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Abstract Wildfires have been studied in many ways, for

instance as a spatial point pattern or through modeling the

size of fires or the relative risk of big fires. Lately a large

variety of complex statistical models can be fitted routinely

to complex data sets, in particular wildfires, as a result of

widely accessible high-level statistical software, such as R.

The objective in this paper is to model the occurrence of

big wildfires (greater than a given extension of hectares)

using an adapted two-part econometric model, specifically

a hurdle model. The methodology used in this paper is

useful to determine those factors that help any fire to

become a big wildfire. Our proposal and methodology can

be routinely used to contribute to the management of big

wildfires.

Keywords Hurdle model � INLA � Spatio-temporal

point processes � SPDE � Wildfire

1 Introduction

Fire risk can be defined as a product of fire occurrence

probability and expected impacts (Bachmann and Allgower

2001). An area can be considered to have high wildfire risk

if the probability of fire is high and the expected impacts of

fire are large. Furthermore, fires are getting larger, more

destructive, and more economically expensive due to fuel

accumulations, shifting land management practices, and

climate change. Wildfires have negative effects on human

life and health, human property and wellbeing, cultural and

natural heritage, employment, recreation, economic and

social infrastructures and activities. It is worth noting that

some fire episodes have caused catastrophic damages

including, loss of human lives and significant economic

and environmental losses.

The European Mediterranean is a highly populated

region. Approximately 65,000 fires occur in the European

Mediterranean region every year. Wildfires destroy around

500,000 ha every year in the European Union, 0.7–1 million

ha in the Mediterranean basin. This has a serious impact on

the environment and on socio-economic activities, espe-

cially in southern Europe. Over 95 % of the fires in Europe

are due to human causes. An analysis of fire causes show that

the most common cause of fires comes from agricultural

practices, followed by negligence and arson (Reus Dolz

and Irastorza 2003). These wildfires are relatively fre-

quent events with recurrence time of 23 years (Serra et al.

2012).

Wildfires also destroy biodiversity, increase desertifi-

cation, affect air quality, the balance of greenhouse gases

and water resources. During recent years the increasing

extension of urban areas mixed with rural or forest areas

associated with a marked increase of fire activity make this

impact even greater. The intense urbanization of our
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societies, the abandonment of rural lands and rural activi-

ties such as forest management along with the rapid

expansion of urban/forest interface are key drivers for

wildfires in Europe and in the Mediterranean region.

Weather is a fundamental component of the fire envi-

ronment. The prolonged drought and high temperatures of

the summer period in the Mediterranean climate are the

typical drivers that demarcate the temporal and spatial

boundaries of the main fire season. Future trends of wildfire

risks in the Mediterranean region, as a consequence of cli-

mate change, will lead to the increase of temperature in the

East and West of the Mediterranean, with more frequent

dryness periods and heat waves facilitating the development

of very large fires. Future scenarios of climate change

should affect local fire regimes, and therefore local analyses

need to be performed by adapting global climatic models to

regional conditions. Many factors have been considered to

explain the temporal variation in fire regime in recent dec-

ades in Spain: climate change is one factor which involves

an increasing relationship between the number of days of

extreme fire hazard weather and the number and size of fires

in the Mediterranean coast of Spain.

Earlier detection often leads to smaller fire size, and

therefore reduces the probability of fire escape (Fernandes

and Botelho 2003), final fire size, cost and risks to fire

response crews. Wildfire prevention should be considered

as an important part of sustainable forest management and

should integrate a landscape approach taking into account

different land uses. Knowledge of short and long-term

impacts of wildfire is essential for effective risk assess-

ment, policy formulation, and wildfire management.

Spain is one of the most affected countries in Europe,

both considering number of fires and area burned.

Between 1980 and 2004 nearly 380,000 fires have

occurred in Spain, and more than 4.7 millions ha have

been burned (roughly 10 % of the country). Extreme fires

([500 ha) are relatively frequent events with recurrence

time of 2–3 years, causing large human, economic and

environmental damage altogether. Their ignition and

spread occur under favorable weather conditions, often

following drought periods, in areas where fuel accumu-

lation helps quick fire spread and high fire intensity, they

usually burn out of control and can only be stopped when

meteorological conditions support aerial and ground fire

fighting (San-Miguel-Ayanza et al. 2012, 2013). In Cata-

lonia these fires only represent 1.4 % of all fires and 79 %

of burned area. In this study we have included wildfires

larger than 50 ha because in the Mediterranean region

they represent more than 75 % of the area burned,

although they represent only 2.6 % of the total number of

wildfires (Gonzalez and Pukkala 2007; Piñol et al. 1998).

Over the last few years, the occurrence of large wildfire

episodes with extreme fire behavior has affected different

regions of Europe: Portugal, south-eastern France, Spain

and Greece.

