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Abstract Five downscaling techniques, namely the sta-

tistical downscaling model, the automated statistical

downscaling method, the change factor (CF) method, the

advanced CF method, the Weather generator (LarsWG5)

method, are applied to the upstream basin of the Huaihe

River. Changes in regional climate scenarios and hydrol-

ogy variables are compared in future periods to investigate

the uncertainty associated with the downscaling tech-

niques. Paired-sample T test is applied to evaluation the

significant of the difference of the means between the

observed data and the downscaled data in the future. The

Xinanjiang rainfall–runoff model is employed to simulate

the rainfall–runoff relation. The results demonstrate that

the downscaling techniques utilized herein predict an

increased tendency in the future. The increases range of

maximum temperature (Tmax) is between 3.7 and 4.7 �C

until the time period of 2070–2099 (2080s). While, the

increases range of minimum temperature (Tmin) is between

2.8 and 4.9 �C until 2080s. The research presented herein

determined that there is an increase predicted for the peaks

over threshold (discussed in the paper) and a decrease

predicted for the peaks below the threshold (discussed in

the paper) in the future, which illustrates that the temper-

ature would rise gradually in the future. Precipitation

changes are not as obvious as temperatures changes and

tend to be influence by the season. Most downscaling

techniques predict increases, and others indict decreases.

The annual mean precipitation range changes between 3.2

and 53.3 %, and moreover, these changes vary from season

to season.

Keywords Downscaling � Uncertainty � Climate

change � Regional scenarios � Xinanjiang rainfall–

runoff model

1 Introduction

The scarcity of water resources caused by environmental

pollution and population growth has become an issue of

vital importance around the world. Assessing the hydrol-

ogy and water resources for the future is of great signifi-

cance for city planning, water resources management and

utilization (Gleick 1989; Kiely 1999). General circulation

models (herein, referred to as GCMs) provide one of the

best tools for simulating current and future prediction of

climate change scenarios (Xu 1999). The following steps

are used to predict changes in hydrology and water

resources: Downscaling the outputs of the GCMs on the

global scale into the inputs of the hydrological model on

the regional scale to obtain the hydrological response

(Christensen et al. 2004; Charlton et al. 2006; Steele-

Dunne et al. 2008). There are some mismatch problems

between the GCMs and hydrological model (Xu 1999)

especially for the spatial and temporal scales, which

hampers the development of connectivity between the

meteorology and hydrology models. Downscaling tech-

nology can be used as a bridge to solve the mismatch

problem (Leavesley 1994; Wilby and Wigley 1997; Hay-

lock et al. 2006). There are different downscaling method,
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and they can be divided into three categories: statistical

downscaling method (Enke and Spekat 1997; Huth 1997;

Wilby et al. 2002; Tatli et al. 2004; Feddersen and

Andersen 2005), dynamical downscaling method (DÍEz

et al. 2005; Herrmann and Somot 2008) and statistical-

dynamical downscaling method (Conway and Jones 1998;

Bárdossy et al. 2002; Boé et al. 2006; Pinto et al. 2010;

Najac et al. 2011).

In recent years, several studies have appeared in the

literature on the impacts of climate change on hydrology

and water resources (Gleick 1989; Arora and Boer 2001;

Christensen et al. 2004). These studies indicate that the

uncertainty of the downscaling techniques is one of the key

areas of research. Many scholars have focused on the

uncertainty of the GCMs and greenhouse gases emissions

scenarios (herein, referred to as GGES). Merritt et al.

(2006) used three GCMs and two emissions scenarios (A2

and B2) to analyze future climate change scenarios. They

also utilized the hydrological model (UBC) to obtain the

future hydrological response of the upstream portion of the

Okanagan basin in Canada. Maurer (2007) applied 11

GCMs to analyze the uncertainty of the impacts of climate

change on hydrology and water resources under two

emission scenarios (A2 and B1).

Vicuna et al. (2007) studied the sensitivity of climate

emissions scenario on water resources. While, Minville

et al. (2008) compared annual and seasonal mean dis-

charge, peak discharge and timing of peak discharge of

ten different combinations from five GCMs and two

emissions scenarios, and then investigated the uncertainty

of each of the combinations. Others have investigated the

importance and uncertainty of hydrological model in

assessing the impact of climate change on hydrology

(Ludwig et al. 2009; Bastola et al. 2011). In Ludwig et al.

