression-kriging of indicators (RKI), has

been proposed for categorical variable and this method has

evolved into regression-kriging of memberships (RKfM)

by substituting crisp indicator values with a continuous

membership values (Hengl et al. 2007). Most of these IK-

based methods, however, share the inherent problems that

the original IK suffers from: the probabilities of occurrence

are not guaranteed to be between 0 and 1 (e.g., IK, ICK,

RKI), the sum of the predicted probabilities may not be

equal to 1 (e.g., IK, ICK, RKI and RKfM) and the outcome

values of conditional cumulative distribution function may

not be monotonic. A posterior correction of the resulting

conditional probabilities is often necessary either through a

Gaussian transformation or via a logistic regression model

(Pardo-Igúzquiza et al. 2005).

Alternatively, a Bayesian maximum entropy (BME)

approach (Christakos 1990), originally developed for sta-

tistical modeling of generic spatial variables, has been

applied for modeling categorical spatial data (Bogaert

2002). This BME approach is based on a joint multivariate

multinomial assumption of the categorical fields. The

desirable joint probability is then estimated via a non-sat-

urated log-linear model of main effects and interaction

effects by maximizing the entropy under certain marginal

constraints. Built upon the formal theory of entropy, this

BME-based approach is free of the aforementioned inher-

ent problems of IK-based methods. Most recently, the idea

of BME has been applied to integrating categorical and
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continuous variables (Wibrin et al. 2006) through a mixed

(multivariate) random field specified by (cross-)covariance

functions across multiple (categorical and continuous)

spatial variables. Within a more general paradigm of

Bayesian statistics, Bogaert and Fasbender (2007) pro-

posed a theoretical framework of data fusion in the context

of spatial prediction while accounting for spatial depen-

dence and heterogeneities. Similar with other variants of

the BME approach (e.g., Bogaert 2002), inference of

parameters is usually computationally intimidating partic-

ularly when non-Gaussian spatial variables are involved

and number of sample size increases.

The use of spatially correlated latent variables is another

statistical venue to model geo-referenced non-Gaussian

responses. Most methods are developed within the context

of exponential family distributions, which can be easily

augmented with latent variables (often assumed multivar-

iate Gaussian) within the framework of generalized linear

mixed models (GLMMs) (Breslow and Clayton 1993). In

such a spirit, Diggle et al. (1998) proposed GLMM-based

methods for spatial count variables (with a log-linear link)

and binary variables (with a logit link) and coined the term

model-based geostatistics. Given that the posterior proba-

bility of introduced latent variables is not available in a

closed form owing to the non-Gaussian response variables,

Markov chain Monte Carlo (MCMC) sampling is often

used for the inference of latent variables, while it has been

criticized for convergence and computational burden issues

(Rue et al. 2009). Alternatively, a spatial multinomial

logistic mixed model (MLMM) (Cao et al. 2011) was

proposed for spatially correlated categorical variables with

multiple categorical outcomes. Instead of sampling the

posterior probability of latent variables under the MCMC

framework (Zhang 2002; Christensen 2004), or by using

quasi-likelihood based generalized estimating equations

(GEE) (Liang and Zeger 1986; Gotway and Stroup 1997),

this spatial MLMM model approximates class occurrence

probability as a multinomial logistic function of spatial

covariances between the target and source locations within

a reproducing kernel Hilbert space (RKHS) (Kimeldorf and

Wahba 1970). Such RKHS-based methods (Wahba 1990)

have proven to be remarkably successful in various disci-

plines including machine learning (e.g., support vector

machines) (Schölkopf and Smola 2002), biostatistics

(Schoölkopf et al. 2004), as well as geostatistics (Goova-

erts 1998).

A spatial covariance function, or more generally a ker-

nel function, is specified as a distance decay function

controlled by a set of parameters. Such function measures

attribute similarity between pairs of spatial locations and

thus quantifies the implicit relationship (spatial dependency

or similarity) in correlated (dependent) data, which renders

model inference more intuitively and easily. From another

perspective, spatial covariance functions or kernel func-

tions actually project input spatial variables with incon-

sistent characteristics into a unified space of kernel

(RKHS), and thus provide a straightforward venue for

integrating heterogeneous spatial data. By taking advantage

of this unified representation, Lanckriet et al. (2004) pre-

sented a statistical framework for genomic data fusion

within the paradigm of support vector machines (SVMs).