Wildfires have been studied in many ways, for instance

as a spatial point pattern (Comas et al. 2009; Comas and

Mateu 2011; Juan et al. 2012; Serra et al. 2012; Turner

2009) or through modeling the size of fires (Amaral-

Turkman et al. 2011) or the relative risk of the big fires

(Wang et al. 2012; Wisdom and Dlamini 2010). Lately a

large variety of complex statistical models can be fitted

routinely to complex data sets, in particular wildfires, as a

result of widely accessible high-level statistical software,

such as R (R Development Core 2011). Researchers from

many different disciplines are now able to analyze their

data with sufficiently complex methods rather than resort-

ing to simpler yet non-appropriate methods. In this case,

the objective in this paper is to model the occurrence of big

wildfires, and to determine those factors which are signi-

ficative in helping any fire to become a big wildfire.

We analyze the occurrence of big wildfires in Catalonia

between 1994 and 2011, and consider a big wildfire to be a

fire that burns areas larger than a fixed extension of hect-

ares. Specifically we consider three sizes of areas; 50, 100

and 150 ha. Moreover, we distinguish between the

numerous potential causes of wildfire ignition. In particu-

lar, we consider: (i) natural causes; (ii) negligence and

accidents; (iii) intentional fires or arson; and (iv) unknown

causes and rekindled. The study area encompasses 32,000

km2 and represents about 6.4 % of the total Spanish

national territory (Fig. 1).

In addition to the locations of the fire centroids, several

marks and covariates are considered. The year the wildfire

Fig. 1 Catalonia location in Europe

1672 Stoch Environ Res Risk Assess (2014) 28:1671–1684

123



occurred is the unique mark considered. The spatial

covariates are also considered, specifically, eight continu-

ous covariates (i.e. topographic variables—slope, aspect,

hill shade and altitude; proximity to anthropic areas—

roads, urban areas and railways; and meteorological vari-

ables—maximum and minimum temperatures) and one

categorical variable (land use).

The methodology for fitting spatial point process models

to complex data sets has seen previous advances in facili-

tating routine model fitting for spatial point processes

(Cressie 1993; Diggle 2003; Møller and Dı́az-Avalos

2010). For instance, the work by Baddeley and Turner

(2005) has facilitated the routine fitting of point processes

based on an approximation of the pseudolikelihood to

avoid the issue of intractable normalizing constants (Ber-

man and Turner 1992) through the use of the library

spatstat for R (Baddeley and Turner 2005). In the same

way, (Illian and Hendrichsen 2010) consider hierarchical

models able to analyze a wide variety of point process

models, for example those appearing in fire problems.

In our case, spatio-temporal data can be idealized as

realizations of a stochastic process indexed by spatial and

temporal coordinates. Spatio-temporal clustering of wild-

fires might indicate the presence of risk factors which are

not evenly distributed in space and time. In fact, what is

usually of interest is to assess the association of clustering

of wildfires to spatial and seasonal covariates (Serra et al.

2012). Covariate information usually comes in the form of

spatial patterns in regular lattices or as regular vector

polygons that may be rasterized into lattice images using

GIS (Simpson et al. 2011). The right methodological con-

text able to deal with these pieces of information comes

from spatio-temporal point processes. To bypass the prob-

lem of inefficiency in the estimation under a general inte-

grated nested Laplace approximation (INLA) (Rue et al.

2009), we have tried a computationally tractable approach

based on stochastic partial differential equation (SPDE)

models (Lindgren et al. 2011). On one hand, we use SPDE

to transform the initial Gaussian Field (GF) to a Gaussian

Markov Random Field (GMRF). GMRFs are defined by

sparse matrices that allow for computationally effective

numerical methods. Furthermore, by using Bayesian infer-

ence for GMRFs in combination to the INLA algorithm, we

take advantage of the many significant computational

improvements (Rue et al. 2009). If, in addition, we follow

the approach suggested by Simpson et al. (2011), in which

the specification of the Gaussian random field is completely

separated from the approximation of the Cox process like-

lihood, we gain far greater flexibility.

The proposed method in this paper is an adapted two-

part econometric model, specifically a Hurdle model. It

consists of two stages and it is specified in such a way as to

gather together the two processes theoretically involved in

the presence of wildfires, that is, the fact to be a big

wildfire (greater than a given extension of hectares) and the

frequency of big wildfires per spatial unit. Specifically, the

Poisson hurdle model consists of a point mass at zero

followed by a truncated Poisson distribution for the non-

zero observations.

This paper addresses two issues. We develop complex

joint models for big wildfires and, at the same time, we

provide methods facilitating the routine for the fitting of

these models, using a Bayesian approach. The approach is

based on the INLA, which speeds up parameter estimation

substantially so that particular models can be fitted within

feasible time.

This paper is organized as follows: the following section

describes the data. Section 3 presents the methodology

used, including the statistical framework, the description of

the Poisson Hurdle model and the statistical inference

explanation. Section 4 presents the results. Finally, the

paper ends with a discussion and future coming steps.