(2009), they compared the complexity of three hydro-

logical models (PROMET, Hydrotel, HSAMI) on the

process description, parameter space and spatial and

temporal scale. The correction of the climate boundary

condition leads to significant changes in the hydrological

response. The extension and quantification of uncertainty

in the model must be realized in the water resources

management. Some studies assessed spatial pattern of

urban based on human activities. Qi et al. (2013) utilized

an integrated approach to analyze land use/land cover

change, spatiotemporal patterns of land fragmentation and

variation of ecosystem service value in the context of

rapid urbanization. Yue et al. (2012) assessed spatial

pattern of urban thermal environment and identified

dominant factors to the urban heat island using principal

component analysis. These aspects are no doubt important

and the uncertainty in the downscaling technique cannot

be neglect. Recently, there has been some comparative

research carried out on the uncertainty of the downscaling

method (Quintana Seguı́ et al. 2010; Chen et al. 2011a, b).

Regional climate change scenarios are the products of the

downscaling processing on GCMs outputs. The different

downscaling techniques can provide different results with

some results showing that even small fluctuation in the

precipitation probability or precipitation intensity pro-

ducing significant effect on runoff (Risbey and Entekhabi

1996; Whitfield and Cannon 2000). Therefore, the

uncertainty of the downscaling technique is one of the

major causes of uncertainty in the regional climate change

scenarios and hydrological simulation, so it should be paid

attention to. Khan et al. (2006a) utilized three downscal-

ing methods [statistical downscaling model (SDSM),

LarsWG and artificial neural network (ANN)] to NCEP

data and provided a detailed comparison of the differences

between current regional climate change scenarios (daily

precipitation, maximum and minimum temperatures)

generated by three methods, and their uncertainties. There

were three downscaling techniques used for CGCM1 in

order to produce the future climate change scenarios

(Khan et al. 2006b). This provided further validation of

the uncertainties in the downscaling techniques; however,

their research was not an exhaustive study of all the

techniques and their uncertainties. If the regional climate

scenarios to the hydrological model are utilized as further

input into the models to predict hydrological variables,

then it would be able to thoroughly analyze uncertainty in

the downscaling techniques. It can also provide a theo-

retical basis for planning and management of water

resources for the future. Chen et al. (2011a) applied six

downscaling techniques, which included statistical down-

scaling methods and dynamical downscaling methods, to

investigate the uncertainty in these downscaling tech-

niques. These results were utilized in the Canadian

HSAMI hydrological model, which analyzed the annual

mean discharge, peak discharge and time to peak dis-

charge, and then compared the uncertainties of the

downscaling techniques, GCMs and emission scenarios.

Ebrahim et al. (2012) analyzed the uncertainty of three

different downscaling techniques (SDSM, Lars-WG and

ANN) from two aspects: one is the cognitive uncertainty;

while the other one is the inherent uncertainty of random

variables.

Several aspects, which include GCMs, emission sce-

narios, downscaling methods and hydrological models,

produce uncertainty, with future investigations taking all

these factors into account as much as possible. The main

objective of this work is to investigate the uncertainty of

downscaling techniques on the upstream portion of Huaihe

River basin using five statistical downscaling methods. It

will provide new ideas for future researchers.

The layout of this paper is as follows: Sect. 2 gives

information on the study area along with the climate and
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hydrological data; Sect. 3 presents the methods for the

downscaling techniques; Sect. 4 provides the results from

the different downscaling techniques and the uncertainties

produced; which Sect. 5 gives the conclusions with detailed

analysis of regional climate change scenarios and hydro-

logical variables for the future.

2 Study area and data

2.1 Study area

The upstream portion of the Huaihe River Basin resides

within the latitude and longitude ranges of 112�2100–
117�3700E and 30�5800–34�5700N, respectively, and is being

utilized in this study (shown in Fig. 1). It is located in the

east-central of China, between the Yangtze River and the

Yellow River, and the basin area is 121,000 km2. The

upstream portion of the Huaihe River basin is in the north

and south climate transition zone, which has an annual

mean precipitation of 900 mm. The precipitation is inter-

annual variability, and uneven distribution in the spatial

and temporal scales. More than half of the precipitation for

the basin occurs during the months of June to September,

with the average annual precipitation in the northern

region of 600–700 mm, while the southern and western

mountainous regions receive about 900–1,400 mm. These

areas account for the hilly regions (about 30 %) of the

basin area, whereas the plain area account for about 60 %

of the basin area. In addition, there are many lakes located

on both sides of the Huaihe River, which control the dis-

charge and the runoff to the downstream sections of the

river.