In this paper, we extend the approach of Cao et al. (2011)

to account for spatial heterogeneities and dependencies in

auxiliary variables by representing each of them as spatial

covariance functions and combing them in a multinomial

logistic fashion to estimate the occurrence probability of

class labels. There are three immediate advantages in this

extension. Firstly, spatial dependence information, as well

as a wide range of heterogeneities, such as inconsistent

spatial scales, attribute types (categorical and numerical),

missing values (or spatially misaligned data), are easily

accommodated via the representation of spatial covariance

functions. Secondly, compared with SVM-based methods,

this method offers an estimation of the occurrence proba-

bility for each class label, and can be naturally generalized

to categorical variables with multiple outcomes. Thirdly, a

recently proposed group least absolute shrinkage and

selection operator (LASSO) (Yuan and Lin 2006) is

applied for parameter inference to avoid the so-called over-

fitting issue, and at the same time, selects the optimal

subset of variables that are most related to the primary

categorical variable by shrinking the coefficients of the

other variables.

The remainder of this paper is organized as follows:

Section 2 presents the proposed statistical data fusion

framework and discusses the associated inference prob-

lems, such as parameter estimation and choice of the spa-

tial covariance functions. Case studies are provided in Sect.

3, followed by conclusions and discussion of future work in

Sect. 4.

2 Methodology

2.1 Data fusion for prediction of categorical spatial

data

Consider a spatially distributed categorical random variable

(RV) CðxÞðx 2 RdÞ that may take one of several discrete

outcomes {c1, …, cK}, which we index 1, …, K. Each RV

is associated with a location, which is denoted by coordinate

vector x: Let pkðxÞ denote the probability that the outcome

of the RV CðxÞ falls in the k-th class (category), i.e.,

pkðxÞ ¼ PfCðxÞ ¼ ckg: Assuming that K classes are

mutually exclusive and collectively exhaustive, the sum of
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marginal probabilities across all categories equals 1, i.e.,
PK

k¼1 pkðxÞ ¼ 1: The probability distribution of the cate-

gorical RV CðxÞ is given by the multinomial distribution as

CðxÞ�Muð1; pðxÞÞ; ð1Þ

where Mu(�, �) indicates the multinomial distribution, and a

vector of marginal probabilities for K categories at x is

represented by pðxÞ ¼ ½p1ðxÞ; . . .; pKðxÞ�T: The superscript

T denotes a transposition of vector or matrix.

Sample data have been measured at N locations, which

consist of the observations of the primary categorical var-

iable CðxÞ; denoted by a (N 9 1) vector c ¼ ½cðx1Þ; . . .;

cðxNÞ�T ; and the measurements of P auxiliary variables

fZpðxÞ; p ¼ 1; . . .;Pg; denoted by zp ¼ ½zpðx1Þ; . . .;

zpðxNÞ�T for the p-th auxiliary variable. For further nota-

tional simplicity, we combine the observed class labels

with a collection of P auxiliary data as D ¼ fc;Zg; where

Z ¼ ½z1; . . .; zP� denotes a (N 9 P) matrix of the measure-

ments of the P auxiliary variables at N sample locations.

As discussed in the previous section, our goal is to

predict the class occurrence probability PfCðx�Þjzðx�Þ;Dg
for a given target location x� using D; and the auxiliary

information zðx�Þ ¼ ½z1ðx�Þ; . . .; zPðx�Þ�T at location x� if

there is any, while accounting for both spatial dependencies

and spatial heterogeneities in CðxÞ and ZðxÞ:
Within a general paradigm of GLMM, Cao et al. (2011)

constructed a two-stage model for the spatial prediction of

categorical variables by introducing Gaussian distributed

K intermediate latent variables uðxÞ ¼ fuðx; 1Þ; . . .;

uðx;KÞg: In this paper, we follow the modeling framework

proposed by Cao et al. (2011), but allow each latent vari-

able uðx; kÞ ¼ ½uðx1; kÞ; . . .; uðxN; kÞ�T for k = 1, …, K to

be a multivariate Gaussian Random Field (GRF). A mul-

tivariate GRF is specified by a mean lk and a positive

definite covariance function rkðuðziÞ; uðzjÞ; hÞ informed by

the sample data D: The probability distribution of a latent

variable is defined as:

Pðuðx; kÞjZÞ ¼ Nðlk;Rk; hÞ; ð2Þ

where Rk is the covariance matrix (a Gram matrix with a

element Rkij ¼ ½rkðuðxiÞ; uðxjÞÞ�) and h is the hyperpa-

rameter vector for the mean lk and covariance function

rk(�, �). Without losing generality, we use a zero mean

lk � 0 hereafter. We assume that the K latent RFs are

independent of each other, rðuðxi; kÞ; uðxj; k
0ÞÞ ¼ 0 for

k = k0 and rðuðxi; kÞ; uðxj; kÞÞ ¼ rkðuðxiÞ; uðxjÞÞ, other-

wise. Under the assumption of second-order stationarity,

the covariance function can be simplified as rkðuðxiÞ;
uðxjÞÞ ¼ rkðxi � xjÞ:

We further assume that the covariance matrix for the k-

th latent variable Rk represents the spatial variation and

dependence information of the k-th GRF implied in the

observations D: The mixture covariance matrix is esti-

mated by combining the individual K latent variable

covariance matrices Rk;p with restriction of resulting

positive definite covariance matrix Rk: Many statistical

methods based on multivariate GRFs, such as coKriging

family of methods (Wackernagel 1998), construct the

multivariate covariance matrix by modeling all spatial

interactions across different variables via auto- and cross-

covariance functions. Not surprisingly, these approaches

tend to dramatically increase the size of the covariance

matrix as the number of auxiliary variables or sample

locations increases. Despite the intimidating complications,

it does not always guarantee improved performance. Fur-

thermore, the construction of eligible multivariate covari-

ance matrix is often difficult, while it is possible to define

such a covariance matrix through a linear model of co-

regionalization (Goulard and Voltz 1992). It is unclear how

the multivariate covariance matrix should be defined,

although they may be built independently for each class in

practice. In this paper, we approximate the covariance

matrix for the k-th latent variable Rk as a linear combina-

tion of covariance matrices of each variables Rk;p; p ¼
1; . . .;P; as:

Rk ¼
XP

p¼1

spRk;p; ð3Þ

whose (i, j)-th element can be expressed as a form of

covariance functions,

rkðxi; xjÞ ¼
XP

p¼1

sprk;pðxi; xj; hpÞ; ð4Þ

where sp C 0 and rk,p(�, �), p [ {1, …, P} represents k-th

covariance function for the p-th auxiliary variable Zp. The

positive definiteness of each rk;pðxi; xj; hpÞ guarantees that

their linear combination rkðxi; xjÞ is also a positive definite

function.

The ultimate goal is to estimate the class occurrence

probability PfCðx�Þjzðx�Þ;Dg at a target location x� using

all available source data. By introducing latent variables

within a Bayesian approach, the predictive function can be

given as:

PfCðx�Þjzðx�Þ;Dg ¼
Z

PfCðx�Þjzðx�Þ; uÞPðujDgdu ð5Þ

where PfujDg is the posterior probability of the latent

variable u given D; which can be further written as:

PfujDg / PfcjugPfujZg: Thus, one needs to integrate out

all N 9 K multivariate latent variables uðxi; kÞ; which is

computationally intractable. A common approximation, the

so-called Laplace approximation (Williams and Barber
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2002), is to replace the integral by the value of the

integrand at the mode of the posterior distribution where

PfujDg is maximal, i.e. maximum a posteriori (MAP)

estimation of u: With this approximation, Eq. (5) can be

written as:

PfCðx�Þjzðx�Þ;Dg � PfCðx�Þjzðx�Þ; uMAP;Dg; ð6Þ

where uMAP ¼ argmax
u

PfujDg: Based on a conditional

independence assumption of c given latent variables u; the

posterior distribution of u can be obtained by:

PfujDg / PfujZg
YN

i¼1

pfcðxiÞjuðxiÞg ð7Þ

To find uMAP; one can combine the multivariate GRFs prior

over u and take the logarithm of the posterior density

PfujDg as:

log PfujDg ¼
XN

i¼1

pfcðxiÞjuðxiÞg �
k

2
uTR�1uþ q; ð8Þ

where q is a constant that accounts for the normalized

information but does not influence the search of u

maximizing Eq. (8), and is, therefore, dropped for

notational simplicity. A multinomial logistic function (or

soft-max function) is used to model pfcðxiÞjuðxiÞg; that

links an observed class cðxiÞ at the i-th sample point to the

latent variable uðxi; kÞ as:

PfcðxiÞ ¼ kjuðxiÞg / expfbk
0 þ uðxi; kÞg ð9Þ

Cao et al. (2011) showed that Eq. (8) takes a form of the

following by applying the Representer Theorem (Kimel-

dorf and Wahba 1970; Schölkopf and Smola 2002) to the

maximizer uMAP :

uðxi; kÞMAP ¼
XN

j¼1

wk
j rkðxi; xj; hÞ ð10Þ

We combine Eqs. (4) and (10), and apply them into

Eq. (9). The desirable class occurrence probability at a

target location x� is re-written as:

P̂fCðx�Þ ¼ kjDg / expfbk
0 þ

XP

p¼1

XN

i¼1

bk
i;prk;pðx�; xi; hk;pÞg

ð11Þ

In Eq. (11), we can easily see that the estimated class

occurrence probability for location x� only includes spatial

covariance functions and does not explicitly rely on the

auxiliary variables Zpðx�Þ: This indicates that, similar with

coKriging, Eq. (11) allows for missing values (or spatially

misaligned data) in the measurements and does not require

each auxiliary variables collocated with each other as long

as the spatial covariance function rk,p(�, �) could

successfully capture the spatial variabilities of the p-th

auxiliary variable.

