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Abstract Functional data featured by a spatial depen-

dence structure occur in many environmental sciences

when curves are observed, for example, along time or

along depth. Recently, some methods allowing for the

prediction of a curve at an unmonitored site have been

developed. However, the existing methods do not allow to

include in a model exogenous variables that, for example,

bring meteorology information in modeling air pollutant

concentrations. In order to introduce exogenous variables,

potentially observed as curves as well, we propose to

extend the so-called kriging with external drift—or

regression kriging—to the case of functional data by means

of a three-step procedure involving functional modeling for

the trend and spatial interpolation of functional residuals. A

cross-validation analysis allows to choose smoothing

parameters and a preferable kriging predictor for the

functional residuals. Our case study considers daily PM10

concentrations measured from October 2005 to March

2006 by the monitoring network of Piemonte region (Italy),

with the trend defined by meteorological time-varying

covariates and orographical constant-in-time variables. The

performance of the proposed methodology is evaluated by

predicting PM10 concentration curves on 10 validation

sites, even with simulated realistic datasets on a larger

number of spatial sites. In this application the proposed

methodology represents an alternative to spatio-temporal

modeling but it can be applied more generally to spatially

dependent functional data whose domain is not a time

interval.

Keywords Functional data modeling � Functional

linear model � Residual kriging � Particulate matter �
Spatial dependence

1 Introduction

In recent years there has been an increasing interest in

modeling functional data that, in environmental studies,

often arise when dense sets of measurements are recorded

over a period of time or over some domain (depth or height

for instance). Statistical methods for analyzing this type of

data are enclosed in a new branch of statistics called

Functional Data Analysis (FDA; Ramsay and Silverman

2002, 2005; Ferraty and Vieu 2006). Over the last few

years the analysis of functional data has been the focal

attention of the statistical community. Functional data

models provide a suitable framework for the statistical

analysis of several environmental phenomena involving

continuous time evolution and/or spatial variation. The

functional autoregressive model in Salmerón and Ruiz-

Medina (2009) extends the classical autoregressive model

to the infinite-dimensional space context. In Ruiz-Medina

and Salmerón (2010) the problem of functional filtering of

an autoregressive Hilbertian (ARH) process, affected by

additive Hilbertian noise, is addressed when the functional

parameters defining the ARH(p) equation are unknown.

Pseudodifferential evolution models have been widely used

in the description of biological, geophysical and environ-

mental systems. As an interesting case, Ruiz-Medina and

Fernández-Pascual (2010) consider the case where
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functional sample information is available from such sys-

tems. Despite these references, the scarce amount of con-

tributions in the FDA inferential area has stood out. In

particular, more recently, attention has been directed to

spatially dependent functional data so that the term Spatial

Functional Statistics has been introduced; Delicado et al.

(2010), Ruiz-Medina (2012), Horváth and Kokoszka (2012,

Chap. 17-8), and Kokoszka (2012) give a review of recent

contributions and open challenges in this field. Specifically,

for geostatistical data, the problem to predict a curve at a

specified location using the curves at available locations

has been addressed in Giraldo et al. (2009, 2010, 2011),

Nerini et al. (2010) by generalizing univariate and multi-

variate geostatistical techniques to the functional context

and giving rise to the so-called functional kriging. Never-

theless, these recently developed geostatistical techniques

for functional data consider ordinary kriging models such

that the mean function of the process is supposed to be

constant. In many applicative contexts this assumption is

not realistic, hence there is need for methodologies suitable

for non-stationary functional data. In this context, Cabal-

lero et al. (2013) provide a solution to the problem of the

spatial prediction of functional data in the absence of sta-

tionarity when the spatial trend is modeled as a function of

the coordinates only. Actually Gromenko and Kokoszka

(2013) develop a methodology to estimate a mean function

that is a linear combination of known covariate functions,

but this mean function does not depend on space since it is

defined to represent the mean temporal evolution of spa-

tially distributed curves. Instead Temiyasathit et al. (2009)

propose a procedure to obtain spatial prediction of ozone

concentration profiles using meteorological variables. They

use multiple linear regression to model the wavelet coef-

ficients of the ozone profile as a function of the wavelet

coefficients of the profiles of meteorological variables. In a

later stage, kriging is used to interpolate the regression

coefficients at unsampled locations.

In classical geostatistics, spatial prediction for non-

stationary processes is performed by taking into account a

spatial trend (also called ‘‘drift’’) that is modeled as a

function of the coordinates only—in the Universal kri-

ging—or defined ‘‘externally’’ through some auxiliary/

exogenous variables—in the kriging with external drift

(KED) model. Being mathematically equivalent, also the

term Regression Kriging is used to specify that the drift and

residuals are fitted separately and then summed up after-

wards (Hengl et al. 2007). In this paper, we propose to

extend the KED model to the case of functional data by

means of a three-step procedure allowing for the intro-

duction of exogenous variables, both scalar and functional,

in a functional drift. We focus on the air quality monitor-

ing, and in particular on particulate matter that is the most

problematic pollutant for health and has only decreased

slightly over the last decade in Europe1, despite primary

PM emissions from transport have been reduced (but

emissions of primary PM from commercial, institutional and

households fuel combustion have increased) (EEA 2012). In

the Po Valley the limit values fixed by the European and

national directives (EU Council Directive 1999/30/EC) are

usually not met, especially in urban areas and during the

winter season. In this context, particulate matter concen-

tration spatial prediction is useful for assessing air quality

and health risk also where no monitoring stations are dis-

placed, and an effective prediction can be reached only by

taking into account meteorological and orographical

covariates. Since air quality pollutants and meteorological

variables are gathered along time, with a certain frequency,

we consider their underlying functional form and treat the

observed time series as functional data. Then, by including

meteorological and orographical information in the external

drift, we carry out the proposed functional kriging with

external drift (FKED) to predict curves of particulate matter

concentration. The dataset of our case study has already

been considered by Cameletti et al. (2011, 2012). In

Cameletti et al. (2011) six hierarchical models are com-

pared: they share a common large-scale component whereas

the residual detrended process is modeled by specifying

certain spatio-temporal covariance functions with increas-

ing complexity. The authors conclude that the model named

‘‘A1’’, whose residual process has a purely spatial covari-

ance function, is preferable because of good performance at

a reasonable computational cost (models are fitted by

MCMC); while the model called ‘‘C’’ has a slightly better

prediction capability but a larger computational cost [since a

spatial process evolving in time according to an AR(1)

equation is involved]. Such computational cost can be

reduced by implementing a stochastic partial differential

equations (SPDE) approach with the INLA algorithm, as

done in Cameletti et al. (2012) where predictions at the

same validation sites are obtained with slightly worst per-

formance but quite smaller computational time.