2.2 DATA

The daily meteorological data of this work was derived

from China Meteorological Data Sharing Service System

http://cdc.cma.gov.cn/home.do, which included daily pre-

cipitation, daily Tmax and daily Tmin for the period of

1961–1990 for 14 meteorological stations (Fig. 1). The

daily hydrological data was derived from the China

Hydrological Yearbook and included the daily discharge

during the period of 1961–1987 for the Wujiadu hydro-

logical station (location shown in Fig. 1). The Wujiadu

hydrological station is the main station of the upstream

portion of the Huaihe River basin and has a catchment area

of 121,000 km2.

The daily U.S. National Center for Environmental Pre-

diction (NCEP) data for the period of 1961–1990 were

derived from http://www.cccsn.ca/ and the reanalysis

datasets are co-produced by NCEP and U.S. National

Center for Atmospheric Research. The most state-of-the-art

global data assimilation system and database are applied to

reanalyze the observation (OBS) from a variety of sources

(such as ground, ship, radiosonde, pilot balloon, aircraft,

satellite, etc.).

The daily HadCM3 (abbreviation for Hadley Centre

Coupled Model, version 3) (A2) data, for the period of

1961–2099, of the 4th The Intergovernmental Panel on

Climate Change (IPCC) was derived from http://www.

cccsn.ca/. HadCM3 (Gordon et al. 2000) is a coupled

ocean–atmosphere model developed by UK Hadley centre

in recent years, which is based on the earlier HadCM2

model. HadCM3 has 19 levels (Pope et al. 2000) with a

horizontal grid spacing of 2.5� 9 3.75�. A2 is one of the

emission scenarios of the IPCC’s fourth special report.

Fig. 1 Location map of the

upstream portion of the Huaihe

River basin
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IPCC’s fourth special report on emission scenarios (SRES)

(Nakicenovic et al. 2000) proposed four sets of scenarios

called ‘‘families’’: A1, A2, B1 and B2. The A1 family

consists of three scenario groups: A1FI (fossil fuel inten-

sive), A1B (balance) and A1T (predominantly non-fossil

fuel). This paper will concentrate on A2, which describes a

very heterogeneous world. The theme is self-reliance, and

the protection of regional identity. The emphasis is on

family values and local traditions. Birth rates between the

different regions are not the same, which result in the

continued growth of the global population. The A2 sce-

narios assume a high population growth, which results in

higher emission.

This study covers the period 1961–1990 for the base

years (denoted by 1980s) and covers the three future

periods: 2010–2039, 2040–2069 and 2070–2099 for the

future years (denoted by 2020s, 2050s and 2080s,

respectively).

3 Methodology

3.1 Downscaling methods

3.1.1 Statistical downscaling model-based method

The SDSM-based method is a decision support tool for

assessing regional climate change scenarios, which has

been developed by Wilby et al. (1999; 2002; 2003). SDSM

has now been used widely in worldwide applications

(Wilby et al. 2002, 2003; Dibike and Coulibaly 2005; Khan

et al. 2006a; Chu et al. 2010). The main procedures are as

following:

(1) Screen predictions identifying the empirical relation-

ships between gridded predictors and single site

predictands (Wilby et al. 2002). The variables that

showed significantly correlated to the predictands

were selected as the predictors (Chen et al. 2011a).

(2) Set model structure and calibrate model steps utilized

here are: (a) multiple linear regression equations were

established for each month, (b) the parameters of the

regression model were obtained via the dual simplex

optimization algorithm, and (c) the most parsimoni-

ous model of the predictand were selected according

to Akaike’s Information Criterion.

(3) Weather generator produce ensembles of synthetic

daily weather series according to the NCEP re-

analysis atmospheric predictors for the base years and

the multiple regression models.

(4) Generate scenario produce ensembles of synthetic

daily weather series according to the GCM atmo-

spheric predictors and the multiple regression model

for the base years (1980s) and the future years (2020s,

2050s and 2080s).