2.2 Incorporating multiple collocated auxiliary

information

In practice, measurements of auxiliary variables are

oftentimes collocated with each other, and analog to the

regression kriging and kriging with external drift, we may

know that a specific parametric and deterministic (non-

stationary mean and trend) function of this set of collocated

variables is a part of the solution. It would be unwise not to

incorporate these additional information. The extension of

the Representer Theorem, namely semi-parametric Repre-

senter Theorem (1), provides a convenient venue to take

into account this parametric and deterministic functions

(Schölkopf and Smola 2002; Schölkopf et al. 2001).

Theorem 1 (Semi-parametric Representer Theorem) Let

H be a reproducing kernel Hilbert space with a kernel

d : X 	 X ! R; and a set of M real-valued functions

fwpg
M
p¼1 : X ! R; with the property that the

m 9 M matrix (wp(xi))ip has rank M. For any function G :

Rn ! R
S
f1g and ~f :¼ f þ h with f 2 H and h 2

spanfwpg; and any non-decreasing function X : ½0;1Þ !
R; if the optimization problem can be well-defined as:

J� ¼ min
f2H

Jðf Þ :¼ min
f2H
fXfjjf jj2Hg þ Gð~f ðx1Þ; . . .; ~f ðxnÞÞg

then there are a1; . . .; an 2 R; such that f ð�Þ ¼
Pn

i¼1 aidðxi; �Þ þ
PM

p¼1 bpwpðxÞ achieves Jðf Þ ¼ J�:

As a special case, suppose we know the primary cate-

gorical variable at location x� is related to a weighted

combination of covariates
PP

p¼0 ak
pZpðx�Þ: Equation (11)

can be re-written as below by applying Theorem (1):

P̂fCðx�Þ ¼ kjDg / expfbk
0 þ

XP

p¼0

ak
pZpðx�Þ

þ
XP

p¼1

XN

i¼1

bk
i;prpðx�; xi; hpÞg

ð12Þ

2.3 Model inference

Under the assumption of stationarity, the covariance

function rk;pðxi; xj; hk;pÞ can be written as rk;pðxi �
xj; hk;pÞ ¼ rk;pðh; hk;pÞ; where h ¼ xi � xj is a vector of

separation, and the covariogram rk;pðh; hk;pÞ is a mono-

tonically decreasing and positive definite function repre-

senting spatial variabilities of the p-th auxiliary variable Zp.

Behaviors of covariograms are often assumed to be con-

trolled by a set of parameters h ¼ ft; ag; where t is the
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variance or scale parameter, and a is the range to represent

the influence of this covariance function. A valid covari-

ogram includes Gaussian, exponential and spherical co-

variograms whose properties have been extensively studied

(Chiles and Delfiner 1999). For each covariogram

rk;pðh; hk;pÞ; we follow the covariogram fitting procedure

that is routinely used in geostatistics; we initially compute

the empirical covariances based on observed data, and

estimate the covariance function parameters hk;p through

least squares methods. Alternatively, coefficient parame-

ters, i.e., a and b; can be estimated by maximizing the

likelihood or minimizing the loss. Consider a (K 9 1)

indicator vector defined at the i-th sample location as

jðxiÞ ¼ ½jkðxiÞ; k ¼ 1; . . .;K�T; where jkðxiÞ ¼ 1 if the

observed class belongs to the k-th class cðxiÞ ¼ ck; 0

otherwise. Based on the simplified representation of u in

Eq. (10), the loss function LðbÞ based on Eq. (11) can be

rewritten as:

LðbÞ ¼ �
XN

i¼1

fjðxiÞTðRðxi; �ÞbÞT

� log
XK

k0¼1

expfRðxi; �Þðbk0 Þgg; ð13Þ

where b ¼ ½b1; . . .; bK� and each of bk is a (NP 9 1) vector

of weights for the observed indicator data for the class

k and Rðxi; �Þ indicates the i-th row of the covariance

matrix R: Due to the large number of bi,p, a direct

minimization of the loss function [see Eq. (13)] would

cause the over-fitting problem. To address this problem, we

adopt an inference method based on group l1-

regularization (group LASSO) (Meier et al. 2008;

Obozinski et al. 2007; Yuan and Lin 2006). Specifically,

the bs in Eq. (11) are grouped according to the associated

covariates and each group is penalized by applying a

regularization parameter. With group l1-regularization, we

update the loss function LðbÞ as LðbÞp as:

LðbÞp ¼ LðbÞ þ
XP

p¼1

kpjjbI p
jj2 ð14Þ

where kp C 0 is an adjustable regularization parameter and

Ip is the index set that belongs to the p-th group of

covariates, p = 1, …, P.