Here, with the same dataset, we adopt a functional data

approach such that the temporal component is hidden in the

data domain. Since the issue of which approach—between

functional and space–time geostatistics—should be used is

still open, we aim to compare the spatial prediction capa-

bility of our proposal at the same validation sites by means

of some performance indexes (also used in Cameletti et al.

2011). However, when many observations per functional

data are collected and there is interest in prediction of a

whole function—and not a single value—at an unvisited

site, geostatistics for functional data should be the natural

1 The European Environmental Agency has designated 2013 as the

Year of Air (see http://www.eea.europa.eu/highlights/2013-kicking-

off-the-2018year).
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approach. Even more if the functional data domain is not

temporal.

The paper is organized as follows. In Sect. 2 we propose

a methodology to carry out kriging with external drift for

functional data and suggest a criterion to choose the

smoothing parameters and find a preferable kriging pre-

dictor among three different alternatives. Then we apply

Functional KED to predict curves of particulate matter

concentration in Sect. 3, where results of a cross-validation

analysis are presented and an application on a validation

dataset allows to assess its spatial prediction capability. In

Sect. 4, we use the real dataset as a basis to simulate curves

spatially correlated and explore the large sample behavior

of the proposed procedure. A discussion with insights on

further developments follows in Sect. 5.

2 Kriging with external drift for functional data

2.1 Notations and assumptions

Let !s ¼ YsðtÞ; t 2 Tf g be a functional random variable

(f.r.v.) observed at location s 2 D � R
d; whose realization

is a function of t 2 T—that is a functional data—where T is

a compact subset of R (Ferraty and Vieu 2006). Assume

that we observe a sample of curves !si
; for si 2 D; i ¼

1; . . .; n; that take values in a separable Hilbert space of

square integrable functions. The set !s; s 2 Df g constitutes

a functional random field or a spatial functional process as

defined in (Delicado et al. 2010), that can be non-stationary

and whose elements are supposed to follow the model

!s ¼ ls þ �s: ð1Þ

The term ls is interpreted as a drift describing a spatial

trend while �s represents a residual random field that is

zero-mean, second-order stationary and isotropic, so that

(i) Eð!sÞ ¼ ls; s 2 D;

(ii) Eð�sÞ ¼ 0; s 2 D;

(iii) Covð�si
; �sj
Þ ¼ CðhÞ; 8 si; sj 2 D with h ¼ si�k

sjk:

At the generic site si; i ¼ 1; . . .; n; and at point t model

(1) can be rewritten as a functional concurrent linear model

(Ramsay and Silverman 2005)

Ysi
ðtÞ ¼ lsi

ðtÞ þ �si
ðtÞ; ð2Þ

with the drift

lsi
ðtÞ ¼ aðtÞ þ

X

p

cpðtÞCp;i þ
X

q

bqðtÞXq;iðtÞ; ð3Þ

where a(t) is a functional intercept, Cp,i is the pth scalar

covariate and Xq,i(t) is the qth functional covariate at site

si, cp(t) and bq(t) are the covariate coefficients. In the drift

(3) both scalar and functional covariates are included, and the

coefficients cp(t) and bq(t) are also of a functional nature,

allowing to estimate nonlinear effects of a covariate.

2.2 Functional kriging

In order to predict a curve at an unmonitored site s0, taking

into account exogenous variables in the drift, we propose a

three-step procedure. At the first step the functional regres-

sion model (2) with functional response and scalar and

functional covariates is fitted by generalized cross-validation

(GCV) as specified in Sect. 2.4, in order to estimate the drift

coefficients and obtain the functional residuals

esi
ðtÞ ¼ Ysi

ðtÞ � l̂si
ðtÞ

¼ Ysi
ðtÞ � âðtÞ þ

X

p

ĉpðtÞCp;i þ
X

q

b̂qðtÞXq;iðtÞ
" #

:

At the second step the residual curve prediction at the

unmonitored site s0 can be obtained by ordinary kriging for

functional data (OKFD) (Giraldo et al. 2011), according to

which

ês0
ðtÞ ¼

Xn

i¼1

kiesi
ðtÞ;

where the kriging coefficients ki 2 R are constant, so that

the predicted curve is a linear combination of data residual

curves. The weights ki are determined as the solution of a

linear system written to solve the optimization problem

min
k1;...;kn

Z

T

Var ês0
ðtÞ � es0

ðtÞð Þdt; s.t.
Xn

i¼1

ki ¼ 1;

where, similarly to classical geostatistics, some semi-

variogram values need to be known. In particular, the

kriging coefficients ki depend on the so-called trace-

semivariogram defined for a zero-mean weakly-stationary

process as tðhÞ ¼
R

T
thðtÞdt where thðtÞ ¼ 1

2
Var esi

ðtÞ�ð
esj
ðtÞÞ with the Euclidean distance h ¼ si � sj

�� ��: This is

estimated by (for further details see Giraldo et al. 2011)

t̂ðhÞ ¼ 1

2 NðhÞj j
X

i;j2NðhÞ

Z

T

esi
ðtÞ � esj

ðtÞ
� �2

dt;

where NðhÞ ¼ fðsi; sjÞ : si � sj

�� �� ¼ hg and |N(h)| is the

number of distinct elements in N(h). Once the trace-semi-

variogram is estimated for a sequence of G values hg, a

classical parametric model (exponential or Matérn for

example) can be fitted to the points ðhg; t̂ðhgÞÞ; g ¼
1; . . .;G; as in classical geostatistics.