3.1.2 Automated statistical downscaling (ASD) method

The ASD method (Khan et al. 2006a; Hessami et al. 2008)

was developed to improve the spatial resolution of the

GCM outputs and has been developed in the Matlab

environment. The ASD method is the advanced SDSM

method. In the ASD method, a stepwise linear regression

approach is applied to select predictors, variance inflation

and bias correction were set automatically, and multiple

linear regressions were used in model calibration.

Temperature (i.e. Tmax and Tmin) can be modeled in one

step owing to the direct relationship of the predictor–pre-

dictand. Precipitation has an indirect relationship with the

predictors. Hence, judging precipitation occurrence before

calculating precipitation amounts.

3.1.3 Change factor (CF) method

The CF method (Hay et al. 2000; Diaz-Nieto and Wilby

2005) is an ordinary bias correction method. The CF

method is often used to eliminate or reduce the bias

between the model outputs and OBSs. The main proce-

dures of the CF method are modifying the daily time series

of the variables (i.e. precipitation and temperature) in the

future years (2020s, 2050s and 2080s) by adding the

monthly mean changes of GCM outputs. The modified

daily temperature (Tmax and Tmin) for the future years is

obtained by adding the monthly changes between the future

years and the base years of GCM, while the modified daily

precipitation for the future years is obtained by multiplying

the ratio with the daily precipitation of the base years. The

adjusted formula for modified daily temperature (Tmax and

Tmin) is expressed in Eq. (1), and the modified daily pre-

cipitation is expressed in Eq. (2):

Tadj;fur;d ¼ Tobs;d þ
Xk

i¼1

pið�TGCM;fur;m � �TGCM;ref ;mÞ ð1Þ

Padj;fur;d ¼ Pobs;d �
Xk

i¼1

pið�PGCM;fur;m=�PGCM;ref ;mÞ ð2Þ

where Tadj;fur;d is the adjusted daily temperature (Tmax and

Tmin) for the future years (2020s, 2050s and 2080s), Tobs;d

is the observed daily temperature for the base years

(1980s), �TGCM;fur;m is the monthly mean temperature of the

GCM outputs for the future years, �TGCM;ref ;m is the monthly

mean temperature of the GCM outputs for the base years,

pi is the weight of each grid cell and k is the number of the

grid cells.
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3.1.4 Advanced CF (AdvCF) method

The AdvCF method is inspired by the CF method and it is a

combination of spatial interpolation and CF method. In this

method, the inverse distance squared weighted interpola-

tion method (IDW) was utilized to interpolate the tem-

perature or precipitation of the GCM outputs with a

resolution of k � k grid cells into a resolution of ð2k �
1Þ � ð2k � 1Þ grid cells, and then CF method is used to

downscale the temperature or precipitation further:

y ¼
Pk

1

1
d2

i

xi

,
Pk

1

1
d2

i

ð3Þ

where y is the interpolated data (either temperature or

precipitation), xi is ith i = 1, 2, …, k point of the sample, di

is the distance between ith point and the interpolated data.

Tadj;fur;d ¼ Tobs;d þ
X2k�1

i¼1

pið�TGCM�;fur;m � �TGCM�;ref ;mÞ ð4Þ

Padj;fur;d ¼ Pobs;d �
X2k�1

i¼1

pið�PGCM�;fur;m=�PGCM�;ref ;mÞ ð5Þ

where �TGCM�;fur;m and �TGCM�;ref ;m are interpolated monthly

mean temperature for the future years (2020s, 2050s and

2080s) and the base years (1980s), respectively; �PGCM�;fur;m

and �PGCM�;ref ;m are the interpolated monthly mean precip-

itation for the future years and base year, respectively.

3.1.5 Weather generator (LarsWG5) method

LarsWG5 is a stochastic weather generator developed by

the Rothamsted Research of UK in 2010 and it is based on

the series weather generator discussed in 1991 (Racsko

et al. 1991). LarsWG5 can be used to generate the climate

scenarios (precipitation, Tmax, Tmin and solar radiation) for

the current and future applications. The LarsWG5 method

provides data in time series at each site.

A semi-empirical distribution model was used in

LarsWG5 (Semenov et al. 1998; Khan et al. 2006a, b) to

simulate the dry and wet spell length, daily precipitation

and daily solar radiation, which allow the method to

overcome the problems associated with the Markov

chain.