2 Data setting

In this paper we analyze the occurrence of big wildfires in

Catalonia between 1994 and 2011. The total number of

fires recorded in the analysis is 3,283, which are distributed

as follows: 206 wildfires bigger than 50 ha, 141 wildfires

bigger than 100 ha, and 112 wildfires bigger than 150 ha.

In Fig. 2, on the left, we can see all wildfires and wildfires

bigger that 50 ha.

In Catalonia, the agency responsible for identifying the

coordinates of the origin of the fire, the starting time and

the cause of the fire is the Forest Fire Prevention Service

(Government of Catalonia). In addition, they record the

ending time of the fire, the hectares (and their type)

affected, and the perimeter of the fire. The data used in this

article are provided directly by the Service, and have been

tested and polished before handling.

We distinguish between the numerous potential causes of

wildfire ignition. In particular, we consider: (i) natural causes;

(ii) negligence and accidents; (iii) intentional fires or arson;

and (iv) unknown causes and rekindled. The first category

includes lightning strikes or heat from the sun. The second

takes into account that human carelessness can also start a

wildfire, for instance, with campfires, smoking, fireworks or

improper burning of trash. Negligence and accidents also

includes those wildfires caused purely by chance. The third

cause considers those wildfires that are started deliberately.

Finally, the fourth set includes unknown causes and rekindled

fires. In Fig. 3 we can understand the nature of the entire

population of fires by the histogram of area burnt by fires and

in Fig. 2, on the right, we show the spatial distribution of

wildfires bigger than 50 ha distinguishing by causes.
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In addition to the locations of the fire centroids, mea-

sured in Cartesian coordinates (Mercator transversal pro-

jections, UTM, Datum ETRS89, zone 31-N), several

covariates are considered. Specifically, eight continuous

covariates (i.e. topographic variables—slope, aspect, hill

shade and altitude; proximity to anthropic areas—roads,

urban areas and railways; and meteorological variables—

maximum and minimum temperatures) and one categorical

variable (land use).

Land use will obviously affect fire incidence, but

moreover, topographic variables (slope, aspect and hill

shade) affect not only fuel and its availability for com-

bustion (Ordóñez et al. 2012), but also the weather,

inducing diverse local wind conditions, which include

slope and valley winds. In fact, Dillon et al. (2011) point

out that those topographic variables are relatively more

important predictors of severe fire occurrence, than either

climate or weather variables. The proximity to anthropic

areas can be considered a factor explaining not only the

incidence of fires in the intentional fires and arson cate-

gory, but also why natural cause fires do not occur. As

climatic variables are feasibly important for natural cause

fires and perhaps rekindled fires, we use the maximum and

minimum temperatures (further details can be found in

Serra et al. 2012).

In this paper, slope is the steepness or degree of incline

of a surface. Slope cannot be directly computed from ele-

vation points; one must first create either a raster or a TIN

surface. In this article, the slope for a particular location is

computed as the maximum rate of change in elevation

between the location and its surroundings. Slope is

expressed in degrees. Aspect is the orientation of the slope

and it is measured clockwise in degrees from 0 to 360,

where 0 is north-facing, 90 is east-facing, 180 is south-

facing, and 270 is west-facing. Hill shading is a technique

used to visualize terrain as shaded relief by illuminating it

with a hypothetical light source. Here, the illumination

value for each raster cell is determined by its orientation to

the light source, which, in turn, is also measured in degrees,

from 0 to 360. Finally, altitude is considered as elevation

above sea level and it is expressed in meters. To obtain

topographic variables (DTM) we use the MET-15 model,

which is a regular grid containing orthometric heights

distributed according to a metricconverterProductID15

m15 m grid side, and is created for the Cartographic

Institute of Catalonia (ICC). We also use the surface ana-

lysis tools included in the ArcGis10 application Spatial

Analyst (Serra et al. 2012).

The distances, in meters, from the location of the

wildfire to urban areas, roads and railroads, are constructed

by considering a geographical layer in each case. The

urban area and road layers are obtained from the Depart-

ment of Territory and Sustainability of the Catalan Gov-

ernment, through the ICC (http://www.icc.cat). To obtain

the two new raster layers we use the Euclidean distance

function, included in the ArcGis10 application Spatial

Fig. 2 Left All wildfires

(1994–2011) and big wildfires.

Right big wildfires

distinguishing by causes

Fig. 3 Histogram of area burnt by fires
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Analyst. Then, we use the merge function of ArcGis10

Geoprocessing module, to combine those two layers (urban

areas and roads and railroads) into one single layer. The

layers are continuous and defined as a raster layer (details

can be found in Serra et al. 2012).