As an alternative to the ordinary kriging, we can con-

sider ‘‘continuous time-varying kriging’’ for functional

data (CTKFD; Giraldo et al. 2010), providing

Stoch Environ Res Risk Assess (2014) 28:1171–1186 1173

123



ês0
ðtÞ ¼

Xn

i¼1

kiðtÞesi
ðtÞ;

where the kriging coefficients depend on t. This predictor is

a hybrid between ordinary kriging and the functional linear

concurrent (point-wise) model such as shown in (Ramsay

and Silverman 2005). The estimation of the functional

parameters kiðtÞ; i ¼ 1; . . .; n; is carried out by using an

approach based on the use of Nb basis functions. The

curves and the functional parameters are represented in

terms of basis functions, that is

esi
ðtÞ ¼

XNb

l¼1

ailBlðtÞ and kiðtÞ ¼
XNb

l¼1

bilBlðtÞ: ð4Þ

The coefficients ail are assumed to form a multivariable

random field alf gNb
l¼1 with al ¼ ða1l; . . .; anlÞ and multivariate

geostatistics, such as a linear model of coregionalization

(LMC) (Wackernagel 1995), is applied to estimate cross-

covariances. Then an optimization problem is solved to have

a BLUP so that bil are estimated (for further details see

Giraldo et al. 2010).

Another option is considering the so-called ‘‘functional

kriging total model’’ (FKTM; Giraldo et al. 2009; Nerini

et al. 2010) where the kriging coefficients are defined on

T 9 T and the prediction at t is obtained integrating over

T, that is

ês0
ðtÞ ¼

Xn

i¼1

Z

T

kiðs; tÞesi
ðsÞds:

Again the curves and the functional parameters

kiðs; tÞi ¼ 1; . . .; n are expanded in terms of Nb basis

functions, as

esi
ðtÞ ¼

XNb

l¼1

ailBlðtÞ and kiðs; tÞ ¼
XNb

j¼1

XNb

l¼1

ci
jlBjðsÞBlðtÞ;

and again a LMC is fitted in order to give a solution to the

problem of estimating the functional parameters ki(s, t)

through the estimation of cjl
i .

Finally, at the third stepwe get the prediction at the

unmonitored site s0 by adding—as in the classical regres-

sion kriging—the two terms, that is

Ŷs0
ðtÞ ¼ l̂s0

ðtÞ þ ês0
ðtÞ;

where l̂s0
ðtÞ ¼ âðtÞ þ

P
p ĉpðtÞCp;0 þ

P
q b̂qðtÞXq;0ðtÞ

depends on the covariate values Cp,0 and Xq;0ð�Þ at the site s0.

2.3 Choosing the smoothing parameters and evaluating

kriging predictors

Despite the functional framework, data are usually gath-

ered as a finite discrete set of pairs ðtj; yijÞ; tj 2 T ; j ¼

1; . . .;M; i ¼ 1; . . .; n; and (unless there is no observational

noise)

yij ¼ Ysi
ðtjÞ þ dij;

where dij represents a measurement error and Ysi
ð�Þ is a

continuous function that corresponds to a realization of the

functional random field !s; s 2 Df g at the site si. The set of

points tj
� �M

j¼1
� T can be considered the same for all

functions in a functional dataset, and often these points are

evenly spaced in T. We make here these assumptions but in

general the set of points where a curve is observed could

vary from site to site. In the latter case, more attention

needs to be paid when converting discrete data to func-

tional data (by using for example free knots for the splines

smoothing introduced below).

The conversion from discrete data to curves involves

smoothing, and linear combinations of B-spline functions

Bl(t) (spline functions are constructed by joining polyno-

mials of degree d together at points called ‘‘knots’’) are

used since they are flexible and appropriate for use in

general environmental variables, while Fourier basis

functions are appropriate when in presence of periodic data

(Ramsay and Silverman 2005).

Then, for all t the curve Ysi
ðtÞ is estimated by

~Ysi
ðtÞ ¼

XKþdþ1

l¼1

ĉi
lBlðtÞ; ð5Þ

where d is the spline degree (in the following d = 3 so that

we have cubic splines) and K the number of interior knots

in the domain T = (a, b) of the function Ys_i. Note that the

number of basis functions in (5) is now Nb = K ? d ? 1

and smoothed data ~Ysi
ðtjÞ will be used to fit Model (2) in

the case study presented in Sect. 3, since we assume to

have observational noise.

Spline coefficients ci ¼ ðci
1; . . .; ci

Kþdþ1Þ are estimated,

for each i, by adopting a penalized least squares criterion

PENSSEðciÞ ¼
X

j

ðyij � Ysi
ðtjÞÞ2 þ g

Z

T

½D2Ysi
ðtÞ�2dt;

ð6Þ

where Ys_i(t) =
P

l=1
K?d?1 cl

i Bl(t), g is the penalty parame-

ter, D2 denotes the second derivative and the penalty term

is chosen as the integrated square of the second derivative

that quantifies the total curvature of the function (and hence

its roughness). The parameter g controls the trade-off

between the fit to the observed data and the smoothness of

the fitted curve, so that when g is large the fitted curve is

smoother but the data fits worse. In order to estimate spline

coefficients by minimizing PENSSE we need to fix a value

for g and, in addition, we need to choose a sequence of

K interior knots n ¼ ðn1; n2; . . .; nKÞ: By taking equally
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spaced knots in T = (a, b) we need only to fix the number

of knots K, besides g, while d = 3 is fixed.

Since the aim here is to predict a whole function

Ys_0(t) at an unmonitored site s0, we adopt a choice crite-

rion based on leave-one-out cross-validation (as introduced

in Giraldo et al. 2010, 2011). Data gathered at each site si

is temporarily removed from the dataset and a smoothed

function is predicted at this location using a functional

kriging predictor based on the remaining smoothed func-

tions, for K 2 ½Kmin;Kmax� and g 2 ½gmin; gmax�: Then the

optimal values (K*, g*) are those minimizing the function

FCVrðK; gÞ ¼
Xn

i¼1

SSEðiÞ ¼
Xn

i¼1

XM

j¼1

yij � Ŷsi
ðtjÞðiÞ

� �
2;

ð7Þ

where Ŷsi
ðtjÞðiÞ is the prediction at si evaluated at tj, by

leaving si data out of the sample. In (Giraldo et al. 2010,

2011) a similar procedure has been called functional cross-

validation and the objective function FCV contains squared

differences between smoothed data and predictions. Here

we call the function FCVr—where r stands for raw—to

stress the fact that raw data yij are compared to the pre-

dicted values Ŷsi
ðtjÞðiÞ when evaluating SSE at each site.

This is motivated by the fact that using smoothed data
~Ysi
ðtjÞ instead of raw data yij in (7) would provide a min-

imum value when K is small and g large (we have observed

this in our case study); in that case the smoothed functions
~Ysi
ðtÞ would be close to the overall mean function and the

predictions would be easier to obtain—with SSE smaller—

but they would be too smooth in the air quality context,

where we want to predict concentration peaks that people

breaths (removing only the observational noise).