For the LarsWG5 method, the temperature (Tmax and

Tmin) and precipitation are different in their solution

schemes. The temperatures are obtained with the stochastic

process, which utilizes a finite Fourier series of third-order

to simulate the seasonal cycles of mean and standard

deviations; while, the normal distribution is applied to

model the residuals.

3.2 Hydrological model

The Xinanjiang model is a conceptual rainfall–runoff model

(denoted by XAJ-RR model), which was proposed in 1980

(Zhao et al. 1980) and developed in 1992 (Zhao 1992) by

combining with stored-full runoff theory. The XAJ-RR

model has been widely used to forecast flood in large basins

of the humid and semi-humid regions of China (Lü et al.

2013). The model structure is shown in Fig. 2; while,

Table 1 presents the parameters and their physical meanings

in the XAJ-RR model. The model utilizes 15 parameters,

including five evapotranspiration component parameters (K,

WUM, WLM, WDM, C), six runoff production parameters

(B, IMP, SM, EX, KG, KSS), three runoff concentration

parameters (KKG, KKSS, CS), and the unit hydrograph

(UH). The model structure and calculation is divided into

four parts (Zhao 1992): evapotranspiration, runoff produc-

tion, runoff separation, and flow concentration. The basin

evapotranspiration are calculated in accordance to the three

layers-evapotranspiration model.

In the evapotranspiration model, the measured pan

evaporation (EM) is replaced by the potential evapotrans-

piration (ETp) (Wang et al. 2009) due to the lack of future

evapotranspiration. In order to avoid any bias resulting

from potential evapotranspiration, ETp were calculated in

the current and future as follows:

ETP ¼ 0:0023� ðTmean þ 17:8Þ � ðTmax � TminÞ0:5 � Ra

ð6Þ

where ETp is daily potential evapotranspiration, Tmean is

daily mean temperature, Tmax and Tmin are maximum and

minimum daily temperature, respectively, and Ra is

extraterrestrial radiation (Hargreaves and Samani 1982).

The XAJ-RR model is applied herein at the monthly

scale with the model utilizing the monthly precipitation and

monthly potential evapotranspiration information. The

model provides monthly discharge values for the simula-

tion output. The optimal combination of parameters was

chosen based on the following object functions:

NS ¼ 1�
Pm

i¼1 ðQobs;i � Qsim;iÞ2Pm
i¼1 ðQobs;i � �QsimÞ2

ð7Þ

ER ¼
Pm

i¼1 ðQobs;i � Qsim;iÞPm
i¼1 Qobs;i

ð8Þ

RSME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i

m

Xm

i¼1

ðQobs:i � Qsim;iÞ2
s

ð9Þ

R ¼
Pm

i¼1 ðQobs;i � QobsÞðQsim;i � QsimÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 ðQobs;i � QobsÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 ðQsim;i � QsimÞ2

q

ð10Þ
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where NS is Nash–Sutcliffe efficiency coefficient, ER is the

total discharge error, RSME is mean square deviation; R is

correlation coefficient, m is the length of the monthly time

series, Qobs,i is the OBS of monthly discharge, Qsim,i is the

simulation of monthly discharge, Qobs;i is the OBS of mean

discharge for the chosen period, and Qsim is the simulation

of mean discharge for the same period. A value near one

for the Nash–Sutcliffe efficiency coefficient indicates that

the parameters utilized in the simulations are optimal and

that the results produced are close to the OBSs. While with

the total discharge error, a value close to zero is ideal for

the parameter combination to be optimal.

3.3 Uncertainty assessment in downscaled results

Some basic sample statistics are, for instance, sample means,

sample median, sample standard deviation etc. Of course, a

summary statistic like the sample mean will fluctuate from

sample to sample and a statistician would like to know the

magnitude of these fluctuations around the corresponding

sample parameter (Singh and Xie 2008). Non-parametric test

for the difference means of two samples are used to solve this

issue. One of the best non-parametric methods for con-

structing a hypothesis test p value for l1 � l2 (difference of

means between observed data and downscaled data) is

paired-sample T-test. The T test is also known as the student

test. In terms of hypothesis testing, the p value is the level of

significance for which the observed test statistic lies on the

boundary between acceptance and rejection of the null

hypothesis. At any significance level larger than the p value

one rejects the null hypothesis, and at any significance level

less than the p value one accepts the null hypothesis. Paired-

samples T-test is used to test two related samples that rep-

resented by the unknown sample means whether there is a

difference.