We also use the land use in Catalonia maps (1:250,000),

with classification techniques applied on existing LAND-

SAT MSS images for 1992, 1997 and 2002 (Chuvieco

2009; Garcı́a et al. 2008; Røder et al. 2008). Additionally,

we use orthophotomaps (1:5,000) 2005–2007, to create the

land use map for 2010. Specifically, we assign the land use

map just before the date of each wildfire. We assign, as the

land use, only the percentage value corresponding to the

principal land use of the spatial units. In this paper, we

transform the 22 categories, obtained from the ICC cover

map of Catalonia, into 8 categories: coniferous forests;

dense forests; fruit trees and berries; artificial non-agri-

cultural vegetated areas; transitional woodland scrub; nat-

ural grassland; mixed forests; and urban, i.e., beaches,

sand, bare rocks, burnt areas, and water bodies.

We also consider the temperatures (maximum and

minimum) and up to 7 days before the occurrence of the

fire, at the location of the wildfire (note that meteorological

data are provided by the Area of Climatology and Meteo-

rological Service of Catalonia). The temperatures at the

point of the occurrence of the wildfire, along with the

temperatures from the previous day and up to a week

before, are estimated by means of a two-step Bayesian

model. Further details can be found in Saez et al. (2012).

3 Methods

3.1 Statistical framework

Spatio-temporal data can be idealized as realizations of a

stochastic process indexed by a spatial and a temporal

dimension

Y s; tð Þ � fyðs; tÞjðs; tÞ 2 D� T 2 R
2 � Rg ð1Þ

where D is a (fixed) subset of R2 and T is a temporal subset

of R: The data can then be represented by a collection of

observations y ¼ fy s1; t1ð Þ; . . .; y sn; tnð Þg; where the set

(s1, ..., sn) indicates the spatial locations, at which the

measurements are taken, and (t1, ..., tn) the temporal

instants.

The mathematical theory of point processes on a general

space is now well-established (Bremaud 1981; Daley and

Vere-Jones 2003). However, most models for specific

applications are restricted either to point processes in time

or to the two-dimensional space. Cox processes are widely

used as models for point patterns which are thought to

reflect underlying environmental heterogeneity.

A spatio-temporal correlation structure is a complicated

mathematical entity and its practical estimation is very

difficult. We thus assume separability in the sense that we

model the spatial correlation by the Matérn spatial

covariance function defined in Eq. 4 and the temporal

correlation is modeled using a Random Walk model of

order 1 (RW1). We introduce also the interaction effect

between the space and time using another RW1 structure.

Nevertheless, this inclusion of the interaction does not

change the separability structure. The Random Walk

structure for the temporal dependence is justified by the

apparent randomness of the wildfires distribution among

time, as shown in Fig. 4. In fact, the dispersion of big

wildfires varies between the periods considered. In partic-

ular, there is a reduction considering the number of them,

specifically in the period 2008–2011.

3.2 The Poisson hurdle model

The model used in this paper is an adapted two-stage

econometric model proposed by Deb and Trivedi (2002),

specifically a hurdle model. It consists of two stages and

specified in a way to gather together the two processes

theoretically involved in the presence of wildfires, that is,

the occurrence of being a big wildfire (greater than a given

extension of hectares) and the frequency of big wildfires

per spatial unit (Neelon et al. 2013). Specifically, the

Poisson hurdle model consists of a point mass at zero

followed by a truncated Poisson distribution for the non-

zero observations.

In the first stage, we predict the probability that any

wildfire becomes larger than 50, 100 and 150 ha. In the

second stage, we model the number of these big wildfires

per spatial unit.

The first part of the process can be modeled using a

logistic regression, that models the probability that any

wildfire becomes larger than a fixed area following the

expression

pitk ¼ Prob yitk [ AjZ; bð Þ

log
pitk

1� pitk

� �
¼ b0i þ Z 0bþ Si þ st þ tit

ð2Þ

where A denotes one of the fixed area’s values (50, 100 or

150 ha), y is the response variable (in this case, each

wildfire), Z a matrix of explanatory spatial covariates

(containing the intercept), b0i represents the heterogeneity

as a random effect, b is the vector of unknown parameters

associated with the covariates, the subscript i denotes the

wildfire, the subscript t (t = 1994,. . ., 2011) the year of

occurrence of the wildfire, and the subscript k (k ¼ 1; . . .4)

the cause of occurrence. We also introduced three addi-

tional random effects: (i) spatial dependence, Si, (ii)
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_temporal dependence, st and (iii) spatio–temporal inter-

action, tit:

In accordance with that proposed by Mullahy (1986), in

the second stage of the model the distribution of being a big

wildfire follows a truncated Poisson that models the num-

ber of big wildfires per spatial unit, introducing covariates

and spatial random effects (Neelon et al. 2013). The model

in this stage is

p yjtkjSj

� �
¼ 1� pjtk

� �
1ðyjtk\AÞ þ pjtkTpoisðyjtk; ljtkÞ1ðyjtk [ AÞ

log ljtk

� �
¼ g pjtk

� �
g pjtk

� �
¼ b0j þ

X
m

bmZm;jt þ Sj þ st þ tjt ð3Þ

where Tpois(yjtk;ljtk) denotes a truncated Poisson distri-

bution with parameter ljtk, g denotes a link function such

as the logit link, Zm,jt represents the same spatial covariates

used in the first stage, b0j stands for the environmental

heterogeneity and bm denotes the parameters associated

with the covariates. The random effects are as in Eq. 2.