Besides the choice of the smoothing parameters, the

function FCVr allows to compare the three alternatives

OKFD, CTKFD and FKTM at the second step of the

procedure proposed in this paper [also by looking in detail

SSE(i) values]. Moreover, in order to compare our proposal

to competitors, such as Bayesian hierarchical models in

(Cameletti et al. 2011) (for which cross-validation is

computationally unfeasible), we use 10 validation sites and

some prediction capability indexes in Sect. 3.3.

2.4 Implementation details

To implement our proposal all computations are coded in R

(R Development Core 2012). First of all, the conversion to

functional data is realized by using the fda package

(Ramsay et al. 2012) that also contains the function fRe-

gress for fitting a concurrent functional linear model, as

shown in (Ramsay et al. 2009, Chap. 10). However, only

univariate independent variables are currently allowed and

indeed the case of a functional response prediction in

practice remains largely unexplored. Then to implement

the first step of our procedure we need to figure out how

to estimate the covariate coefficients in the drift (3) in an

alternative way. In classical geostatistics, ls is seen as a

deterministic large scale component and when it is sup-

posed to depend on exogenuous variables the related

coefficients are estimated by least squares criteria. In the

functional framework, where the covariate coefficients are

also functional, we follow Ivanescu et al. (2012) who

propose a general framework for smooth regression of a

functional response on one or multiple functional pre-

dictors by re-writing a functional linear model as a

standard additive model. In particular in our model the

functional coefficients in (3) are assumed to be expand-

able as

aðtÞ ¼
Xk0

l¼1

A0;lðtÞc0;l; cpðtÞ ¼
Xkp

l¼1

ap;lðtÞcp;l and

bqðtÞ ¼
Xkq

l¼1

aq;lðtÞcq;l;

where A0,l(t), ap,l(t) and aq,l(t) are known basis functions,

while c0,l, cp,l and cq,l are the related coefficients (to be

estimated). Then we can write

cpðtÞCp;i ¼
Xkp

l¼1

ap;lðtÞCp;icp;l ¼
Xkp

l¼1

Ap;l;iðtÞcp;l;

and

bqðtÞXq;iðtÞ ¼
Xkq

l¼1

aq;lðtÞXq;iðtÞcq;l ¼
Xkq

l¼1

Aq;l;iðtÞcq;l;

so that the functional linear model (2) can be re-written as a

standard additive model

Ysi
ðtÞ ¼

Xk0

l¼1

A0;lðtÞc0;l þ
X

p

Xkp

l¼1

Ap;l;iðtÞcp;l

þ
X

q

Xkq

l¼1

Aq;l;iðtÞcq;l þ �si
ðtÞ;

where Ap,l,i(t) = ap,l(t)Cp,i and Aq,l,i(t) = aq,l(t)Xq,i(t) are

known because Cp,i and Xq,i(t) are ‘‘observed’’ without

noise. This representation makes it possible to fit a con-

current functional linear model by means of the robust

mgcv package (Wood 2012a), where the underlying rep-

resentation and estimation of the models is based on a

penalized regression spline approach, with automatic

smoothness selection by using the generalized cross vali-

dation (GCV) criterion (see Wood 2004, 2011). This entails

that k0, kp and kq are chosen as very large inside the GCV

procedure and penalties are designed to suppress excessive

roughness of the functional parameters.
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Then, at the second step, we apply kriging for functional

data in three alternative ways to the functional residuals in

order to get predictions at the temporarily out of sample

site in cross-validation or at the 10 validation sites. The

first method OKFD is implemented by means of the geofd

package (Giraldo et al. 2012) that includes the automatic

choice of a model (in a list) for a trace-variogram, by

minimizing the SSE between the theoretical variogram and

the empirical one. Instead CTKFD and FKTM are carried

out by our own R code (available upon request) that takes

advantage of the package gstat (Pebesma 2004) when fit-

ting a linear coregionalization model. By adding predicted

drifts and residuals, at the third step, we obtain predicted

curves of the response variable that are compared with the

observed time series later.

3 Spatial prediction of PM10 curves

3.1 Data

Our case study considers daily PM10 concentrations (in lg/

m3) measured from October 2005 to March 2006 (so that

M = 182) by the monitoring network of Piemonte region

(Italy) in 24 sites (red triangles in Fig. 1). For model per-

formance assessing we have 10 extra validation stations

(blue dots in Fig. 1) as in (Cameletti et al. 2011, 2012),

where the same dataset is considered. We carry out a cross-

validation analysis in the following section, but the set of

validation sites allows us to compare our results with those

in (Cameletti et al. 2011). The exogenous variables in the

trend term are: (i) coordinates (UTMX and UTMY, in km)

and altitude (A, in m), that are scalar; (ii) daily maximum

mixing height (HMIX, in m), daily total precipitation

(PREC, in mm), daily mean wind speed (WS, m/s), daily

mean temperature (TEMP, in �K) and daily emission rates

of primary aerosols (EMI, in g/s), that are functional. Note

that the time-varying variables are obtained from a nested

system of deterministic computer-based models imple-

mented by the environmental agency ARPA Piemonte

(Finardi et al. 2008). For a complete description and pre-

liminary analysis of the data we refer to (Cameletti et al.

2011). In order to stabilize the within-station variances and

making the marginal distribution of PM10 data approxi-

mately normal, we also choose to transform data by the

logarithm; Fig. 2 shows the curves of log(PM10), obtained

by using cubic splines, at the 24 monitoring sites. More-

over, since the ranges of the covariates are quite different, a

standardization procedure is applied subtracting the mean

and dividing by the standard error computed considering

the 24 monitoring stations (note that functional covariates

are standardized after the smoothing step).