The second component on the right side of Eq. (14)

denotes the regularization term in block l1 norm, which can

be viewed as an intermediate between l1-norm and l2-norm.

In the context of LASSO (Tibshirani 1996), the l1-norm

tends to produce sparse group solution by penalizing the

regression coefficients of groups to zero (i.e., a process of

variable selection), while the l2-norm tends to yield soft

penalization on the coefficients within a group. By bal-

ancing these two regularization terms, group LASSO

applies the l2-norm to the parameters within each group

and the l1-norm applies to each group. The solution of the

optimal b in Eq. (11) is obtained by minimizing LðbÞp with

kp C 0, which can be transformed into a constrained con-

vex optimization problem. Commonly used Barzilai–

Borwein approximation methods (Barzilai and Borwein

1988), such as the spectral projected gradient (SPG)

method (Birgin et al. 2000), can be used to solve the

optimizing problem. These methods, however, tend to

suffer from performance issues when the objective function

becomes complex and costly to evaluate. A limited-mem-

ory projected quasi-Newton (PQN) algorithm (Schmidt

et al. 2009) was recently proposed to address the perfor-

mance issues of high-dimensional constrained optimization

problems. This method could be taken as an extension of

the commonly used L-BFGS method (Nocedal 1980) and it

is particularly efficient when the number of parameters to

be estimated is large, evaluation of the objective function is

computationally expensive and the parameters have con-

straints (Schmidt 2010), which makes it very suitable for

finding the optimal values of b in Eq. (14). Same procedure

can be easily applied for Eq. (12) by taking each Zp as an

extra group and extending parameters from b to ½bT ; aT�T;
where a ¼ ½a1; . . .; aK� and each of ak is a (p 9 1) vector of

weights for observations of Zp.

2.4 Summary

An efficient statistical framework is proposed to combine

multiple spatial variables for the prediction of categorical

spatial variables. In the proposed framework, each spatially

distributed variable is represented as spatial covariance

functions, and the class occurrence probability for a target

(unknown) location is obtained by a multinomial logistic

function of the data-to-unknown covariance values for each

spatial variable [Eq. (11)], and collocated attribute values

of each spatial variable at the target location, if there is any

[Eq. (12)]. The described framework enjoys several

appealing features over existing methods. Firstly, the spa-

tial covariance functions quantify the similarity or depen-

dency in spatially distributed variables and provide a

unified representation for heterogeneous types of spatial

variables (e.g., categorical vs. continuous). It should be

noted here that multiple spatial covariance functions can be

defined for each spatial variable for a better representation

of spatial variations. Through these spatial covariance

functions, incompatible spatial variables can be combined

in a straightforward manner while accounting for spatial

(inter-) dependencies across these variables. Secondly, a

LASSO-based method, namely group LASSO, was adopted

for model inference. By maximizing the likelihood adjusted

by a regularization term, group LASSO simultaneously
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estimates the coefficients and selects an optimal subset of

variables in the model. Thirdly, compared with other

methods such as indicator kriging family of methods and

SVM-based classification methods, the proposed method

produced a clear probabilistic interpretation by outputting

class occurrence probability for each class label. Although

the derivations of class occurrence probability in Eqs. (11)

and (12) were based on the initial assumption of latent

GRFs, the link between Bayesian estimation and repro-

ducing kernels-based methods (Schölkopf et al. 2001)

allows the described framework extensible to general cases.

3 Case study

The proposed framework has been implemented within the

computing environment of Matlab, and a software toolbox is

publicly available at http://www.cigi.uiuc.edu/guofeng/soft

ware.html. In order to illustrate the concepts and to dem-

onstrate the performance of the proposed statistical data

fusion framework, two case studies are presented in this

section with one case using synthetic data and the other

using real data. Due to the limitations of space, not all of the

concepts introduced above could be illustrated in this paper.

The synthetic case study showcases the performance of the

described framework in incorporating collocated spatial

information by following Eq. (12), whereas the real case

study demonstrates the capability of the proposed statistical

framework in integrating heterogeneous categorical and

continuous spatial variables by following Eq. (11).

3.1 Synthetic case

In this synthetic case study, three models of GRFs were con-

sidered and each of them is characterized by a zero mean and

an exponential covariogram with unit sill, 0.1 % nugget

effects, and a range value of 10, 20, 30 units, respectively. For

each of the GRF models, stochastic simulations were con-

ducted over a regular grid (100 9 100) with a unit spacing.

Out of the realization maps of each simulation, one map was

randomly chosen and taken as a map of an auxiliary spatial

variable in the subsequent analysis (see Fig. 1b–d). Based on a
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Fig. 1 Map of categorical data with three classes (a) generated from three realizations of Gaussian random fields (b–d)
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multinomial linear combination of the three auxiliary vari-

ables, denoted as #1, #2 and #3 respectively, a categorical

map with three class labels, namely #A, #B and #C, was

generated and considered as a reference map of the primary

categorical variable, as displayed in Fig. 1a.

