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Abstract Generation of replicates of the available data

enables the researchers to solve different statistical prob-

lems, such as the estimation of standard errors, the infer-

ence of parameters or even the approximation of

distribution functions. With this aim, Bootstrap approaches

are suggested in the current work, specifically designed for

their application to spatial data, as they take into account

the dependence structure of the underlying random process.

The key idea is to construct nonparametric distribution

estimators, adapted to the spatial setting, which are distri-

bution functions themselves, associated to discrete or

continuous random variables. Then, the Bootstrap samples

are obtained by drawing at random from the estimated

distribution. Consistency of the suggested approaches will

be proved by assuming stationarity from the random pro-

cess or by relaxing the latter hypothesis to admit a deter-

ministic trend. Numerical studies for simulated data and a

real data set, obtained from environmental monitoring, are

included to illustrate the application of the proposed

Bootstrap methods.

Keywords Distribution estimation � Resampling

method � Spatial data � Stationarity � Trend

Mathematics Subject Classification 62G09 �
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1 Introduction

Different statistical techniques can require extra work to

approximate the unknown terms involved, to check the

variance of the estimators employed or to derive their

sampling distribution. Some of these problems have been

solved in the curve estimation setting through the Bootstrap

method (Efron 1979), whose key idea is that the relation-

ship between the theoretical distribution and the observed

sample is similar to the relationship between a distribution

estimator and a secondary sample drawn from it. The ori-

ginal Bootstrap procedures were designed for independent

data (De Angelis and Young 1992; Hall 1992) and an

adaptation of these procedures to the spatial setting would

have large applicability for addressing a variety of issues.

A goodness-of-fit test for the variogram model could be

implemented to extend the results in Maglione and Diblasi

(2004) for gaussian data, and even inference on the

underlying distribution of the random process could be

developed. Bootstrap variants of the tests based on their

asymptotic distribution, such as the one proposed in Li

et al. (2007) for assessment of the properties of the

covariance function, could be introduced to improve their

speed of convergence. Also, the kernel approaches for

characterization of the dependence structure (Hall and Patil

1994) or prediction (Menezes et al. 2010) could be

accomplished by deriving the optimal bandwidths and

additionally providing estimates of their accuracy.
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The parametric Bootstrap methodology can be easily

extended to the spatial setting, thus enabling the

researchers to develop techniques for variogram assess-

ment (Olea and Pardo-Igúzquiza 2011), to construct con-

fidence intervals for the parameters of a distribution

estimator (Goovaerts et al. 2005) or to correct a test for the

spectral density (Crujeiras et al. 2010). When indepen-

dence can be assumed from the residuals, the traditional

nonparametric resampling approaches can be applied for

approximation of the variance of an estimator (Iranpanah

et al. 2011) or probabilities derived from it (Hyun-Han and

Young-Il 2006). However, for dependent data, it is neces-

sary to design ad-hoc procedures in order to guarantee

consistency of the results, such as the parametric Bootstrap

method for small area estimation (Hall and Maiti 2006).

Alternatives of more general use are those based on

resampling blocks of data (Hall 1985), subsamples

obtained by deleting portions of data (Politis et al. 1999) or

marks assigned to the spatial points (Loh 2008).

The aim of this work is to introduce nonparametric

Bootstrap approaches that allow us to generate replicates

from the available data, at a set of locations selected, by

first approximating the joint distribution in a nonparametric

way and then randomly drawing samples from it. With this

idea, different estimators of the multivariate distribution

will be proposed, which are distribution functions them-

selves, associated to discrete or continuous random vari-

ables, so that they will be used as the basis for resampling.

We will check that consistency follows for the suggested

procedures, provided that the random process is strictly

stationary or when this condition is relaxed by admitting a

deterministic trend. In addition, numerical studies will be

carried out to analyze the behavior of both Bootstrap

methods for addressing different problems.

2 Multivariate distribution estimators

To derive the distribution estimators, we will assume that

the random process fZðsÞ 2 IR : s 2 D � IRdg can be

modeled as:

ZðsÞ ¼ lðsÞ þ YðsÞ ð1Þ

where fYðsÞ 2 IR : s 2 D � IRdg is a zero-mean strictly

stationary random process and lð�Þ represents the deter-

ministic trend, namely, E[Z(s)] = l(s), for all s 2 D:

We will denote the multivariate distribution by:

Fs1;...;sk
x1; . . .; xkð Þ ¼ P Z s1ð Þ� x1; . . .; Z skð Þ� xkð Þ

for all sets of sites s1; . . .; sk 2 D and thresholds x1; . . .; xk 2
IR; with k 2 IN:

From the model established for the random process in

(1), one has:

Fs1;...;sk
x1; . . .; xkð Þ ¼ Fs1þz;...;skþz x1 þ l s1 þ zð Þ � l s1ð Þ;ð

. . .; xk þ l sk þ zð Þ � l skð ÞÞ ð2Þ

for all z 2 IRd; on account of the stationarity condition of

Yð�Þ; since:

P Y s1ð Þ� x1; . . .; Y skð Þ� xkð Þ ¼ P Y s1 þ zð Þ� x1;ð
. . .; Y sk þ zð Þ� xkÞ ð3Þ

Relation (2) yields that the multivariate distribution of

Zð�Þ remains invariant when the spatial locations are

subjected to the same translation, by vector z, and each

threshold xj is replaced by an appropriate correction, given

by xj ? l (sj ? z) - l (sj) .

Our aim is the estimation of Fs1;...;sk
x1; . . .; xkð Þ; for a set

of selected sites s1; . . .; sk 2 D and thresholds x1; . . .; xk 2
IR; with k 2 IN: This issue will be addressed by applying

property (2), which yields:

Fs1;...;sk
x1; . . .;xkð Þ ¼ P Z s1þ zð Þ� x1þ l s1þ zð Þ � l s1ð Þ;ð

. . .;Z sk þ zð Þ� xk þ l sk þ zð Þ � l skð ÞÞ
¼ P Z t1ð Þ� x1þ l t1ð Þ� l s1ð Þ;ð

. . .;Z tkð Þ� xk þ l tkð Þ � l skð ÞÞ ð2Þ

for tj = sj ? z and z 2 IRd:

The relations above allow us to conclude that:

Fs1;...;sk
x1; . . .; xkð Þ ¼ P X t1ð Þ� x1; . . .;X tkð Þ� xkð Þ ð3Þ

for tj = sj ? z and X (tj) = Z (tj) - l (tj) ? l(sj). Conse-

quently, if the set ft1; . . .; tkg represents a translation of the

selected locations fs1; . . .; skg by any vector z 2 IRd; the

distribution of the random vector Z s1ð Þ; . . .; Z skð Þð Þ equals

that of X t1ð Þ; . . .;X tkð Þð Þ:
Next, several approaches will be described for approx-

imation of the distribution function, based on (3). With this

aim, suppose that n data, fZðt1Þ; . . .; ZðtnÞg; have been

collected, at the respective locations ft1; . . .; tng: Firstly,

we propose constructing a weighted average of the indi-

cator functions obtained for the possible k-combinations

fti1 ; . . .; tikg of the observed sites ft1; . . .; tng; as follows:

F̂s1;...;sk
x1; . . .; xkð Þ ¼

Xn

i1¼1

. . .
Xn

ik¼1

pi1;...;ik IfXðti1 Þ� x1g

. . .IfXðtik Þ� xkg ð4Þ

for some weights pi1;...;ik � 0; with
Pn

i1¼1 . . .
Pn

ik¼1 pi1;...;ik ¼
1; which will be established in (6) and (7), where IA

denotes the indicator function of the set A, for tij ¼ sj þ z

and z 2 IRd: In particular, since the latter equality holds for

j = 1, we will take z ¼ ti1 � s1; yielding:

XðtijÞ ¼ ZðtijÞ � lðsj þ ti1 � s1Þ þ lðsjÞ ð5Þ

For selection of the values pi1;...;ik ; the key idea will be to

assign more weight to the k-combination fti1 ; . . .; tikg which
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is closer to being a translation of fs1; . . .; skg by z ¼ ti1 � s1.