The particular estimation process has two steps. In the

first step we use a binomial link in order to estimate the

occurrence of a big wildfire. The probabilities of occur-

rence obtained from this first step are used in the second

step as interim priors. In the second step the link is a

truncated Poisson distribution. In any case, the likelihood

of each part is introduced multiplicatively in only one

equation.

To analyze and estimate the number of zeros in a dataset

there exists different statistical alternatives. On one hand

we have the ZIP model, which is employed to estimate

event count models in which the data result in a larger

number of zero counts than would be expected. The hurdle

Poisson model (Mullahy 1986) is a modified count model

with two processes, one generating the zeros and one

generating the positive values. The two models are not

constrained to be the same.

The concept underlying the hurdle model is that a

binomial probability model governs the binary outcome of

whether a count variable has a zero or a positive value. If

the value is positive, the ‘‘hurdle is crossed,’’ and the

conditional distribution of the positive values is governed

by a zero-truncated count model. In the ZIP models, unlike

Fig. 4 Big wildfires in

Catalonia in 1994–2011. Left-up

1994–1997; right-up

1998–2002; left-down

2003–2007 and right-down

2008–2011
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the hurdle model, there are thought to be two kinds of

zeros, ‘‘true zeros’’ and ‘‘excess zeros’’.

3.3 Statistical inference

3.3.1 SPDE approach

The SPDE approach allows to represent a GF with the

Matérn covariance function defined in Eq. 4 as a discretely

indexed spatial random process which produces significant

computational advantages (Lindgren et al. 2011). GFs are

defined directly by their first and second order moments

and their implementation is highly time consuming and

provokes the so-called ‘‘big n problem’’. This is due to the

computational costs of Oðn3Þ to perform a matrix algebra

operation with n 9 n dense covariance matrices, which is

notably bigger when the data increases in space and time.

To solve this problem, we analyze an approximation that

relates a continuously indexed GF with Matérn covariance

functions, to a discretely indexed spatial random process,

i.e., a GMRF. The idea is to construct a finite representa-

tion of a Matérn field by using a linear combination of basis

functions defined in a triangulation of a given domain D.

This representation gives rise to the SPDE approach given

by Eq. 5, which is a link between the GF and the GMRF.

This link allows replacement of the spatio-temporal

covariance function and the dense covariance matrix of a

GF with a neighbourhood structure and a sparse precision

matrix, respectively, typical elements that define a GMRF.

This, in turn, produces substantial computational advanta-

ges (Harvill 2010; Lindgren et al. 2011; R-INLA project

2012).

Assuming separability we need to define the Matérn

spatial covariance function which controls the spatial cor-

relation at distance hk k ¼ si � sj

�� ��; and this covariance is

given by

M hjm; jð Þ ¼ 21�m

C mð Þ j hk kð ÞmKmðj hk kÞ ð4Þ

where Km is a modified Bessel function of the second kind

and j[ 0 is a spatial scale parameter whose inverse, 1/j,

is sometimes referred to as a correlation length. The

smoothness parameter m[ 0 defines the Hausdorff

dimension and the differentiability of the sample paths

(Gneiting et al. 2010). Specifically, we tried m = 1,2,3

(Plummer and Penalized 2008).

Using the expression defined in Eq. 4, when m ? d/2 is

an integer, a computationally efficient piecewise linear

representation can be constructed by using a different

representation of the Matérn field x(s), namely as the sta-

tionary solution to the SPDE (Simpson et al. 2011).

ðj2 � DÞa=2
x sð Þ ¼ WðsÞ ð5Þ

where a = m ? d/2 is an integer, D ¼
Pd

i¼1
o2

os2
i

is the

Laplacian operator and W(s) is spatial white noise.

In the general spatial point process context, the intensity

stands for the number of events (fires in our case) per unit

area. When considering the total intensity in each cell, we

refer to the number of fires per cell area. A particular

problem in our wildfire dataset is that the total intensity in

each cell, Kjt is difficult to compute, and so we use instead

the approximation, Kjt � sj

�� ��expðgjtðsjÞÞ; where gjt(sj) is a

‘representative value’ (i.e., it represents the intensity or

number of fires in a particular cell given by a linear pre-

dictor of covariates and other terms) (Simpson et al. 2011),

within the cell and |sj| is the area of the cell sj. To treat this

kind of problems, Cox processes are widely used. In par-

ticular, Log Gaussian Cox processes (LGCP), which define

a class of flexible models are particularly useful in the

context of modeling aggregation relative to some under-

lying unobserved environmental field (Illian and Hend-

richsen 2010; Simpson et al. 2011) and they are

characterized by their intensity surface being modeled as

log k sð Þð Þ ¼ Z sð Þ ð6Þ

where Z(s) is a Gaussian random field.