To demonstrate the performance of the proposed data

fusion method, we sampled the reference map at a set of

randomly selected locations. Figure 2a and b present the

reference map (same as Fig. 1a), and locations of a set of

400 samples which amount to 4 % of total locations in the

reference map. The goal is to reconstruct the reference map

of the primary categorical variable (Fig. 1a or Fig. 2a) using

the sampled class labels (Fig. 2b) with an aid of the

observed three spatial auxiliary variables (Fig. 1b–d).

To apply the proposed framework, we first represented the

primary categorical variables and the auxiliary spatial vari-

ables as spatial covariance functions. Both the empirical and

fitted covariance functions are presented in Fig. 3. The full

model in Eq. (12) calls for the spatial covariance models of all

the spatial variables including categories #A, #B, #C, and

auxiliary variables #1, #2, #3. Group LASSO was then

applied to estimate model parameters a; b; and the sought-

after conditional class occurrence probability at each

unknown location was obtained according to Eq. (12). Last,

the class label with maximum occurrence probability was

assigned to the unknown locations. Figure 5l shows the

resulting prediction map with the corrected estimation rate of

75.6 %. Recall that LASSO-based methods (Tibshirani

1996), including group LASSO (Yuan and Lin 2006), esti-

mate coefficients, while simultaneously selecting the most

important variables by shrinking the coefficients of the others.

The estimated coefficients are presented in Fig. 4. One can

clearly see that the coefficients for spatial covariance values

(spatial effects) of category #A and #B of the primary cate-

gorical variable, auxiliary variable #2 and #3 are nearly zeros,

which suggest that the contribution of spatial covariances of

these variables is not substantial as other variables are for the

occurrence of the categorical variable of interest. We dropped

these four variables from the model, repeated the process and

we obtained almost identical prediction map as that of the full

model (Fig. 5l).

Two other methods—the multinomial GLM and the spatial

multinomial linear mixed model (MLMM) (Cao et al. 2011)—

were also applied to this synthetic case study. The former tends

to ignore the spatial dependence information in a spatial set-

ting, and the latter doesn’t account for auxiliary information.

The resulting prediction maps are displayed in Figure 5j, k,

respectively. One can clearly see that the proposed method

(Fig. 5l) better reproduces the reference map (Fig. 2a). The

corrected estimation rates of these two methods were 64.4 and

65.7 %, respectively, both inferior to 75.7 % of the proposed

method. Figure 5 also displays the estimated probability maps

of the three different methods for category #A, #B, and

#C. One can see that spatial MLMM (Fig. 5b, e, h), with no

consideration of auxiliary variables, tends to yield continuous

results, while multinomial GLM (Fig. 5a, d, g), ignoring spa-

tial dependence information, tends to be unsure (most of the

estimated probability values in a range of 0.5–0.6) at target

(unknown) locations. This suggests that both auxiliary vari-

ables and the spatial dependence information play important

roles in the prediction of class occurrence of the primary cat-

egorical variable in this case. This result should be expected

considering that reference categorical map was generated from

a linear combination of realizations of three auxiliary variables

with strong spatial dependency. We repeated the above process

for different numbers of sampled sizes. Table 1 lists the correct

estimation rates for the three different methods. Apparently,

the proposed method tends to yield substantially better correct

estimation rates in every case than the other two methods.

3.2 Real case

Public land survey (PLS) data of the general land office

(GLO) have been widely used in landscape studies of the

forest and woodlands in pre- and early-European settled

Midwestern and Western US. Forest vegetation distribution
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(b)Fig. 2 Reference categorical

map (a), and locations of 400

sample class labels (b)
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maps at a finer spatial resolution than available is often-

times needed. In this case study, we aim to reconstruct the

spatial distribution of the three most abundant tree species

(post oak, black oak and elm) from PLS data in the

Arbuckle Mountains of south-central Oklahoma, with

availability of information from multiple environmental

covariates, including elevation (continuous type), geologi-

cal and soil types (categorical type). To demonstrate the

advantages of the proposed method in incorporating het-

erogeneous auxiliary information, we compared the pre-

diction result of the proposed method with the result from

the spatial MLMM model (Cao et al. 2011), where the

auxiliary environmental covariate information is not taken

into account.