At first sight, this approach involves computing the lag

between each pair of the selected locations, sj - sj0, and

comparing it with that of the corresponding observed sites,

tij � tij , for j and j0 varying from 1 to k, which amounts to

0.5k(k - 1) comparisons. For the sake of simplicity, we

propose solely computing the indispensable lags needed to

characterize the closeness of fti1 ; . . .; tikg to being the

aforementioned translation. This enables us to consider

only the lags sj - sj?1 and tij � tij þ 1, for all j C 1, so the

other ones would follow with simple sums or differences of

vectors. Then, a nonparametric approximation of the

multivariate distribution would be obtained by taking

pi1;...;ik in (4) as given below:

pi1;...;ik ¼ p
ð1Þ
i1;...;ik

¼ p
ti1 ;ti2 ;h1

s1;s2
. . .p

tik�1
;tik ;hk�1

sk�1;skPn
i1¼1 . . .

Pn
ik¼1 p

ti1 ;ti2 ;h1

s1;s2
. . .p

tik�1
;tik ;hk�1

sk�1;sk

ð6Þ

with p
tij ;tijþ1

;hj

sj;sjþ1
¼ K

sj�sjþ1�ðtij�tijþ1
Þ

hj

� �
; where K represents a

d-variate kernel function and hj is a bandwidth parameter,

for j ¼ 1; . . .; k � 1: The resulting estimator will be refer-

red to as F̂
ð1Þ
s1;...;sk

:

One drawback related to estimator F̂
ð1Þ
s1;...;sk

is the combi-

natorial explosion that may occur for large k, when used for

construction of Bootstrap replicates. This is mainly due to the

fact that F̂
ð1Þ
s1;...;sk

is itself a discrete distribution function,

conditional on the sample fZðt1Þ; . . .; ZðtnÞg;which takes as

many values ðXðti1Þ; . . .;XðtikÞÞ (or, more precisely, vectors

of size k) as combinations fti1 ; . . .; tikg can be obtained from

the set of the observed locations. Indeed, the number of

combinations of this kind amount to nk, so the resampling

approach derived from this distribution estimator would

entail drawing a vector of size k from a set of nk vectors,

whose probabilities p
ð1Þ
i1;...;ik

require computing the terms

psj, sj?1
t

j, tj?1, hj, for all j varying from 1 to k - 1 and all the

combinations of size k from ft1; . . .; tng:
In view of the latter, our suggestion will be to construct

a new distribution estimator as given in (4), with weights:

pi1;...;ik ¼ p
ð2Þ
i1;...;ik

¼ p
ti1 ;ti2 ;h1

s1;s2Pn
i1¼1

Pn
i2¼1 p

ti1 ;ti2 ;h1

s1;s2

p
ti2 ;ti3 ;h2

s2;s3Pn
i3¼1 p

ti2 ;ti3 ;h2

s2;s3

. . .
p

tik�1
;tik ;hk�1

sk�1;skPn
ik¼1 p

tik�1
;tik ;hk�1

sk�1;sk

ð7Þ

The resulting estimator, denoted by F̂
ð2Þ
s1;...;sk

; will allow us to

derive a simpler Bootstrap approach, as we will describe in

Sect. 3, for which valid probability statements will be made.

The two aforementioned approaches provide identical

estimators of the bivariate distribution Fs,s0 and the uni-

variate distribution Fs, as follows:

F̂s;s0 x1; x2ð Þ ¼
Xn

i¼1

Xn

j¼1

K
s�s0�ðti�tjÞ

h1

� �
IfXðtiÞ� x1gIfXðtjÞ� x2g

Pn
i¼1

Pn
j¼1 K

s�s0�ðti�tjÞ
h1

� �

F̂sðxÞ ¼ F̂s;sðx; xÞ ¼
Xn

i¼1

Xn

j¼1

K
tj�ti
h1

� �
IfXðtiÞ� xgIfXðtjÞ� xg

Pn
i¼1

Pn
j¼1 K

tj�ti
h1

� �

ð8Þ

The consistency of F̂
ð2Þ
s1;...;sk

can be established by

considering a random design for the spatial locations and a

mixed increasing-domain asymptotic structure for the

random process, together with the appropriate convergence

rates for the bandwidth parameters and the increasing scale.

A sketch of the proof of this property is outlined in Appendix

1, which gives account of the dependence of the optimal

bandwidths hj on unknown terms. Then, we propose an

alternative mechanism for their selection, based on

computing hj as the Euclidean distance from sj - sj?1 to

the m-nearest difference tij � tijþ1
; for some m.

It is noteworthy that estimator F̂
ð2Þ
s1;...;sk

is itself a distri-

bution function, conditional on the sample fZðt1Þ; . . .;
ZðtnÞg; which takes values ðXðti1Þ; . . .;XðtikÞÞ with respec-

tive probabilities p
ð2Þ
i1;...;ik

; for XðtijÞ defined in (5). However,

F̂
ð2Þ
s1;...;sk

is a discrete distribution function. Hence, for a

continuous random process, the use of a smoother version of

the distribution estimator seems to be more appropriate,

which can be derived by applying in (4) an integrand of a

density, instead of an indicator function, as follows:

~Fs1;...;sk
x1; . . .; xkð Þ ¼

Xn

i1¼1

. . .
Xn

ik¼1

p
ð2Þ
i1;...;ik
L x1 � Xðti1Þ

h

� �

. . .L xk � XðtikÞ
h

� �
ð9Þ

where LðxÞ ¼
R x

�1 LðuÞdu; L is a univariate kernel func-

tion, h is a bandwidth parameter and p
ð2Þ
i1;...;ik

is defined in

(7). Consistency can also be derived for ~Fh1;...;hk�1
s1;...;sk

; as out-

lined in Appendix 2.

Unlike F̂
ðiÞ
s1;...;sk

; for i = 1, 2, estimator ~Fs1;...;sk
is a con-

tinuous distribution function, conditional on the sample,

with density:

~fs1;...;sk
x1; . . .; xkð Þ ¼ 1

hk

Xn

i1¼1

. . .
Xn

ik¼1

p
ð2Þ
i1;...;ik

L
x1 � Xðti1Þ

h

� �

. . .L
xk � XðtikÞ

h

� �

The optimal h is dependent on the bandwidths hj as well

as on unknown moments from the random process. Hence,

we suggest using a cross-validation procedure for its

selection in practice, based on the results given in Bowman
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et al. (1998) and adapted to the spatial data setting, which

aims at providing an appropriate characterization of the

performance of the multivariate distribution in the manner

described below:

hCV ;k ¼ argminh2H

Xn

i1;...;ik¼1

Zþ1

�1

. . .