3.3.2 LGCP

Conditional on a realization of Z(s), a log-Gaussian Cox

process is an inhomogeneous Poisson process. Considering

a bounded region X � R
2 and given the intensity surface

and a point pattern Y, the likelihood for a LGCP is of the

form

p Y jkð Þ ¼ exp jXj �
Z
X

k sð ÞdsÞ
Y
si2Y

k sið Þ

0
@

1
A ð7Þ

where the integral is complicated by the stochastic nature

of k (s). We note that, the log-Gaussian Cox process fits

naturally within the Bayesian hierarchical modeling

framework. Furthermore, it is a latent Gaussian model,

which allows to embed it within the INLA framework. This

embedding paves the way for extending the LGCP to

include covariates, marks and non-standard observation

processes, while still allowing for computationally efficient

inference (Illian et al. 2012).

The basic idea is that, as we have explained in previous

paragraphs, from a GF with a Matérn covariance function,

we use a SPDE approach to transform the initial GF to a

GMRF, which, in turn, has very good computational prop-

erties. In fact, GMRFs are defined by sparse matrices that

allow for computationally effective numerical methods.
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Furthermore, by using Bayesian inference for GMRFs, it is

possible to adopt the INLA algorithm which, subsequently,

provides significant computational advantages.

Because our data is potentially zero inflated, as not all

our events will become big fires, in this paper we present a

spatial Poisson hurdle model to address these particular

aspects of the data.

3.3.3 Bayesian computation

In a statistical analysis, to estimate a general model it is

useful to model the mean for the i-th unit by means of an

additive linear predictor, defined on a suitable scale

gj ¼ b0j þ
XM
m¼1

bmzmj þ
XL

l¼1

flðvljÞ ð8Þ

where b0j is a scalar which represents the intercept,

b = (b1, .., bM) are the coefficients which quantify the

effect of some covariates zj = (z1j, .., zMj) on the response,

and f = {f1(.), .., fL(.)} is a collection of functions defined

in terms of a set of covariates v = (v1, .., vL). From this

definition, varying the form of the functions fl(.) we can

estimate different kind of models, from standard and

hierarchical regression, to spatial and spatio-temporal

models (Rue et al. 2009).

Given the specification in Eq. 8, the vector of parame-

ters is represented by h = {b0, b, f}.

In our case, assuming that the subscript i denotes the

wildfire, the subscript j the municipal district and the

subscript t (t = 1994. . . 2011) the year of occurrence of

the wildfire, for each cause, we specify the log-intensity of

the Poisson process by a linear predictor (Illian et al. 2012)

of the form

gijt sj

� �
¼ b0j þ b1Xijt þ b2Zjt þ b3Wj þ Sj þ st þ tjt ð9Þ

where b0j represents the heterogeneity accounting for

variation in relative risk across different municipals dis-

tricts, Sj is the spatial dependence; st is the temporal

dependence; and tijt is the spatio-temporal interaction.

Note that, we assume separability between spatial and

temporal patterns and allow interaction between the two

components.

Following the Bayesian paradigm we can obtain the

marginal posterior distributions for each of the elements of

the parameters vector

p hijyð Þ ¼
Z

p wjyð Þp hijw; yð Þdw ð10Þ

and (possibly) for each element of the hyper-parameters

vector

p wkjyð Þ ¼
Z

p wjyð Þpdw�k ð11Þ

Thus, we need to compute: (i) p(w|y), from which all the

relevant marginals p(wk|y) can be obtained, and (ii)

p(hi|w, y), which is needed to compute the marginal pos-

terior for the parameters. The INLA approach exploits the

assumptions of the model to produce a numerical approx-

imation to the posteriors of interest, based on the Laplace

approximation (Tiernery and Kadane 1986).

Operationally, INLA proceeds by first exploring the

marginal joint posterior for the hyper-parameters p̂ðwjyÞ in

order to locate the mode; a grid search is then performed

and produces a set G of ‘‘relevant’’ points{w*} together

with a corresponding set of weights, {ww
* } to give the

approximation to this distribution. Each marginal posterior

p̂ðw�jyÞ can be obtained using interpolation based on the

computed values and correcting for (probable) skewness,

e.g. by using log-splines. For each w*, the conditional

posteriors p̂ðhijw�; yÞ are then evaluated on a grid of

selected values for hi and the marginal posteriors p̂ðhijy)

are obtained by numerical integration (Blangiardo et al.