Figure 6(a) shows the locations of a total of 2,561 wit-

ness trees obtained from the 1870s survey. We focused on

the three most abundant species: post oak (48.0 %), black

oak (20.2 %), and elm (12.8 %), and re-categorized the rest

species as other-type (19 %). As evidenced in Fig. 6, post

oak is the most abundant tree species with a strong con-

centration in the southern portion of the study area, while

black oak is more evenly distributed with a few clusters in
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the central and east regions of the study area. In contrast to

these two oaks, elm appears more often in the north east

side of the study area. All three trees species show the

presence of spatial clusters, but with different intensities

(Yoo et al. 2013). These witness tree data was collected at

0.8 km (quarter mile) intervals, typical in public land sur-

vey system (He et al. 2000), and only a small fraction of

the tree observations (approximately 0.07 % of total tree

pairs) are less than 0.4 km apart. The objective of this case

study was to model and reconstruct the distribution of tree

species distribution. It is expected that, without further

auxiliary information, using this witness tree dataset alone

might lead to unreliable results. Earlier efforts (Fagin and

Hoagland 2011; He et al. 2007; Yoo et al. 2013) have

Fig. 5 a–c Represent the estimated probability map for class label #A via multinomial GLM, spatial MLMM, and Eq. 12 respectively, d–f for

class label #B and g–i for class label #C; j–l represent prediction results of these three methods
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confirmed that environmental conditions to which tree

species respond play an important role in the reconstruction

of the spatial distribution of forest vegetation. We selected

three predictors that have varying degrees of influence on

each tree species based on literature and preliminary data

analyses. Table 2 provides a brief description of covariates,

whose spatial distribution is shown in Fig. 6b–d (Yoo et al.

2013).

As mentioned above, the auxiliary data consist of a

continuous (elevation) and two categorical (geological and

soil types) variables, which are typically challenging to

combine using conventional statistical methods. We rec-

onciled this problem using the proposed method, that is, by

applying Eq. (11) to these categorical and continuous data.

Similar to the synthetic case study, the predicted proba-

bilities for each tree species at each prediction location

were first estimated, and then a class with the maximum

posterior probability was identified. As a result, we can

recover the tree species that is most likely to have been

present at the prediction location (see Fig. 7). Figure 7a

shows the resulting map of species occurrence based on

spatial MLMM without covariates, while Fig. 7b presents

the results based on the proposed model [Eq. (11)] with

covariates.

We assess the predictive performance of the two models

using cross-validation, where data are split into validation

and training data. Validation data consist of a subset

(10 %) of observed witness tree data, which are withheld in

the model fitting process and later used to validate model

outcomes. In other words, only the training data are used

for model fitting. The size of validation data might not be

sufficient for an effective assessment of the model accuracy

and the sectional bias might be involved in the data split

process. Therefore, we repeated the validation process

Table 1 Correct estimation rates of three different methods (GLM,

spatial MLMM, and the proposed data fusion method)

Percentage of

sample size (%)

GLM

(%)

Spatial

MLMM (%)

The proposed

method (%)

1 63.9 54.2 68.1

2 61.8 59.4 69.9

3 64.5 61.5 72.8

4 64.4 65.7 75.6

5 65.1 66.1 76.1

6 64.6 67.8 77.5

7 64.9 68.5 78.2

8 65.2 69.2 78.5

9 65.2 71.5 79.2

9.99 65.2 71.6 80.0
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Fig. 6 Maps of the witness tree species data and three environmental

covariates in the Arbuckle Mountains area (latitude ranging between

34.21694� and 34.71635� and longitude between -97.36979� and -

96.43859�): a survey locations of the three most abundant tree

species: post oak, black oak, and elm; b elevation; c geology type;

d soil type. All the three covariates maps (b–d) are at 30 9 30 m

spatial resolution. See Table 2 for the definition of each category
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iteratively (1009) where a new set of training and vali-

dation data are randomly selected at each time, and model

accuracy is calculated based on new model fit and newly

selected validation data. The performance of the proposed

model, with average correct estimation rate 62.0 % is

substantially better than that of the spatial MLMM 50.9 %.

The output coefficients for the covariance values of ele-

vation, soil types s1, s2 and s3, are penalized to zeros

(Fig. 8). This result suggests that spatial covariances of

these variables do not explain to the occurrence of tree

species, which may be due to the homogeneous physio-

graphic features and the strong spatial association between

soil types and geological composition in the study area. For

example, the limestone and dolomite substrates constitute

69 % of the surface rocks in the study area, and shallow

soils characterize areas where granite and rhyolite are

common. The most extensive soil type in the Arbuckle

Mountains is the Shidler-Scullin-Lula-Claremore-rock

outcrop complex (s1), a silty clay loam that covers the

greatest areal extent (37.7 %), which occurs primarily on

fractured limestone (g3) (Bogard 1973; Burgess 1977), one

of the most dominant geology type. The Kiti-rock outcrop

complex (s3) is a clay loam soil that occupies 27.4 % of the

study area and consists of moderately alkaline loam of very

shallow, well-drained soils (Bogard 1973; Burgess 1977).