Zþ1

�1

� ~F�ði1;...;ikÞ x1; . . .;xkð Þ � IfZðti1 Þ� x1g. . .IfZðtik Þ�xkg

� �2

� dx1. . .dxk

where H is an adequate set of positive numbers and
~F�ði1;...;ikÞ x1; . . .;xkð Þ is the result of implementing estimator

~Fti1 ;...;tik
at ðx1; . . .;xkÞ when ignoring fZðti1Þ; . . .;ZðtikÞg:

Proceeding in this way, hCV, k would provide us with a

global bandwidth selector that could be applied at any

ðx1; . . .;xkÞ: For simplification of the approach to derive the

cross-validation bandwidth, our alternative proposal will be

based on the use of the univariate continuous estimator, by

considering:

~FsðxÞ ¼
Xn

i¼1

Xn

j¼1

K
tj�ti
h1

� �
L x�XðtiÞ

h

� �
L x�XðtjÞ

h

� �

Pn
i¼1

Pn
j¼1 K

tj�ti
h1

� � ð10Þ

since the objective function should involve just one

threshold and two bandwidths, to obtain:

hCV ;1 ¼ argminh2H

Xn

i¼1

Zþ1

�1

~F�ðiÞ xð Þ � IfZðtiÞ� xg
� �2

dx

where Z(ti) is left out in the implementation of ~FtiðxÞ to

produce ~F�ðiÞ xð Þ: Furthermore, the integral can be numer-

ically approximated over a bounded subset instead of IR.

Remark 1 Application of any of the previous distribution

approaches requires assuming that the trend function can be

estimated. In this respect, different procedures have been pro-

posed for approximation of lð�Þ (Goovaerts 1997), so that a

parametric approach can be adopted for its estimation or the

spatial interpolation techniques can be used to compute the

trend.

Remark 2 When the trend function is supposed to be

constant, relation (2) can be simplified to yield:

Fs1;...;sk
x1; . . .; xkð Þ ¼ Fs1þz;...;skþz x1; . . .; xkð Þ

for all z 2 IRd: Then, no characterization of the constant

trend is necessary for implementation of the distribution

estimators, as we could take XðtijÞ ¼ ZðtijÞ in ~Fs1;...;sk
and

F̂
ðiÞ
s1;...;sk

; for i = 1,2.

Remark 3 For the specific case where the difference of trends

depends on the lag between the locations involved, namely:

lðsÞ � lðs0Þ ¼ Mðs� s0Þ ð11Þ

for all s,s0 2 D and some function M, combination of (2)

and (11) leads to:

Fs1;...;sk
x1; . . .; xkð Þ ¼ Fs1þz;...;skþz x1 þMðzÞ; . . .; xk þMðzÞð Þ

The equality above means that the translation of the spatial

locations by vector z, together with the correction of the

thresholds by M(z), preserves the value of the distribution

function. Then, the distribution approaches would hold for

XðtijÞ ¼ ZðtijÞ �Mðti1Þ � s1, which demands approximation

of function M. This issue can be addressed by adapting the

different procedures that can be used for l or even a

nonparametric estimator can be derived as follows:

M̂ðzÞ ¼
Pn

i¼1

Pn
j¼1 wi;j zð Þ Z tið Þ � Z tj

� �� �
Pn

i¼1

Pn
j¼1 wi;j zð Þ

for some nonnegative values wi;j zð Þ satisfying thatPn
i¼1

Pn
j¼1 wi;j zð Þ[ 0: For instance, we can take wi;jðzÞ ¼

Ifti�tj�zg or wi;j zð Þ ¼ G
z� ti�tjð Þ

g

� �
; to yield an empirical or

a kernel estimator, respectively, where G is a d-variate

kernel function and g is a bandwidth parameter. By

assuming appropriate hypotheses, consistency of M̂ could

be proved by using similar arguments as those applied in

the kernel variogram estimation (Garcı́a-Soidán 2007).

Remark 4 None of the proposed distribution estimators

fulfills Kolmogorov’s condition of symmetry, namely, that

they remain invariant when the locations sj and the corre-

sponding thresholds xj are subjected to the same permuta-

tion, for j ¼ 1; . . .; k: Hence, a criterion must be established

to assign an order to the spatial locations and, therefore, to

the thresholds, previously to the implementation of the

joint distribution estimator, so as to guarantee unicity of the

result under permutation.

Among the different options, we propose proceeding in

such a way that the sites will be organized in a decreasing

order of their influence on the remainder, measured in terms

of proximity, because of the underlying stationarity condition.

With this idea, departing from the set fs1; . . .; skg; we will

take sj, for j varying from 1 to k, as the closest location to the

center of mass (or the d-dimensional mean of the coordinates)

of the sites fsj; sjþ1. . .; skg; for j ¼ 1; . . .; k � 1: To solve the

problem of tied distances, preference can be given to the

location with the smallest first coordinates. The thresholds xj

would also be reordered accordingly.
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3 Bootstrap approaches

The distribution estimation approaches, introduced in Sect.

2, can be used to propose Bootstrap methods for spatial

data, so that for a given set of selected sites, fs1; . . .; skg; a

Bootstrap sample fZ	ðs1Þ; . . .; Z	ðskÞg can be obtained.

The direct mechanism derived from the discrete esti-

mator F̂
ð1Þ
s1;...;sk

entails producing each replicate by drawing

from a random variable which takes values ðXðti1Þ;
. . .;XðtikÞÞ with probabilities p

ð1Þ
i1;...;ik

; for each ij ¼ 1; . . .; n

and j ¼ 1; . . .; k; with XðtijÞ as given in (5). Nevertheless,

implementation of this approach, as mentioned in Sect. 2,

can have a strong computational cost for large k.

Then, for construction of the replicates, we can take

instead estimator F̂
ð2Þ
s1;...;sk

; although there are again nk

probabilities p
ð2Þ
i1;...;ik

to be considered in order to obtain a

Bootstrap sample. However, we suggest an alternative

option based on proceeding in a sequential way, which

would be less computationally demanding. The resampling

scheme would be performed in the manner described

below:

(1) Reorder the locations to take sj as the closest location

to the center of mass of fsj; sjþ1. . .; skg; for j ¼ 1;

. . .; k � 1:

(2) Select the bandwidth h1 as the Euclidean distance

from s1 - s2 to the m-nearest difference ti1 � ti2 ; for

some m.

(3) Obtain ðZ	ðs1Þ;Z	ðs2ÞÞ by drawing from a random

variable that associates the probabilities:

p
ti1 ;ti2 ;h1

s1;s2Pn
i1¼1

Pn
i2¼1 p

ti1 ;ti2 ;h1

s1;s2

to the respective pairs ðXðti1Þ;Xðti2ÞÞ:
Proceeding in this way, a couple of values ðXðti1Þ;Xðti2ÞÞ:
(and, therefore, two indices i1 and i2) are selected in this

step.

(4) For j = 3, consider the index ij-1 derived previously

and take hj-1 to be the Euclidean distance from

sj-1 - sj to the m-nearest difference tij�1
� tij :

(5) For j = 3, consider indexes i1 and ij-1 to obtain Z	ðsjÞ
by resampling from the random variable which takes

values ðXðtijÞ, with respective probabilities:

p
tij�1

;tij ;hj�1

sj�1;sj

Pn
ij¼1 p

tij�1
;tij ;hj�1

sj�1;sj

An index ij is chosen in this step.

(6) Repeat steps 4 and 5 for all j [ 3.