2013)

p̂ðhijyÞ �
X
w�2G

p̂ðhijw�; yÞp̂ðw�jyÞww� ð12Þ

Given the specification in Eq. 12, the vector of parameters

is represented by hj ¼ fb0; b; S; st; tjtg where we can

consider Xj ¼ ðS; st; tjtÞ as the j-th realization of the latent

GF X(s) with the Matérn spatial covariance function

defined in Eq. 4. We can assume a GMRF prior on h, with

mean 0 and a precision matrix Q. In addition, because of

the conditional independence relationship implied by the

GMRF, the vector of the hyper-parameters w ¼
ðwS;ws;wtÞ will typically have a dimension of order 4 and

thus will be much smaller than h. The heterogeneity was

specified as a vector of independent and Gaussian

Table 1 Significative factors for the logistic model in the first stage

of the analysis

Cause 2 Cause 3

50 100 150 50 100 150

(Intercept) X X X X X X

Factor (aspect)3 X

Factor (aspect)4 X X X

Factor (slope)5 X

Factor (altitude)3 X

Factor (land use)1 X

Factor (land use)3 X X

Factor (land use)4 X X

Factor (land use)6 X

ftmin_3 X

ftmin_5 X
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distributed random variables on j, with constant precision

(R-INLA project 2012).

Note that in both parts of the model we control for

heterogeneity, spatial dependence and spatio-temporal

extra variability. Models are estimated using Bayesian

inference for GMRF through the INLA. All analyses are

carried out using the R freeware statistical package (ver-

sion 2.15.2) (R Development Core 2011) and the R-INLA

package (R-INLA project 2012).

We have used the conjugate prior to the Poisson like-

lihood which is a Gamma distribution function. Indeed,

with the aim of checking the robustness of our

Table 2 Means of the posterior distributions for the hyper-parameters of the first stage

50 ha 100 ha 150 ha

Cause 2 Cause 3 Cause 2 Cause 3 Cause 2 Cause 3

Heterogeneity 0.000054 0.000054 5.212E-09 5.192E-09 3.959E-09 5.247E-09

Space 0.246900 0.148810 0.3908300 0.0520790 0.0884000 0.0131780

Interaction 0.000043 0.000037 3.885E-09 3.827E-09 3.408E-09 3.762E-09

Time (by year) 0.000053 0.000049 5.187E-09 5.135E-09 4.444E-09 4.759E-09

Fig. 6 From top-left to bottom-right: marginal posterior distribution for j, ws, q, heterogeneity, time and interaction, respectively for cause 3

Fig. 5 From top-left to bottom-right: marginal posterior distribution for j, ws, q, heterogeneity, time and interaction, respectively, for cause 2
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methodological choice we have used several other (non-

conjugate) priors for the precision parameters (in particular

Gaussian and flat priors) and the posterior distribution for

the precision hyper-parameters has not changed signifi-

cantly. We have thus preferred using in the paper the

corresponding Gamma conjugate priors. Clearly, as used

generically in INLA for the hyper-parameters, the distri-

bution of the fixed parameters is normal for the intercept.

4 Results

We note that, in general, wildfires caused by natural causes

are not larger than 50 ha. The same happens for those fires

caused by unknown causes or for those rekindled. For this

reason, even if we have analyzed the forth causes we focus

our results only on big wildfires caused by negligence and

accidents and on those caused intentionally or arson.

4.1 First stage results

We first consider a logistic regression to model the prob-

ability of a wildfire becoming larger than a particular area.

Table 1 shows the significative factors of the logistic

model distinguishing by the three sizes (50, 100 and

150 ha) and considering wildfires occurred by negligence

and accidents (cause 2) and those caused by intention or

arson (cause 3). The main factors that have an influence in

Table 3 Hyper-parameters for the model in the second stage

50 ha 100 ha 150 ha

Cause 2 Cause 3 Cause 2 Cause 3 Cause 2 Cause 3

Heterogeneity 0.116645 1.083424 0.116918 1.088495 0.116836 1.089681

Interaction 0.000181 0.010143 0.000177 0.010101 0.000180 0.009634

Time (year) 0.000048 0.000048 0.000047 0.000048 0.000048 0.000040

Fig. 7 Top prediction maps for

cause 2 and cause 3. Bottom

standard deviation for the

prediction under cause 2 and

cause 3
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the presence of wildfires (larger than a given extension of

hectares) are the aspect and the land use. Taking into

account the rest of the covariates considered we can see

that the hill shade, the distance to anthropic areas and the

maximum temperature have no influence in the probability

of a fire to become larger than a specific area. Table 2

shows the means of the posterior distributions for the

hyper-parameters of the first stage considering the three

sizes of area analyzed. The heterogeneity, the time and the

interaction have a small impact, their values, around

0.00005 are smaller than the spatial values, 0.246, and

moreover, their values decrease when the extension of the

wildfires increases, for instance for the heterogeneity effect

they go from 0.000054 to 5.24E-09. We can also appre-

ciate that there are not big differences between the two

causes. On the other hand, the values of the spatial com-

ponent show that there is an important spatial dependence

with values from 0.01 to 0.246, especially for wildfires

occurred by negligence and accidents. In Figs. 5 and 6,

show the marginal distribution of hyper-parameters for

causes 2 and 3: (a) j which is a scaling parameter related to

the range q; (b) ws the precision parameter; (c) q which

comes from the empirically derived equation (8m)1/2/j and

represents the distance at which the spatial correlation

becomes almost null; (d) the heterogeneity random effect;