3.2 Cross-validation

The leave-one-out cross-validation procedure described in

Sect. 2.3, is applied to find the optimal smoothing param-

eters (K* and g*) and to compare the three alternatives for

kriging functional residuals. For the number of interior

knots K we fix the set of possible values 25, 51, 77, 90, 103,

116, 129, 142, 155, such that there are from 1 to 6 knots per

week (in the dataset we have 26 weeks). Note that

K ? 4 = Nb is the number of spline coefficients to be

Fig. 1 Locations of the 24 PM10 monitoring sites—red triangles—

and 10 validation stations—blue dots. (Color figure online)

Fig. 2 Smoothed time series of log(PM10) at the 24 monitoring sites

(color changes with sites)
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estimated—see Delicado et al. (2010)—that is also equal to

the number of considered basis functions. Instead for the

penalty parameter g we take—since it is usual to explore g
values for a few log units (Ramsay et al. 2009)—the set of

possible values 0, 10, 102, 103, 104, defined as a power of

10 and visualized on a logarithmic scale. Clearly, when

g = 0 the criterion (6) is not penalized and the fitted curve

could be very close to data, as much as possible with the

selected basis functions (cubic splines here). When OKFD

is applied, an automated algorithm chooses the exponential

model for the trace-variogram almost always (sometime a

spherical one is chosen during the cross-validation). For

CTKFD and FKTM, based on a preliminary exploration of

the dataset, an exponential model was used for all direct

variograms and cross-variograms for the LMC.

Figure 3 (left) shows the contour plot of the function

FCVr(K, g) in case of OKFD at the second step, using a

logarithmic scale for g. The FCVr surfaces for the alter-

natives CTKFD and FKTM—not reported here—are very

similar although their values are generally slightly larger,

while for a few values of (K, g)—as for example (155, 0) in

the CTKFD case—FCVr becomes very large or impossible

to evaluate for singularity problems; i.e. for some sites SSE

is missing or too large (and so FCVr is not plotted in the

profiles in Fig. 3, right). This fact occurs when the number

of interior knots K is large, making large the number Nb of

‘‘variables’’ in the LMC to fit in CTKFD and FKTM pro-

cedures and small the functional residuals to krige.2 Any-

way, in all the three cases, FCVr is smaller when g = 0.

Hence, to compare the cases of minimum FCVr, the pro-

files FCVr(K, 0) are shown in Fig. 3 (right). It is evident

that FCVr decreases sharply until K = 77, then the rate of

decrease is smaller but in the OKFD case we can observe a

small increasing for the largest K. It is also clear that,

among the three methods, OKFD is preferable in terms of

FCVr and Table 1 shows values of the 24 SSE(i) for the

three cases (OKFD, CTKFD and FKTM) when K = 116

and g = 0. Overall, SSE(i) values are very close in the

CTKFD and FKTM cases. In a few cases (see numbers in

italic font) OKFD has slightly larger values but there is

only one case that worths to be noted, that is site 14 CN—

Piazza II Regg. Alpini, where SSE is quite larger for

OKFD. However this site is outside the spatial domain

when it is left out in cross-validation, and the same happens

to site 24 Verbania where the worst performance occurs.

Moreover OKFD is preferable because CTKFD and

FKTM could be numerically instable and involve the fitting

of a linear coregionalization model that is highly compu-

tational time demanding (while OKFD is fast). To apply

OKFD in our case study, we observe in Fig. 3 (right) that

the values minimizing FCVr are K* = 142 and g* = 0,

although (116, 0) and (129, 0) give very close results. In

fact Fig. 4 shows very similar predicted curves at the 24

sites (when left out one at a time) obtained by OKFD at the

second step and the couple (K, g) equal to (116, 0) and

(142, 0).

3.3 Prediction at the validation sites

Following the results of the cross-validation, we apply our

proposal with OKFD at the second step and (K, g) =

(142, 0). Let us note that the number of interior knots

K, related to the number of basis functions Nb = K ? 4, has

to be fixed at the beginning of the application (for the

smoothing step and for fitting a FLM to the smoothed data) so

that the first step results change if K changes.

The functional intercept in (3) is decomposed as

a(t) = a1 ? a2(t), since in fitting an additive model the

smooth terms are subject to sum-to-zero identifiability

constraints (Wood 2004). The estimated scalar intercept is

â1 ¼ 3:93 on the log scale, that corresponds to an average

pollution level of about 50.9 lg/m3 while â2ðtÞ is shown in

Fig. 5, where we can observe that it changes in time mostly

at the beginning and end of the considered winter semester.

The estimated functional coefficients ĉpðtÞ of the scalar

covariates UTMX, UTMY and A, and b̂qðtÞ of the func-

tional covariates HMIX, PREC, WS, TEMP and EMI are

also shown in Fig. 5. All covariates are significant (p val-

ues for the smooth terms are obtained as discussed in Wood

2012b) as they were in (Cameletti et al. 2011), but now we

can observe how they vary with time. In fact, for all the six

models considered in (Cameletti et al. 2011) the estimated

covariate coefficients—that are scalar—are negative except

the one for the emissions (EMI). Instead our results show

estimated functional coefficients varying with time with

different behaviours, although they are negative in most of

the t domain except for HMIX and TEMP—that change

sign in time—and EMI that has a positive relationship with

PM10, as expected. Hence the importance of meteorologi-

cal variables on air quality is confirmed, as well as the

significant effect of altitude (A) in reducing PM10

concentration.

By applying the second and third step of the proposed

FKED, we get predictions in the 10 validation sites (blue

dots in Fig. 1). To have a detailed example, Fig. 6 shows

raw data yij, smoothed data ~Ysi
ðtÞ; the predicted drift l̂si

ðtÞ
and the predicted curve Ŷsi

ðtÞ at the sites 25 Biella—Largo

Lamarmora and 30 Saliceto. The contribution of kriging

residuals is clear at site 25, where the predicted curve has a

local (in time) variability that the predicted drift does not

reach. Instead at site 30, where we have the worst results,

2 Note that when we apply CTKFD and FKTM to the whole dataset

(24 sites for fitting and 10 sites for validation) in Sect. 3.3 this kind of

numerical problems does not occur.
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the predicted drift is—for the most part of time—not close

to the observed data and the contribute of kriging does not

compensate enough because this site is the farthest from

the 24 sites used to fit the model.

In order to assess the spatial prediction capability of

FKED, we compare observed and predicted data at the 10

validation sites, by evaluating performance indexes as in

Cameletti et al. (2011) (a simple residual analysis is also

performed in Cameletti et al. 2012). Since we evaluate dif-

ferent predictors, we take as observed data the raw data

yij, despite their observational noise, also because smoothed

data change with (K, g). We consider four indicators based

on the differences between predicted and observed data: the

usual root mean square error (RMSE) and the correlation

coefficient q, together with the normalized mean bias factor

(NMBF) (Yu et al. 2006) and the weighted normalized mean

square error of the normalized ratios (Poli and Cirillo 1993).