Validity of the preceding procedure follows straight-

forwardly from the fact that the resulting sample satisfies:

P	 Z	ðs1Þ ¼ Xðti1Þ; . . .; Z	ðskÞ ¼ XðtikÞð Þ
¼ P	 Z	ðs1Þ ¼ Xðti1Þ; Z	ðs2Þ ¼ Xðti2Þð Þ

�
Yk

j¼3

P	 Z	ðsjÞ ¼ XðtijÞ Z	ðsj0 Þ ¼ Xðtij0 Þ; j
0\j

.� �

¼ p
ti1 ;ti2 ;h1

s1;s2Pn
i1¼1

Pn
i2¼1 p

ti1 ;ti2 ;h1

s1;s2

Yn

j¼3

p
tij�1

;tij ;hj�1

sj�1;sj

Pn
ij¼1 p

tij�1
;tij ;hj�1

sj�1;sj

¼ p
ð2Þ
i1;...;ik

on account of the multiplication rule of probability, where

P	 denotes the probability, conditional on the sample

fZðt1Þ; . . .; ZðtnÞg: Then, proceeding as just indicated, a

Bootstrap sample from F̂
ð2Þ
s1;...;sk

can be generated.

On the other hand, if the aim is that of drawing repli-

cates from the continuous distribution estimator ~Fs1;...;sk
; we

should additionally extract a random sample of size k from

the density L, denoted by fV1; . . .;Vkg and independent of

fZðt1Þ; . . .; ZðtnÞg: Then, the continuous version of the

replicates for the random process Z, at locations

fs1; . . .; skg; would be constructed as:

fXðti1Þ þ hV1; . . .;XðtikÞ þ hVkg

To justify the generation of Bootstrap samples as

described, for the continuous estimator, bear in mind that:

P	 Xðti1Þ þ hV1� x1; . . .;XðtikÞ þ hVk � xkð Þ

¼ P	 V1�
x1 � Xðti1Þ

h
; . . .;Vk �

xk � XðtikÞ
h

� �

¼ E	 L x1 � Xðti1Þ
h

� �
. . .L xk � XðtikÞ

h

� �� 	

¼
Xn

i1¼1

. . .
Xn

ik¼1

P	 Z	ðs1Þ ¼ Xðti1Þ; . . .; Z	ðskÞ ¼ XðtikÞð Þ

� L x1 � Xðti1Þ
h

� �
. . .L xk � XðtikÞ

h

� �

¼
Xn

i1¼1

. . .
Xn

ik¼1

p
ð2Þ
i1;...;ik
L x1 � Xðti1Þ

h

� �
. . .L xk � XðtikÞ

h

� �

¼ ~Fs1;...;sk
x1; . . .; xkð Þ

by the conditions required from the variables Vj, where E	

denotes the expectation, conditional on the sample

fZðt1Þ; . . .; ZðtnÞg:
The Bootstrap approaches can be used to approximate

unknown parameters, estimate standard errors, make infer-

ence on the correlation structure or on the distribution

function of the random process. Suppose, for instance, that

T ¼ T Zðs1Þ; . . .; ZðskÞð Þ is an estimator of interest, depen-

dent on the data and on the underlying distribution Fs1;...;sk
:

Denote by T	 its Bootstrap counterpart, namely, T	 ¼ T Z	ð
ðs1Þ; . . .; Z	ðskÞÞ; for a Bootstrap sample fZ	ðs1Þ; . . .;

Z	ðskÞg obtained by either of the resampling methods pro-

posed. Then, the unknown characteristic of T, depending on

Fs1;...;sk
; can be approximated by that of T	; under the dis-

tribution estimator selected. For the latter aim in practice, we
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can compute the corresponding sample characteristic of

B values T	ðbÞ ¼ T Z	ðbÞðs1Þ; . . .; Z	ðbÞðskÞ
� �

; derived for

B replicates fZ	ðbÞðs1Þ; . . .; Z	ðbÞðskÞg; for b ¼ 1; . . .;B and

large B.

4 Application examples

We now describe some examples of the practical useful-

ness of the methodology proposed in this manuscript to

generate Bootstrap replicates from F̂
ð2Þ
s1;...;sk

(or its continu-

ous counterpart ~Fs1;...;sk
), which does not require the esti-

mation of the corresponding multivariate distribution.

Firstly, these methods are applied to simulated data and,

then, an example with a real data set of air quality indi-

cators is presented.

4.1 Numerical studies with simulated data

In order to analyze the performance of the Bootstrap

approaches suggested in Sect. 3, we carried out several

numerical studies with simulated data on the unit square

D ¼ ½0; 1
 � ½0; 1
 � IR2: A complete spatial randomness

design was assumed, so the sample locations were uni-

formly distributed on D. With the spatial locations ti, ob-

tained for i ¼ 1; . . .; n and n = 50, stationary gaussian data

Z(ti) were generated, by assuming zero mean and by

selecting a valid model for the variogram to specify the

spatial dependency, as follows:

ZðsÞ ¼ lðsÞ þ YðsÞ; with lðsÞ ¼ 0

and YðsÞ� SGPð0; r2; qð:; 0:2ÞÞ

In particular, we considered the isotropic exponential and

spherical variograms, with a partial sill r2 equaling 1 or

2.25 (or asymptotic partial sill, for the exponential model),

a range / = 0.2 (or practical range, for the exponential

model) and a null nugget effect or a nugget effect

s2 = 0.09.

For the implementation of the resampling algorithm

given in the preceding section, we selected k = 15 sites,

fs1; . . .; skg; among the set of the sample locations

ft1; . . .; tng; when avoiding those points too close to the

boundaries of the observation region. To generate a

Bootstrap sample on these k locations, one needs to derive

weights p
ð2Þ
i1;...;ik

; as explained in steps 3 and 5 of the algo-

rithm described in Sect. 3. With this purpose, we took K as

the Epanechnikov kernel and the bandwidths h1; . . .; hk�1;

based on a balloon estimator, were computed by consid-

ering the m-nearest differences in the kernel function and

by guaranteeing that 15 %, for h1, and 30 %, otherwise, of

all distances were used. Given the probabilities p
ð2Þ
i1;...;ik

; the

indices ij were then chosen by a classic accept–reject

method. In this respect, note that the stochastic processes

Xð�Þ and Zð�Þ are the same when the trend function is

constant, as pointed out in Remark 2.

The smoother Bootstrap version was acquired by

applying the continuous distribution estimator ~Fs1;...;sk
in

(9), where function L was chosen as the standard normal

distribution. The corresponding optimal bandwidth was

elected by cross-validation, as explained in Sect. 2, among

a reasonable set of bandwidth candidates. Then, Bootstrap

replicates were generated for the simulated data, under the

aforementioned conditions, aiming to analyze the perfor-

mance of the proposed approaches for the following issues:

(1) The estimation of the variance of the spatial process,

as a common parameter for the overall process,

Var ZðsÞ½ 
 ¼ E ZðsÞ2
h i

� E ZðsÞ½ 
2:
(2) The comparison of the discrete and continuous

estimators of the univariate distribution, denoted by

F̂s and ~Fs; as given in (8) and (10), respectively.

(3) The approximation of the variogram, as a function

modeling the spatial dependence, cðtÞ ¼ 0:5Var

ZðsÞ � Zðsþ tÞ½ 
 ¼ 0:5 � E ZðsÞ � Zðsþ tÞð Þ2
h i

:

The first numerical study was designed to compare the

discrete and continuous resampling methods for approxi-

mation of the variance of the spatial process Z(s). Pro-

ceeding as described above, the theoretical expectations

involved were approximated through a sample average

obtained from B = 500 Bootstrap replicates and 200

samples. The data were simulated under the exponential

model, with r2 equal to 1 or 2.25, / = 0.2 and s2 = 0.09,

so the theoretical variance, whose true value is

Var[Z(s)] = r2 ? s2, amounts to 1.09 or 2.34. The result-

ing absolute errors associated to the estimation of the

variance of the spatial process are represented in Fig. 1.