(e) the temporal random effect; and (f) the spatio-temporal

Fig. 8 Posterior distribution of the hyper-parameters for the second stage. Left heterogeneity, Middle time and Right interaction. First line: cause

2, second line: cause 3
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interaction random effect. In all of them, the distribution is

Gamma and the distributions are similar for both causes.

Finally, Fig. 7 shows the prediction of the probability of a

fire to become larger than 50 ha as well as the standard

deviation of this prediction. Looking at the wildfires

occurred by negligence and accidents we can see that

higher probabilities are concentrated around the main

urban areas of Catalonia: Girona (in the north-east), Bar-

celona (in the middle of the coast), Tarragona (in the south

along the coast) and Lleida (in the center west). There are

also high probabilities in the north-west, corresponding to a

large forest area. With respect to intentional and arson

wildfires the probabilities are less concentrated than in

wildfires occurred by negligence and accidents but are also

higher in the same areas. Regarding the standard deviation

we do not appreciate alarming values. On the second cause

higher values are found where the probabilities are also

higher. The third cause presents lower values of deviation

than wildfires occurred by negligence and accidents

meaning that the model works better with wildfires

occurred by intention or arson.

4.2 Second stage results

In the second stage we model the frequencies of wildfires

(larger than a specific area) per spatial unit. Table 3

shows the values of the hyper-parameters. It is important

to note that in this second stage the spatial values are not

included. The reason is because there is a too high cor-

relation between the spatial dependence component,

Sj, and the spatio-temporal interaction, tjt; that prevents

the model from working properly. Therefore, we intro-

duce the spatial random effect through the interaction.

The heterogeneity is quite much significant than in the

first stage (values of 0.000054 in the first stage to values

of 0.116 in this second stage), especially for intentional

wildfires and arson. Something similar happens with the

interaction (values of 0.000043 in the first stage to values

of 0.0001 in this second stage). It is much larger than in

the first stage and it is also more representative for

wildfires occurred by intention and arson. This comes

reflected in a significative spatial variability among the

districts when counts of large fires come into effect.

Fig. 9 Number of fires

expected maps: On the top

cause 2 and cause 3 and on the

bottom cause 2-sd and cause

3-sd
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Finally, with respect to the temporal dependence, this is

also larger than in the first stage but it has almost no

variation between the two causes, around 0.00005. In

addition there are not relevant differences between the

three extensions of hectares in any of the three hyper-

parameters analyzed. In Fig. 8, we show the marginal

posterior distribution of hyper-parameters for heteroge-

neity, time and interaction for causes 2 and 3. In all of

them, the distribution is Gamma. Finally, Fig. 9 shows the

predicted number of wildfires larger than 50 ha per spatial

unit. Wildfires occurred by negligence and accidents and

those caused by intention or arson present the same pat-

tern of distribution according to the probabilities obtained

in the first stage of the model. In general, big wildfires are

concentrated along the coast being denser around the

metropolitan area of Barcelona. Looking at the standard

deviations we point out that intention wildfires and arson

have very low values so, again, we note that the model

correctly fits wildfires occurred intentionally or arson.

5 Discussion

The main finding of this study is that big wildfires are

mostly caused by human actions either by negligence and

accidents or by intention or arson. These results make sense

with what the bibliography shows and what we have

commented in the introduction; over 95 % of the fires in

Europe are due to human causes. Normally a natural

wildfire does not spread as much as an intentional wildfire

and so, the number of wildfires which are larger than a big

extension, is not enough to obtain results. Analyzing the

forth causes separately we noticed no significant results for

wildfires caused by natural causes and for those caused by

unknown causes or rekindled. In fact separating wildfires

by cause and by its extension we almost did not have

wildfires caused by natural causes nor unknown causes or

rekindled. In particular in our data there are only 15

wildfires bigger than 50 ha occurred by natural causes

compared to 180 caused by negligence or accidents. Our

model does not work properly with such a limited small

number of data so, even if we have studied the forth causes,

we have restricted the study to the second and the third

causes. Although the practical results are very similar in

both approaches, ZIP models and Hurdle models, the sec-

ond one is more appropriate in our case, since every

wildfire can turn into a big wildfire and therefore, every

point is susceptible to become larger than a specific number

of hectares.
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