For a fixed location si, let zj and ẑj be the observed and

predicted time series (in our case yij and bYsi
ðtjÞ) respectively,

with j ¼ 1; . . .;M and let �z and �̂z be the corresponding mean

values. The normalized mean bias factor is defined on R by

Fig. 3 FCVr surface for OKFD

(left) and FCVr(K, 0) profiles in

the three kriging cases (right)

Table 1 SSE(i) over 24 fitting

sites (red triangles in Fig. 1) for

FKED with the three alternative

second steps: OKFD_116_0,

CTKFD_116_0 and

FKTM_116_0 corresponds to

OKFD, CTKFD and FKTM

respectively with K = 116 and

g = 0

Site OKFD_116_0 CTKFD_116_0 FKTM_116_0

1 AL—Piazza D’Annunzio 23.694 27.047 27.176

2 Alba 35.044 41.409 42.075

3 Arquata Scrivia 25.578 29.711 30.387

4 AT—Scuola D’Acquisto 23.885 25.055 25.028

5 BI—Via Don Sturzo 14.476 13.831 13.853

6 Borgaro 19.306 19.162 18.931

7 Borgomanero 17.488 17.928 17.916

8 Borgosesia 9.866 10.238 10.333

9 Buttigliera Alta 17.932 20.806 20.936

10 Buttigliera d’Asti 19.431 20.555 20.688

11 Carmagnola 24.827 30.201 30.385

12 Casale Monferrato 50.689 53.424 53.690

13 Cerano 25.436 28.552 28.857

14 CN—Piazza II Regg. Alpini 93.106 71.544 70.611

15 Cossato 9.625 10.960 11.074

16 Druento La Mandria 24.846 26.701 27.024

17 NO—Viale Verdi 16.778 18.217 18.321

18 Novi Ligure 20.868 21.143 21.247

19 Pinerolo 17.068 18.997 19.109

20 TO—Lingotto 30.988 31.367 31.525

21 TO—Via Consolata 14.614 14.374 14.183

22 Tortona 22.645 23.191 23.568

23 VC—Corso Gastaldi 19.185 21.048 21.072

24 Verbania 118.944 127.802 129.053

FCVr 696.319 723.263 727.042
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Fig. 4 Cross-validation results: 24 predicted curves when K = 116 (left) and K = 142 (right), g = 0, with OKFD at the second step

Fig. 5 Estimated functional coefficients. First row â2ðtÞ; ĉUTMXðtÞ; ĉUTMY ðtÞ: Second row ĉAðtÞ; b̂HMIXðtÞ; b̂PRECðtÞ: Third row

b̂WSðtÞ; b̂TEMPðtÞ; b̂EMIðtÞ:
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and has the advantage of both avoiding inflation due to low

values of observations and overcoming the asymmetry

problem between overestimation and underestimation, as

discussed in (Yu et al. 2006). The weighted normalized

mean square error of the normalized ratios is defined by

WNNR ¼
P

j s2
j ð1� kjÞ2P

j sjkj

;

where sj ¼ zj=�z is the weight and kj ¼ exp �j lnðẑj=zjÞj
� �

is

the normalized ratio. WNNR is positive and has the

advantage of taking properly into account the peaks of

observed data (see the discussion in Poli and Cirillo 1993).

Table 2 shows values of the four indexes in the case of

FKED with OKFD at the second step and (K, g) =

(142, 0), called ‘‘OKFD_142_0’’ in the following (and in

Fig. 7). Predictions are generally good, with a slight

underestimation in 7 out of 10 sites (see NMBF). Corre-

lations between predicted and observed data is above 0.75,

except for the site 30-Saliceto where we get the worst

results in terms of prediction performance for all the four

indexes, as expected by looking at Fig. 6 (bottom). That

figure also shows one of the sites where FKED performs

better, that are 25 and 33: for both of them the kriging

predictor takes advantage of information given by very

close neighbours.

A summary of Table 2 can be seen in Fig. 7 by looking

at the indexes distribution boxplots for OKFD_142_0.

Figure 7 also shows boxplots synthesizing the four indexes

at the 10 validation sites for OKFD with (K, g) = (116, 0)

and (K, g) = (129, 0), as well as for CTKFD and FKTM

with K = 116, 129, 142 and g = 0 (called by

‘‘name_K_g’’). We apply the proposed FKED to obtain

predictions at the 10 validation sites also with CTKFD and

FKTM and some values of K in order to confirm the cross-

validation results in comparing the three alternatives.

Indeed, leave-one-out cross-validation is sometimes criti-

cized in spatial modeling because the estimated spatial

structure could change every time that a site is left out and,

in addition, we experienced numerical problems during

cross-validation with CTKFD and FKTM. By considering

the whole dataset and predicting at the 10 validation sites,

we obtain performance index values that allow us to

compare OKFD, CTKFD and FKTM.

Moreover, a table similar to Table 2 for Model A1 in

Cameletti et al. (2011) is summarized through the last

boxplots, where Model A1 is a spatio-temporal hierarchical

model with a purely spatial covariance function (the

residual spatio-temporal process is serially independent)

fitted by MCMC on the same dataset. Note that cross-

validation requires re-fitting the model for each left-out

datum and becomes practically unfeasible when a model is

fitted by MCMC; this is why here we compare FKED

models and Model A1 on the 10 validation sites.

Boxplots in Fig. 7 confirm that results with a number of

knots equal to 116, 129 and 142 (and so 120, 133 and 146

Fig. 6 Prediction at 25 Biella—

Largo Lamarmora (top) and 30

Saliceto (bottom). Black raw

data yij, blue smoothed data
~Ysi
ðtÞ, green predicted drift

l̂si
ðtÞ and red predicted curve

Ŷsi
ðtÞ. (Color figure online)

Table 2 Performance indexes over 10 validation sites (blue dots in

Fig. 1) of FKED with OKFD at the second step and

(K, g) = (142, 0), called ‘‘OKFD_142_0’’

Site NMBF RMSE WNNR q

25 BI—Largo Lamarmora -0.020 0.196 0.003 0.943

26 Borgo San Dalmazzo -0.048 0.460 0.018 0.762

27 Bra -0.059 0.313 0.006 0.922

28 Chivasso—Edipower 0.004 0.250 0.004 0.885

29 Ivrea -0.058 0.331 0.008 0.914

30 Saliceto -0.130 0.719 0.055 0.612

31 Serravalle Scrivia 0.038 0.463 0.012 0.793

32 Susa 0.005 0.481 0.016 0.785

33 TO—Piazza Rivoli -0.005 0.199 0.002 0.940

34 TO—Via Gaidano -0.015 0.267 0.004 0.903
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basis functions) are very similar for OKFD, with a light

better performance when K = 142 as known from the

cross-validation results in Sect. 3.2 Note that RMSE is just

a transformation of FCVr, so that they are equivalent

preference criteria. Also in the case of CTKFD the number

K = 142 seems to be preferable, whereas it does not for

FKTM (see e.g. Pearson boxplots). In comparing the three

second step alternatives, this analysis with 10 validation

sites confirms that OKFD is generally preferable, as seen

by means of FCVr in Sect. 3.2 Only NMBF seems to say

that it is overall worst but the only difference is at site 30

with NMBF % -0.13 not highlighted as outlier, whereas

NMBF % -0.16 for CTKFD and FKTM.