The reduced values displayed in Fig. 1 show a good

behavior of both Bootstrap approaches, although giving

some advantage to the smooth version, despite the fact that

an additional bandwidth must be estimated. Furthermore,

one should bear in mind that the underlying continuous

distribution asks for a continuous tool to make inference

and, particularly, it avoids obtaining repeated values.

Aiming to proceed with a deeper analysis to compare

the proposed Bootstrap approaches, a new simulation study

was carried out, focused on the estimation of the unidi-

mensional distribution Fs. Observe that Fs(x) = F(x), for

all s, since the trend function has been taken to equal 0 at

all locations. Five thresholds x were selected, identifying

the quantiles 5, 25, 50, 75 and 95 % as being representative

of the distribution domain, respectively denoted by Pi, with

i = 5, 25, 50, 75, 95. For each x, we derived the discrete
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and continuous estimators from the sample locations

ft1; . . .; tng; given by:

F̂ðxÞ ¼
Xn

i¼1

Xn

j¼1

K
tj�ti
h1

� �
IfZðtiÞ� xgIfZðtjÞ� xg

Pn
i¼1

Pn
j¼1 K

tj�ti
h1

� �

~FðxÞ ¼
Xn

i¼1

Xn

j¼1

K
tj�ti
h1

� �
L x�ZðtiÞ

h

� �
L x�ZðtjÞ

h

� �

Pn
i¼1

Pn
j¼1 K

tj�ti
h1

� �

The discrete and the continuous Bootstrap methods were

used to approximate the errors of both estimators. With this

aim, k locations si were chosen, where B discrete and

continuous replicates were generated to derive the Bootstrap

analogues of F̂ðxÞ and ~FðxÞ; denoted by F̂	bðxÞ and ~F	bðxÞ for

the b-th replicate and b ¼ 1; . . .;B: Then, we computed

ðB�1
PB

b¼1ðF̂	bðxÞ � F̂ðxÞÞ2Þ1=2
and ðB�1

PB
b¼1ð ~F	bðxÞ

� ~FðxÞÞ2Þ1=2; which provide us with approximations of the

Bootstrap standard errors of the discrete and continuous

distribution estimators, respectively. Table 1 summarizes

the results obtained from 500 Bootstrap replicates and 200

data sets simulated under the exponential model, with

r2 = 1, / = 0.2 and s2 = 0.09.

The small values presented in Table 1 make clear the

good performance of the two Bootstrap approaches. In

generic terms, it seems advantageous to adopt the contin-

uous estimator ~F over the discrete estimator F̂; regardless

of the resampling method considered. On the other hand,

both Bootstrap procedures provide similar estimates of the

accuracy of ~F; while the difference is more evident for

approximation of the distribution through F̂:

Taking into account the foregoing results, the smoother

Bootstrap version will be applied in the following studies.

We will now compare the estimation of the total variance of

Z(s), with another spatial approach, such as the parametric

estimation. With this idea, parametric variograms were

obtained by selecting valid models and deriving maximum

likelihood (ML) estimates to approximate the unknown

parameters. The exponential and the spherical models were

used for the latter purpose, thus providing two different

settings, depending on whether the parametric candidate

coincides with the theoretical model or it is affected by

misspecification. The resulting values are shown in Table 2,

where data were simulated under the exponential and the

spherical models, with r2 = 1, / = 0.2 and s2 = 0.

According to the values presented in Table 2, the

Bootstrap replicates offer more accurate estimates of

Var[Z(s)] than the ML approaches, even when assuming

knowledge of the true variogram model. Surprisingly, the

prior knowledge of the parametric family is not always

Table 1 Mean and standard deviation of the standard errors (SE)

obtained for the discrete and continuous distribution estimators, for

500 discrete and 500 continuous Bootstrap replicates of 200 samples

Threshold

x

Distribution

estimator

Disc Boot SE

Mean (SD)

Cont Boot SE

Mean (SD)

P5 Discrete 0.0203 (0.0046) 0.0051 (0.0026)

Continuous 0.0025 (0.0017) 0.0024 (0.0014)

P25 Discrete 0.0512 (0.0111) 0.0330 (0.0081)

Continuous 0.0079 (0.0049) 0.0081 (0.0044)

P50 Discrete 0.0971 (0.0238) 0.0708 (0.0211)

Continuous 0.0151 (0.0082) 0.0158 (0.0078)

P75 Discrete 0.0843 (0.0183) 0.0627 (0.0182)

Continuous 0.0230 (0.0119) 0.0240 (0.0117)

P95 Discrete 0.0598 (0.0090) 0.0385 (0.0124)

Continuous 0.0297 (0.0155) 0.0310 (0.0158)

The data were simulated with the exponential model and each sample

size is 50
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Fig. 1 Estimated absolute

errors of Var[Z(s)] for 500

discrete and 500 continuous

Bootstrap replicates of 200

samples. The data were

simulated with the exponential

model and each sample size is

50. The true values of Var[Z(s)]

are 1.09 and 2.34 in the left and

right panels, respectively
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advantageous, as illustrated in the case presented in Fig. 2.

The latter can be explained by the fact that, under the

parametric approach, the approximation derived for the

total variance is strongly dependent on the appropriate

characterization of the model parameters rather than on the

overall variogram function.

In view of the latter, a further step in this research was to

analyze the behavior of the resampling methods when

dealing with the estimation of the variogram function c. To

do the latter, the integrated quadratic error, ISE ¼
R
ðcðtÞ

�ĉðtÞÞ2dt; was approximated numerically, for each data set

and for each of the estimators ĉ implemented, including a

valid version obtained through the Bootstrap approach. We

started by deriving the empirical Bootstrap estimates of the

variogram and then fitting them, through an iterated weigh-

ted least squares criterion, to a class of permissible vario-

grams, following the procedure developed in Shapiro and

Botha (1991). Proceeding in this way, the validity of the

resulting estimator was guaranteed with no prior specifica-

tion of a parametric model. Figure 2 represents the example

of a data set simulated with an exponential model together

with the resulting variogram estimators, one given by the

Bootstrap approach and the other two acquired by ML.

The procedure described above was repeated for 200

samples of size n = 50, for data simulated under the

exponential and spherical models, with r2 = 1, / = 0.2

and s2 = 0. The ISE values were computed and Table 3

summarizes the results obtained.

The results displayed in Table 3 give account of the

good performance of the Bootstrap approach when

addressed to estimate the spatial dependence of the random

process in terms of the variogram. The ML estimates

improve the behavior of the resampling procedure for small

distances, although the Bootstrap method competes with

the parametric approach for lags larger than 0.05.

4.2 Application to environmental monitoring data

In this section we derive an application of the Bootstrap

methodology to a real data set concerning biomonitoring of

arsenic pollution in the Central Region of Portugal, clas-

sified as NUTS II (NUTS stands for ’’Nomenclature of

Units for Territorial Statistics’’). The measured variable

represents the concentrations in moss samples, in micro-

grams per gram dry weight. The typical procedure, alter-

native to the more expensive solution of determining the

amount of pollutant directly, is to plant the moss and some

time later to collect it, which allows the concentration of

arsenic (and other heavy metals) to be measured. More

details on this Portuguese project of air pollution analysis

can be found in Martins et al. (2012).