The basic steps of paired-sample T-test for significant

test of sample means difference are as follows:

E

EU

EL

ED

P, EM

RS

RSS

RG TRG

TRSS

TRS

QRG

QRSS

QRS

Q

W

WD

WL

WU
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WUM

WLM

WDM

B WM

SM
EX

KSS

KG

KKSS

KKG

UH

UH

UH

RM

IMP

C

R

1-FR FR

Fig. 2 Flow chart of the XAJ-

RR model. Table 1 gives the

definitions of each of the

parameters given in this

flowchart

Table 1 Parameters of the

XAJ-RR model
Parameter Physical meaning Unit

B Exponential of the distribution of tension water capacity –

WUM Averaged soil moisture storage capacity of the upper layer mm

WLM Averaged soil moisture storage capacity of the lower layer mm

WDM Averaged soil moisture storage capacity of the deep layer mm

K Ratio of potential evapotranspiration to pan evaporation –

C Evapotranspiration coefficient of deeper layer –

IMP Ratio of impervious area to the total area of the basin %

SM Free water storage capacity –

EX Exponential of distribution water capacity mm

KSS Out flow coefficient of free water storage to the inter flow –

KG Out flow coefficient of free water storage to the groundwater flow –

KKSS Recession constant of lower interflow storage –

KKG Recession constant of groundwater storage –

CS Recession constant of channel network storage –

UH Unit hydrograph –
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propose null-hypothesis and alternative hypothesis

HA : ld 6¼ 0;H0 : ld ¼ 0 ð11Þ
ld ¼ l1 � l2 ð12Þ

where ld is the difference mean between the two sample.

The null-hypothesis equivalent to:

HA : l1 6¼ l2;H0 : l1 ¼ l2 ð13Þ

calculate t value as following:

t ¼
�d

S�d

; df ¼ n� 1 ð14Þ

S�d ¼
Sdffiffiffi

n
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 dj � �d
� �2

n n� 1ð Þ

s

ð15Þ

dj ¼ x1j � x2j ð16Þ

�d ¼
Xn

j¼1

dj=n ð17Þ

where dj is the difference between each pair of data of two

sample; S�d is standard error of dj, n is the number repeated

test; x1J are observed data and x2J are downscaled ones.

lookup table for the p value based on df and test level,

and then make statistical inference.

4 Results

4.1 Calibration and validation of hydrological model

The calibration of the parameters is a significant step in

utilizing the XAJ-RR model in these studies. Observed dis-

charge values from the years of 1961–1972 (11 years) were

utilized in the calibration process of the model; while, the

observed discharge from the years of 1974–1976 and

1980–1987 were utilized to validate the model. The XAJ-RR

model herein was applied to the Wujiadu hydrological con-

trol station and utilized in simulations over a monthly basis.

Trial and error was employed in the calibration of the model

parameters. The analysis of statistical characteristics for the

calibration period and validation period are list in Table 2.

The simulated results for both the calibration and vali-

dation periods are presented in Fig. 3. The flow hydrograph

results presented in Fig. 3 indicate that the XAJ-RR model

performs well at Wujiadu station; however, it does show

that the model has problems capturing the peak discharge

values at this station. The problems in capturing the peak

discharge values may be due to some man-made reservoirs

that are located in the upper reaches of the river. Therefore,

it is a non-negligible factor for the difference between the

observational data and the model results. It should also be

noted that the temporal scale is also affected in the model

results. As one might expect, the monthly model shows

poorer results than the daily and the hourly model. Figure 3

shows that the validation results capture the observed data

as well as the calibration results.

4.2 Climate change scenarios

4.2.1 Monthly mean Tmax and Tmin

Figure 4 shows the monthly mean temperature (Tmax and

Tmin) of the five downscaling methods discussed earlier in

Sect. 3 for the future years (2020s, 2050s and 2080s) and

the OBS for the base years (1980s). For each variable (Tmax

and Tmin), the results show that all methods have an

increasing trend in the three future years scenarios.