The elevation of the study area varies from 191 to 432 m,

and this range is relatively too small to impact the distri-

bution of tree species, and there is strong colinearity

existing between the elevation, soil types s1, s2 and s3, and

the geological types in terms of spatial distribution

(dependence information) (see Fig. 6). The spatial vari-

ability of tree species occurrence are captured by the spa-

tial covariance values of geological types (with non-zero

coefficients), and because of the colinearity, little valuable

information can be further contributed by the spatial

covariances of soil types (s1, s2, and s3). Similarly with

the synthetic cases, we dropped the spatial covariances of

these variables in the model, repeated the process, and we

obtained almost identical prediction result as shown in

Fig. 7b.

4 Concluding discussion

As the amount of spatial data grows exponentially, diverse

sources of spatial data have become increasingly available

in geospatial research. These diverse sources of spatial

data, however, tend to be heterogeneous and incompatible

with each other, which calls for efficient spatial data fusion

methods. It is challenging to reconcile these heterogeneous

data sources particularly when considering the wide range

of heterogeneities and complex (inter-)dependence struc-

tures in spatial settings. This paper describes a statistical

framework of heterogeneous spatial data fusion for the

Table 2 Description of environmental covariates [modified from

(Yoo et al. 2013)]

Type Interval/categories Source

Elevation

Continuous [191, 432] m USGS

Geology

Categorical Shale/limestone (g1) USGS

Shale (g2)

Limestone (g3)

Oil creek sandstone (g4)

Bromide sandstone (g5)

Granite (g6)

Other-type (g7)

Soil

Categorical Shidler-Scullin-Lula-Claremore-rock

outcrop (s1)

NRCS

STATSGO

Shidler-rock outcrop (s2)

Kiti-rock outcrop (s3)

Chigley-Agan-rock outcrop (s4)

Reinach-McLain-Dale (s5)

USGS United States Geological Survey, NRCS Natural Resources

Conservation Service, STATSGO State Soil Geographic Database
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Fig. 7 Predicted map of species occurrences in the Arbuckle Mountains area obtained (same geographic extent as that of Fig. 6) from two

models: a spatial multinomial logistic mixed model; b The proposed model [Eq. (11)]. Both of the two maps are at 30 9 30 m spatial resolution
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prediction of categorical spatial variables. In this frame-

work, each spatial variable is represented via spatial

covariance functions. This representation of spatial

covariance functions has a number of virtues for statistical

analysis of spatial data. A spatial covariance function

defines the similarity (or dependency) of a spatial variable

as functions of separating vectors. It should be noted that

more than one covariance function could be defined for a

spatial variable to better capture its spatial variation char-

acteristics. From another perspective, a spatial covariance

function essentially projects the heterogeneous input spa-

tial variables into a unified reproducing kernel Hilbert

space, and thus provide a unified representation for heter-

ogeneous types of spatial data, independent of data nature

and object complexity. Through spatial covariance func-

tions, information implied in heterogeneous spatial data

can then be combined in a straightforward fashion while

accounting for the spatial (inter-)dependencies across these

spatial variables. Although the discussion of this paper

focused on the spatial prediction of categorical variables,

this spatial covariance functions-based data fusion strategy

could be extended into a general spatial prediction context.

In addition to integrating spatial information with spatial

support of points in two dimensional spaces, the described

framework could be extended to account for more general

types of spatial supports, such as areal units or volumes in

higher dimensional spaces. Specific types of spatial

covariance functions, however, need to be carefully

designed to capture spatial variations of these variables.

Areal-to-areal spatial covariance functions may be neces-

sary for spatial variables represented by areal units, and

areal-to-point covariance functions for similarities between

points and areal spatial variables. Careful investigations of

such extensions are warranted in future research.

A recently proposed group LASSO was adopted in this

paper for model inference to avoid the over-fitting issues.

By penalizing parameters of less informative variables in

the model (spatial covariance functions) into nearly zeros,

group LASSO actually selects an subset of most relevant

variables in the model. Advantages of this described

framework in the spatial prediction of categorical variables

have been discussed. In the setting of spatial analysis, only

one observation can usually be made for a spatial variable

at a certain location, and the observation typically is not

repeatable. Therefore, as the complexity of the spatial

analysis increases by incorporating more spatial variables

and accounting for complex spatial interactions across

these variables, one could end up with an underdetermined

model with insufficient degree of freedom [more unknown

parameters than observations, known as ‘‘large p, small n’’

paradigm (West 2003)] to estimate the model, which would

be difficult for conventional methods to handle. LASSO-

based methods, as the group LASSO adopted in this paper,

demonstrates great potentials to address such problems by

enforcing the parameters of irrelevant group of variables to

zeros (group sparsity).
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