The data set was collected in 2006 and it can be repre-

sented by fðti; ZðtiÞÞ; i ¼ 1; . . .; ng; with n = 98 and Z(ti)

identifying the log-transformed concentration of arsenic

(As) at location ti. We adopted the log-transformation to
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Fig. 2 The left panel represents one simulated data set with n = 50

sample locations, where each bullet size is proportional to the

corresponding measured value. The selected k = 15 locations in the

left panel are displayed after being reordered. The right panel

represents the variogram estimators, where the theoretical model

chosen to generate the data is the exponential one. The bullets in the

right panel represent the Bootstrap variogram estimates obtained for

500 replicates

Table 2 Mean and standard deviation of the absolute errors (AE)

associated to the estimation of Var[Z(s)], whose true value is 1, for

500 Bootstrap replicates and the ML estimates

Theoretical model Type of estimator AE

Mean (SD)

Exponential Bootstrap 0.149 (0.107)

ML exponential 0.313 (0.160)

ML spherical 0.372 (0.236)

Spherical Bootstrap 0.148 (0.084)

ML exponential 0.272 (0.277)

ML spherical 0.233 (0.164)

The data were simulated with the exponential and spherical models.

Total number of data sets is 200 and each sample size is 50
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reduce the impact of the presence of outliers. Afterwards,

there were still three gross outliers, which were replaced by

the average of the remaining values from that year’s survey.

Table 4 gives the summary statistics for the resulting data,

showing that the log-transformation leads to a more sym-

metric distribution. Furthermore, Fig. 3 presents the spatial

representation of log-transformed data, where each bullet

size is proportional to the corresponding measured value.

Aiming to exemplify the usefulness of the proposed

Bootstrap approaches in this application, we first estimate a

deterministic model for E[Z(s)] = l(s) with s ¼
ðUtmX;UtmYÞ 2 D � IR2 and D identifying the region of

NUTS II in Portugal. We then assume that the random

process Z(s) can be modeled as:

ZðsÞ ¼ lðsÞ þ YðsÞ

where fYðsÞ : s 2 Dg is a zero-mean strictly stationary

random process and l(s) = a0 ? a1 9 UtmY. These

regression coefficients were estimated, presenting statisti-

cally significant values a0 = -37.8 and a1 = 0.0083.

To derive weights p
ð2Þ
i1;...;ik

; associated to the multivariate

distribution F̂
ð2Þ
s1;...;sk

; one needs to select locations

s1; . . .; sk 2 D: So, we proceeded by choosing si, for i ¼
1; . . .; k and k = 40, among the 98 sample locations, as

represented in Fig. 3. The probabilities p
ð2Þ
i1;...;ik

were

acquired as explained in steps 3 and 5 of the resampling

algorithm given in Sect. 3, which allowed us to generate

Bootstrap samples by taking into account the dependence

structure of the underlying random process.

With 500 replicates, we estimated the total variance of

the process Yð�Þ; whose results are given in Table 5, where

three different approaches were considered. According to

the numerical studies presented in Sect. 4.1, the value

0.886 seems an accurate approximation of Var[Y(s)].

To highlight the potentiality of the Bootstrap techniques

within the scope of dependent data, one of their applica-

tions, pointed out in Sect. 1, will be addressed. In partic-

ular, we will focus on the estimation of the accuracy of a

spatial approach, such as the nonparametric spatial pre-

dictor proposed in Menezes et al. (2010), under stochastic

sampling design. The use of the latter kernel-based pre-

dictor demands an optimal bandwidth, which can be

defined as dependent on the target location, offering better

results than when a global optimal bandwidth is adopted. A

drawback of the aforementioned predictor is that no esti-

mation of the prediction error is available.

Here, we suggest to estimate standard errors through the

Bootstrap approaches specified along this manuscript. In

fact, if a prediction value is obtained for each Bootstrap

sample (for a total of B replicates), then a simple method to

approximate the unknown standard error is the standard

deviation of those prediction values. Results are summa-

rized in Table 6, for three points randomly chosen in the

NUTS II region, represented as sA, sB and sC in Fig. 3. The

nonparametric predictions were computed as established in

Table 3 Mean and standard deviation of the ISE values obtained

through the Bootstrap estimator combined with Shapiro and Botha’s

method and the ML estimators

Theoretical

model

Type of

estimator

ISE-lags

\ 0.05

Mean (SD)

ISE-lags

C 0.05

Mean (SD)

Exponential Bootstrap 0.0286 (0.0144) 0.0497 (0.0331)

ML exponential 0.0001 (0.0004) 0.0395 (0.0359)

ML spherical 0.0001 (0.0004) 0.0450 (0.0445)

Spherical Bootstrap 0.0355 (0.0154) 0.0337 (0.0256)

ML exponential 0.0011 (0.0027) 0.0934 (0.1704)

ML spherical 0.0004 (0.0009) 0.0506 (0.0729)

The data were simulated with the exponential and spherical models.

Total number of data sets is 200 and each sample size is 50
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Fig. 3 Spatial representation of moss data in the Central Region of

Portugal (NUTS II). The size of the bullets, representing the sampled

locations, is proportional to the measured value. The points marked

with numbers are used to generate the Bootstrap replicates. The points

identifying the three locations { sA, sB, sC } are the goal of prediction

for Z(.)

Table 4 Summary statistics for arsenic pollution levels measured in

the Central Region of Portugal (NUTS II)

Mean Median SD Minimum Maximum

Untransformed 1.24 0.57 2.45 0.03 19.32

Log-transformed -0.49 -0.55 0.98 -2.30 2.53
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Menezes et al. (2010), by using optimal local bandwidths

equal to 75.5, 36.9 and 90, for sA, sB and sC, respectively.

For each nonparametric prediction, two different esti-

mates of the standard errors are presented, obtained by

considering either the discrete or the continuous versions of

the Bootstrap replicates. As complementary information,

we also present the prediction results derived by applica-

tion of the ordinary kriging (OK) in Table 6. The latter can

allow us to conclude that the Bootstrap estimators point out

smaller values for the standard errors than those obtained

through the OK. The largest standard errors are associated

to the location sB, where less information is available, since

that area includes less sampled data.

As a last note, we have back-transformed the predicted

values and added the trend information, to obtain the

estimates of the process Z(s) at those three target locations,

leading to ẐðsAÞ ¼ 1:153; ẐðsBÞ ¼ 0:878 and ẐðsCÞ ¼
0:354 (under OK, the corresponding values were 1.187,

0.818 and 0.345). Knowing that 50 % of the locations have

a concentration of arsenic smaller than 0.57, it is possible

to conclude that sC is one of the locations with lower

intensity of air pollution, as opposed to sA and sB.

5 Conclusions

In this paper consistent estimators of the multivariate dis-

tribution function have been proposed, which can be used

as the basis for implementation of Bootstrap approaches in

the spatial setting. The resampling method derived from

the discrete estimator is an adaptation to this setting of the

naive Bootstrap described in Efron (1979) and has similar

properties, such as consistency or the fact that nearly every

sample derived from it contains repeated values. The

alternative version, obtained in the current work by

applying a continuous distribution estimator, is the ana-

logue of the smoothed Bootstrap approach for independent

data (Lejeune and Sarda 1992). An advantage of the second

approach is that it entails resampling from a continuous

distribution and, therefore, it avoids the aforementioned

problem of providing repeated data in the replicates.