With the same data, and hence the same 10 validation

sites, six different hierarchical models are compared in

Cameletti et al. (2011): Model A1 is suggested as prefer-

able for its good performance at a reasonable cost because

Model C has a better prediction performance but requires

additional computational costs, since it includes an auto-

regressive component (as already said in Sect. 1) By

looking at boxplots in Fig. 7 we can compare FKED

models with Model A1 and see that performances are not

so different. In fact, if we exclude the ‘‘critical’’ site 30

Saliceto model OKFD_142_0 has RMSE ranging from

0.196 to 0.481 while for Model A1 RMSE’s range is

(0.215,0.527). Analogously, without site 30 Pearson cor-

relation ranges are (0.762, 0.943) and (0.779, 0.958) for

OKFD_142_0 and A1, respectively; as well as WNNR

ranges are (0.002, 0.018) and (0.003, 0.013). Moreover, for

both models NMFB [ 0.05 in 3 out of 10 sites. Hence

overall OKFD_142_0 performance is comparable to A1’s

one except that for site 30 and for its ability to predict

observed peaks. However a worst WNNR was expected

since observed raw data are smoothed when converted to

functional data, so that a part of observed peaks is

smoothed away as observational noise.

To give another bit of comparison, let us note that with

the same dataset (Cameletti et al. 2012) consider a spatio-

temporal model with an autoregressive component (very

similar to Model C in Cameletti et al. 2011), approximated

by a Gaussian Markov Random Field and fitted by adopt-

ing the INLA algorithm, and obtain a global RMSE equal

to 0.5328 and the correlation coefficient equal to 0.7015

when the 10 validation sites are taken altogether.

Fig. 7 Boxplots of the

performance measure

distributions computed for each

model over the 10 validation

stations (blue dots in Fig. 1).

Models are FKED with the three

alternative second steps (OKFD,

CTKFD and FKTM),

K = 116, 129, 142 and g = 0,

and Model A1 in (Cameletti

et al. 2011). OKFD_116_0

corresponds to OKFD with

(K, g) = (116, 0) and so on
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4 Large sample behaviour

The asymptotic theory for spatial prediction has been

object of study during the last decades. Prediction based on

kriging has been scrutinized in a number of papers. In the

mid eighties, Molnar (1985) shows some mathematical

properties of the classical and universal Kriging method

investigating certain conditions for the convergence of

these methods as the number of observation points tends to

infinite. Lahiri et al. (2002) consider the least-squares

approach for estimating parameters of a spatial variogram

and establish consistency and asymptotic normality of

these estimators under general conditions. Large-sample

distributions are also established under a spatial regression

model where the sampling design possibly has an infill

sampling component. Crujeiras and Van Keilegom (2010)

study the asymptotic and finite sample properties of an

estimator of a nonlinear regression function when errors

are spatially correlated, and when the spatial dependence

structure is unknown. Vazquez and Bect (2010) and Sakata

et al. (2010) deal with several issues related to the point-

wise consistency of the kriging predictor when the mean

and the covariance functions are known. These questions

are of general importance in the context of computer

experiments. The analysis is based on the properties of

approximations in reproducing kernel Hilbert spaces.

When we look at the more complete picture of the

spatio-temporal context, we can hardly find information on

kriging asymptotics. For example, Zhang and Zheng (2012)

study the asymptotic properties of maximum likelihood

estimates under a general asymptotic framework for spa-

tial-temporal linear models. Finally, we should add that the

mixed field of functional and spatio-temporal prediction is

completely open to asymptotic properties. At the best of

our knowledge nothing can be found in this line. This

would be object of a completely new paper focused on this

topic. Thus we have preferred to show some light in this

regard based on simulations.

Hence, in order to explore the large sample behavior of

the proposed three-steps predictor, we carry out a simula-

tion study where the real dataset—described in Sect. 3—is

used as a basis for generating realistic simulated data. First

of all, we consider Piemonte region as the spatial domain

where we randomly select spatial sites whose coordinates

belong to a regular grid with resolution 4 9 4 km that

covers Piemonte, neighbor Italian regions and parts of

foreign countries (4,032 grid points). Such a regular grid

defines the spatial support of the output of a numerical

model implemented by the environmental agency ARPA

Piemonte (as already said in Sect. 3.1) that provides us with

time-varying, meteorological and emission, covariates. The

grid points on Piemonte region are 1,587 and among them

we randomly select 200 sites, in total, and we then consider

different sample sizes: 25, 50, 100 and 200. Figure 8 (left

column) shows the selected sites, increasing from 25 to

200, and the 10 validation sites from the real dataset in the

previous section.

To obtain realistic data from a non-stationary spatial

functional process, following the model (1), we simulate

separately a drift and a stationary residual process. The

drift functions are created by means of Eq. (3) with func-

tional coefficients equal to those estimated from the real

dataset and shown in Fig. 5, whereas the scalar and func-

tional covariates are known. Instead, to obtain realizations

of a functional random field we apply Eq. (4)-left, with the

spline coefficients simulated as realizations of a multivar-

iable random field. This last one is simulated by means of

predict.gstat in gstat package (Pebesma 2004) and its

variograms and cross-variograms are those estimated for

the real dataset, when a LMC is fitted to apply CTKFD or

FKTM, with K = 142. The four (nested) functional dataset

are shown in Fig. 8 (right column).