However, an additional uncertainty is introduced, in terms

of the bandwidth parameter that must be estimated. For

independent data, the question of whether the smoothed

Bootstrap is superior to the naive alternative, and for which

smoothing parameter, has been analyzed by a few authors

(Silverman and Young 1987; Hall 1992), but no definitive

answers exist. Therefore, the difficulties to check the

behavior of the resampling approaches in the spatial setting

increase, because of the underlying dependence structure.

In this respect, although further research should be devel-

oped, the numerical studies conducted in the current work

give account of a good performance of both procedures,

with a little superiority of the continuous spatial Bootstrap,

when the bandwidth parameter is appropriately selected.

On the other hand, as pointed out in the introduction, the

Bootstrap methodology allows the researchers to solve dif-

ferent statistical problems inherent to the estimation process.

It must not be intended as a substitute of other techniques

designed for addressing specific issues, but for complement-

ing them and adding extra information. From this perspective,

the Bootstrap proposals offer an attractive alternative for

resampling in the spatial setting. Such approaches aim at

reproducing the data dependence structure, before deriving

subsamples. In this respect, the numerical studies developed

with simulated data give account of the good behavior of the

resampling methods, which can be even advantageous over

other procedures for estimation of the variance or the vario-

gram function, although the really important thing is that they

help capture the main features of the underlying spatial pro-

cess. Consequently, the generation of replicates offer an

accurate alternative to derive estimates of the standard error or

any other unknown characteristic of the statistical approach

that can be considered.
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Table 5 Estimates of the variance of the log-transformed arsenic

pollution level, by considering the discrete and continuous versions of

the Bootstrap replicates and assuming an exponential covariance

model fitted to the observed data through ML

Disc

Bootstrap

Cont

Bootstrap

ML

exponential

Variance estimate 0.798 0.886 0.789

Table 6 Estimates of the prediction error of the log-transformed

arsenic pollution level at locations sA, sB and sC. For each nonpara-

metric prediction (NP Pred), two different estimates of the standard

errors (SE) are presented, by considering the discrete and continuous

versions of the Bootstrap replicates. Results from OK are given in the

two right columns

NP

Pred

Disc Boot SE Cont Boot SE OK

Pred

OK SE

ŶðsAÞ 0.270 0.229 0.234 0.299 0.820

ŶðsBÞ 0.007 0.518 0.553 -0.064 0.854

ŶðsCÞ -0.183 0.191 0.199 -0.209 0.827
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Appendix 1: Consistency of F̂
ð2Þ
s1;...;sk

x1; . . .; xkð Þ

To check that consistency follows for F̂
ð2Þ
s1;...;sk

x1; . . .; xkð Þ;
the hypotheses described below will be assumed:

(i) fZðsÞ 2 IR : s 2 D � IRdg can be modeled as given in

(1).

(ii) D = kD0, for some k ¼ kðnÞ �!n!þ1þ1 and bounded

D0 � IRd:

(iii) ti = kui, for 1 B i B n, where u1; . . .; un denotes a

realization of a random sample of size n drawn from

a density function g0 considered on D0.

(iv) Zð�Þ is a-mixing, with a(r) = O(r-a), for r [ 0 and

some constant a [ 0.

(v) K is d-variate and symmetric density function with

compact support.

(vi) fh2
1 þ��� þ h2

k�1 þ k�1 þ n�kkdðk�1Þh�d
1 . . .h�d

k�1g �!
n!þ1

0:

(vii) Fs1;...;sk
ðx1; . . .; xkÞ is three-times continuously dif-

ferentiable as a function of ðs1; . . .; skÞ:

We will prove that the bias and the variance of

F̂
ð2Þ
s1;...;sk

x1; . . .; xkð Þ are of the respective orders ðh2
1 þ � � � þ

h2
k�1Þ and ðn�kkdðk�1Þh�d

1 . . .h�d
k�1 þ k�dÞ and, therefore, tend

to zero as the sample size n increases, which would yield the

consistency of the distribution estimator. To do the latter,

conditions (i)–(vii) will be applied and a similar procedure as

in the proof of Theorem 3.1 in Hall and Patil (1994).

Write Ai1;i2 ¼
p

ti1
;ti2

;h1
s1 ;s2Pn

i1¼1

Pn

i2¼1
p

ti1
;ti2

;h1
s1 ;s2

and Aij�1;ij ¼

p
tij�1

;tij
;hj�1

sj�1 ;sjPn

ij¼1
p

tij�1
;tij

;hj�1

sj�1 ;sj

for j ¼ 3; . . .; k: Firstly, we can take into

account that, for large n:

E F̂ð2Þs1;...;sk
x1;...;xkð Þ

h i
¼E E F̂ð2Þs1;...;sk

x1;...;xkð Þtij ;8j
h ih i

¼
Xn

i1¼1

...
Xn

ik¼1

E Ai1;i2 ...Aik�1;ik E IfXðti1 Þ�x1g...IfXðtik Þ�xkgtij ;8j
h ih i

¼
Xn

i1¼1

...
Xn

ik¼1

E Ai1;i2 ...Aik�1;ik Fti1 ;...;tik
x1þl s1þ ti1�s1ð Þð

h

�l s1ð Þ;...;xkþl skþ ti1�s1ð Þ�l skð ÞÞ
i

¼
Xn

i1¼1

...
Xn

ik¼1

E Ai1;i2 ...Aik�2;ik�1

h

�E Aik�1;ik Fti1�ti1þs1;...;tik�ti1þs1
x1;...;xkð Þtij ;j�k�1

h ii

on account of (3).

Now, the last conditional expectation will be approxi-

mated. With this aim, bear in mind that:

E K
sk�1� sk�ðtik�1

� tikÞ
hk�1

� �
Fti1�ti1þs1;...;tik�ti1þs1

x1; . . .;xkð Þ
� 	

¼
Z

K
sk�1� sk�ðtik�1

�kuÞ
hk�1

� �

Fti1�ti1þs1;...;ku�ti1þs1
x1; . . .;xkð Þg0ðuÞdu� kdhd

k�1g0ð0ÞZ
K z1ð ÞFti1�ti1þs1;...;sk�sk�1þtik�1

�ti1þs1þhk�1z1
x1; . . .;xkð Þ

dz1E K
sk�1� sk�ðtik�1

� tikÞ
hk�1

� �� 	

¼
Z

K
sk�1� sk�ðtik�1

�kuÞ
hk�1

� �
g0ðuÞdu� kdhd

k�1g0ð0Þ

From the previous relations, it follows that:

E Aik�1;ik Fti1�ti1þs1;...;tik�ti1þs1
x1; . . .; xkð Þ

.
tij ; j� k � 1

h i

� n�1

Z
K z1ð ÞFti1�ti1þs1;...;sk�sk�1þtik�1

�ti1þs1þhk�1z1

x1; . . .; xkð Þdz1

and, therefore:

E F̂ð2Þs1;...;sk
x1; . . .; xkð Þ

h i

�
Xn

i1¼1

. . .
Xn

ik�1¼1

E Ai1;i2 . . .Aik�2;ik�1

Z
K z1ð Þ

�

� Fti1�ti1þs1;...;sk�sk�1�tik�1
�ti1þs1þhk�1z1

x1; . . .; xkð Þdz1
:

We can iterate the strategy above, based on applying an

appropriate conditional expectation and developing the

resulting term, to achieve that:

E F̂ð2Þs1;...;sk
x1; . . .; xkð Þ

h i

�
Z

. . .

Z
Fs1;s2þh1zk�1;...;skþh1zk�1þ���þhk�1z1

x1; x2; . . .; xkð Þ

� K z1ð Þ. . .K zk�1ð Þdz1. . .dzk�1

¼ Fs1;s2;...;sk
x1; x2; . . .; xkð Þ þ O h2

1 þ � � � þ h2
k�1

� �

With regard to the variance, one has for large

n that:

Var F̂ð2Þs1;...;sk
x1; . . .; xkð Þ

h i

¼ E F̂ð2Þs1;...;sk
x1; . . .; xkð Þ � E F̂ð2Þs1;...;sk

x1; . . .; xkð Þ
h i� �2

� 	

� V1 þ V2

where:
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V1 ¼
Xn

i1¼1

. . .
Xn

ik¼1

E A2
i1;i2

. . .A2
ik�1;ik

� IfXðti1 Þ� x1g. . .IfXðtik Þ� xkg

�h

�Fs1;...;sk
x1; . . .; xkð Þ2

�i

V2 ¼
Xn

i1¼1

. . .
Xn

ik¼1

Xn

j1¼1

. . .
Xn

jk¼1

�E Ai1;i2 . . .Aik�1;ik Aj1;j2 . . .Ajk�1;jk

h
IfXðti1 Þ� x1g. . .IfXðtik Þ� xkg

�

� IfXðtj1 Þ� x1g. . .IfXðtjk Þ� xkg�Fs1;...;sk
x1; . . .; xkð Þ2

�i

By using similar arguments as above, we could check that:

V1�

n�kkdðk�1Þh�d
1 ...h�d

k�1 Fs1;...;sk
x1;...;xkð Þ�Fs1;...;sk

x1;...;xkð Þ2
� �

g0ð0Þk
R

K zð Þ2dz
� �k�1

V2�k�d

Z
Fs1;...;sk ;s1þt;...;skþt x1;...;xk;x1;...;xkð Þ�Fs1;...;sk

x1;...;xkð Þ2
� �

dt

Consequently:

Var F̂ð2Þs1;...;sk
x1; . . .; xkð Þ

h i
¼ O n�kkdðk�1Þh�d

1 . . .h�d
k�1 þ k�d

� �

We could derive the dominant terms of the bias and the

variance of the distribution estimator as well as

asymptotically minimize the mean squared error (MSE)

of the distribution estimator, namely:

MSE F̂ð2Þs1;...;sk
x1; . . .; xkð Þ

h i
¼ Bias F̂ð2Þs1;...;sk

x1; . . .; xkð Þ
h i2

þ Var F̂ð2Þs1;...;sk
x1; . . .; xkð Þ

h i

to obtain the optimal bandwidths hj, for j ¼ 1; . . .; k � 1;

which would be dependent on unknown terms, such as the

multivariate distribution function itself and its second-

order derivatives.

Appendix 2: Consistency of ~Fs1;...;sk
x1; . . .; xkð Þ

To derive this proof, we will assume conditions (i)–(v),

together with:

(vi0) fh2
1 þ � � � þ h2

k�1 þ h2 þ k�1

þn�kkdðk�1Þh�d
1 . . .h�d

k�1g �!
n!þ1

0:

(vii0) Fs1;...;sk
ðx1; . . .; xkÞ is three-times continuously dif-

ferentiable as a function of ðs1; . . .; skÞ and as a

function of ðx1; . . .; xkÞ:
(viii) L is a univariate and symmetric density function

with compact support.

For large n, the aforementioned hypotheses yield that:

E ~Fs1;...;sk
x1; . . .; xkð Þ


 �
¼ E E ~Fs1;...;sk

x1; . . .; xkð Þ
�

tij ; 8j

 �
 �

¼
Xn

i1¼1

. . .
Xn

ik¼1

E Ai1;i2 . . .Aik�1;ik E L
x1 � Xðti1Þ

h

� ���

. . .L xk � XðtikÞ
h

� �.
tij ; 8j

ii

¼
Xn

i1¼1

. . .
Xn

ik¼1

E Ai1;i2 � . . . � Aik�1;ik




�
Z
L x1 � u1 þ lðs1 � ti1 þ s1Þ � lðs1Þ

h

� �

. . .L xk � uk þ lðsk � ti1 þ s1Þ � lðskÞ
h

� �

�fti1 ;...;tik
u1; . . .; ukð Þdu1. . .duk 


where ft1;...;tk denotes the joint density function of

ðZðt1Þ; . . .; ZðtkÞÞ:
We can integrate by parts and apply relation (3) to obtain that:

E ~Fs1;...;sk
x1; . . .; xkð Þ


 �

¼
Xn

i1¼1

. . .
Xn

ik¼1

E Ai1;i2 . . .Aik�1;ik

Z
L y1ð Þ. . .L ykð Þ

�

� Fti1 ;...;tik
x1 � hy1 þ lðs1 � ti1 þ s1Þ � lðs1Þ; . . .; xkð

� hyk þ lðsk � ti1 þ s1Þ � lðskÞÞdy1. . .dyk

	

¼
Xn

i1¼1

. . .
Xn

ik¼1

E Ai1;i2 . . .Aik�1;ik

Z
L y1ð Þ. . .L ykð Þ

�

�Fti1�ti1þs1;...;tik�ti1þs1
x1 � hy1; . . .; xk � hykð Þdy1. . .dyk

	

By proceeding with analogue arguments as those used

for the bias of F̂
ð2Þ
s1;...;sk

; it follows that:

E ~Fs1;...;sk
x1; . . .; xkð Þ


 �
�
Z

. . .

Z Z
. . .

Z
L y1ð Þ. . .L ykð Þ

� K z1ð Þ. . .K zk�1ð ÞFs1;s2þh1zk�1;...;skþh1zk�1þ���þhk�1z1

x1 � hy1; . . .; xk � hykð Þdz1. . .dzk�1dy1. . .dyk

¼ Fs1;s2;...;sk
x1; . . .; xkð Þ þ O h2

1 þ � � � þ h2
k�1 þ h2

� �

Finally, the approximation of the variance of the

continuous estimator will be addressed as given below:

Var ~Fs1;...;sk
x1; . . .; xkð Þ


 �
� W1 þW2

with:

W1 ¼
Xn

i1¼1

. . .
Xn

ik¼1

E A2
i1;i2

. . .A2
ik�1;ik

L x1 � Xðti1Þ
h

� ���

. . .L xk � XðtikÞ
h

� �
� Fs1;...;sk

x1; . . .; xkð Þ2
�	

W2 ¼
Xn

i1¼1

. . .
Xn

ik¼1

Xn

j1¼1

. . .
Xn

jk¼1

E Ai1;i2 . . .Aik�1;ik Aj1;j2 . . .Ajk�1;jk




� L x1 � Xðti1Þ
h

� �
. . .L xk � XðtikÞ

h

� �
L x1 � Xðtj1Þ

h

� ��

. . .L xk � XðtjkÞ
h

� �
� Fs1;...;sk

x1; . . .; xkð Þ2
�	
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Now, we can combine the arguments used for the bias of

the continuous estimator with those applied for the variance

of the discrete estimator to check that both terms, W1 and

W2, are asymptotically negligible, as established next:

Then, consistency yields for ~Fs1;...;sk
x1; . . .; xkð Þ; since its

bias and variance tend to zero, as the sample size increases.
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