Therefore we apply our proposal with OKFD at the

second step (since in Sect. 3 we have seen that it has a

better performance at a lower computational cost) and we

obtain predictions at the 10 validation sites (blue points in

Figs. 1, 8). When comparing predicted functions with the

observed raw data at these 10 sites, we get values of the

four performance indexes described in Sect. 3.3 that are

summarized by boxplots in Fig. 9 for all the considered

sample sizes. It is evident that the larger the sample size,

the lower the variability of the four measures reflected in

the green boxplots (for n = 200), except for the Pearson

case that is not that clear. Indeed, the median values of

RMSE and WNNR obtained with n = 200 are lower than

those obtained from other sample sizes, while the Pearson

median for n = 200 is the highest one.

5 Discussion

We can obtain in practice realizations of a multivariate

functional random field fYsðtÞ; s 2 D � R
d; t 2 Tg: Given

si 2 D; i ¼ 1; . . .; n; and p functional variables, we have the

realization

YsðtÞ ¼ ½ðYs1;1ðtÞ; . . .; Ysn;1ðtÞÞ; . . .; ðYs1;pðtÞ; . . .; Ysn;pðtÞÞ�
T

¼ ½Ysi;1ðtÞ; . . .;Ysi;pðtÞ�
T :

In this case we could be interested in predicting

simultaneously the vector of random functions Ys0
ðtÞ ¼

ðYs0;1ðtÞ; . . .; Ys0;pðtÞÞ; based on all the information of YsðtÞ
available. For example suppose that we have several

pollutants curves at each sampling site si; i ¼ 1; . . .; n and

we want to predict them at unmonitored sites. This scenario

is the natural extension of multivariate geostatistics (Ver
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Fig. 8 Left locations of

n randomly selected sites—red

triangles—and 10 real

validation stations—blue dots.

Right simulated functional

dataset at n sites. Sample size

n = 25, 50, 100, 200 from top

to bottom. (Color figure online)
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Hoef and Cressie 1993) to the multivariate functional

geostatistics. In addition, if we consider scalar and

functional covariates we would have the multivariate

functional kriging with external drift. By extending (2) to

the multivariate functional context, we have the model

Ysi
ðtÞ ¼ lsi

ðtÞ þ esi
ðtÞ;

with lsi
ðtÞ ¼ ðlsi;1ðtÞ; . . .; lsi;pðtÞÞ

T ; and esi
ðtÞ ¼ ðesi;1ðtÞ;

. . .; esi;pðtÞÞ
T ; i ¼ 1; . . .; n: Following the same idea pro-

posed in this work, if we want to predict simultaneously a

random vector of functional variables at the unmonitored

site s0, we need to estimate initially the vector of functional

residuals esðtÞ ¼ YsðtÞ � lsðtÞ and then, in a second step,

carry out prediction of a vector of functional residuals

ês0
ðtÞ ¼ ðês0;1ðtÞ; . . .; ês0;pðtÞÞ: Two problems must be

solved to fulfill these tasks. First a multivariate functional

regression model must be estimated and posteriorly a

multivariate functional kriging predictor used for predict-

ing the vector of functional residuals. At the best of our

knowledge these topics have not been studied and are open

research problems.We think that a possible solution could

be obtained by using basis functions for smoothing the set

of curves Ysi
ðtÞ: Thus, we can propose a classical multi-

variate regression model with the responses corresponding

to the coefficients estimated from the smoothing process. In

this case we would obtain a matrix of residuals which could

be predicted by using multivariate geostatistics. This

approach looks reasonable from a technical point of view.

However the estimation of the covariance structure by

means of a LMC (or any other method) is restrictive in

practice even with a small number of responses and basis

functions. This alternative deserves special attention.

In this work, we propose kriging with external drift for

functional data that are curves along time. Thus, we have

an alternative to spatio-temporal modeling capable to

predict a whole curve and providing covariate nonlinear

effects’ estimates straightforwardly. Moreover covari-

ates—and response too—can be observed with different

time frequency, so that treating time series data as func-

tional data can be advantageous because a possible time

misalignment problem can be avoided.

Our proposal is not necessarily an alternative to spatio-

temporal modeling and indeed it can be applied to func-

tional data that do not vary in time, as for example PM

vertical profiles measured along height by an instrument

deployed on a tethered balloon or climate variables mea-

sured by means of high technology radiosondes launched in

the atmosphere. It is relevant to mention that in these cases

a multivariate kriging approach could be also considered

for predicting es_0(t). With this approach the vector

ðesi
ðt1Þ; . . .; esi

ðtMÞÞ; with t1; . . .; tM corresponding to dis-

crete values of the domain T, is the observation of a

M dimensional random variable at site si; i ¼ 1; . . .; n: Then

a cokriging predictor (Ver Hoef and Cressie 1993) could be

applied to predict the random vector ðês0
ðt1Þ; . . .; ês0

ðtMÞÞ at

the unmonitored site s0. Then a parametric or nonpara-

metric model could be fitted to these values for recon-

structing a whole function ês0
ðtÞ: This approach is

restrictive when M is large (the common situation in

functional data analysis) and the methods based on OKFD,

CTKFD, and FKTM, which involve the use of basis

functions for smoothing the data, are a better option from a

practical point of view.

For estimating the functional spatial trend we propose a

functional regression model but other alternatives such as

functional nonparametric models (Ferraty et al. 2011)

could be considered. On the other hand, we take advantage

of additive models theory to carry out variable selection (if

the need arises, in our case study covariates were previ-

ously selected Cameletti et al. 2011). Gromenko and

Fig. 9 Boxplots of the performance measure distributions computed for each sample size over the 10 validation stations (blue dots in Figs. 1, 8).

Predictions are obtained with OKFD at the second step and (K, g) = (142, 0)

1184 Stoch Environ Res Risk Assess (2014) 28:1171–1186

123



Kokoszka (2013) derive a test to determine the significance

of the regression coefficients when the mean function is a

linear combination of known covariate functions and

depends only on time. Further research to develop infer-

ence for drift model selection for spatially correlated

functional data is necessary.

For kriging functional residuals we use and compare

three alternatives, namely OKFD, CTKFD and FKTM. In

our case study, both cross-validation results and good

predictions on the validation sites suggest to choose the

simplest version where kriging coefficient are constant.

Nevertheless, the desirable application of these methods to

other datasets could reveal different performances.

Finally, it would be convenient to provide confidence

bands for the predicted curves and, to this goal, a resam-

pling procedure to evaluate the prediction uncertainty is

part of our ongoing research.
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