For all the future year scenarios, the results show that

each of the downscaling methods obtains an increase in the

mean Tmax as compared with the OBSs. These increases in

the annual mean Tmax range between 1.0 and 1.2 �C for

2020s. In the first panel of Fig. 4, the greatest increase in

the annual mean Tmax occurs when using the AdvCF

method, while the annual mean Tmax increases the least

with the LarsWG5 method. When analyzing the result for

2050s, it was determined that the annual mean Tmax

increases from 2.0 to 2.5 �C. For these results, the Lars-

WG5 method produced the greatest increase in annual

mean Tmax and the ASD method produced the smallest

increase in the annual mean Tmax. For the 2080s, the annual

mean Tmax increases vary from 3.7 to 4.7 �C with the

trends showing similar results to those of the 2050s

results—most significant increase was found with the

LarsWG5 method and the smallest increase predicted with

the ASD method. Similar results were obtained with the

annual mean Tmin in the future periods, with the increases

ranging between 0.5 and 1.1 �C for 2020s, 1.5 and 2.7 �C

for 2050s, and 2.8 and 4.9 �C for 2080s. For the annual

mean Tmin values in all the future periods, the most sig-

nificant increases in temperature and the smallest increases

in temperature were predicted by the LarsWG5 and ASD,

respectively.

The variation in the temperature range is different

depending on the month of the year. The largest increases

in the temperature occur in July and August, while

December and January produce the lowest temperature

changes. In the next 90 years, all the downscaling methods

show an increase in the range of Tmax of 2.1–4.2 �C for the

month of January, 3.1–4.2 �C for the month of December,

4.5–8.8 �C for the month of July and 5.4–6.6 �C for the

month of August. Tmin shows a range that increase less than

the range of Tmax. The five downscaling methods produce

increases in the temperature ranges between 1.4 and 4.3 �C

for January, 2.2 and 4.3 �C for December, 4.3 and 5.5 �C

for July, and 3.4 and 5.7 �C for August. Overall, the
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LarsWG5 method predicts the largest temperature increa-

ses in the future, while ASD predicts the smallest tem-

perature increases.

Figure 5 presents the average monthly peaks over

threshold (POT) and average monthly peaks below

threshold (PBT), which describe the temperature change in

Table 2 Analysis of statistical characteristics

NS ER RSME R

Calibration period 0.7095 -0.0294 567.97 0.8430

Validation period 0.7621 0.0023 561.50 0.8757
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the future years (2020s, 2050s, and 2080s) compared with

the base years (1980s, the OBS data in Fig. 5). The POT

provides a count of the average number of days that the

maximum temperature is greater than a specified threshold

(set to 28 �C for the studies herein) in each month for the

given period of time. While, the PBT provides a count of

the average number of days that the minimum temperature

falls below a specified threshold (set to 0 �C for the studies

herein). These results indicate that all the downscaling

methods obtain an increase in the POT and a decrease in

the PBT in different extent, respectively. Results from

Fig. 5 indicate that the average annual POT was 92.3 days

for the base years (1980s, shown as the observed data),

while the results from each of the downscaling methods

show the following average annual POT for each of the

future years (2020s, 2050s, and 2080s): 124.6, 137.9 and

157.7 days for the AdvCF method; 121.7, 126.8 and

147 days for the ASD method; 124.6, 137.9 and 158.1 days

for the CF method; 119.1, 125.5 and 161.2 days for the

LarsWG5 method; and 117.4, 138.2 and 116 days for the

SDSM method. From these results, it can be seen that the

POT increases gradually during the future years.

From Fig. 5, it can be seen that there is an opposite trend

in the PBT results as compared to the POT during the

future years. Results show that the average annual PBT for

the base years was 70.9 days, while the average annual

PBT for the future years (2020s, 2050s, and 2080s) for the

five downscaling methods are as follows: 56.3, 39 and

24.2 days for the AdvCF method; 69.1, 59.5 and 46.6 days

for the ASD method; 56.8, 40.7 and 24.2 days for the CF

method; 55, 22.1 and 1.1 days for the LarsWG5 method;

61.2, 54.4, and 45.5 days for the SDSM method. In sum-

mary, the results show that the PBT decreases gradually

over the future years. Thus, the results from the POT and

PBT demonstrate that the temperature would increase

gradually in the future years.

4.2.2 Mean precipitation

Figure 6 displays the mean daily precipitation for both

future and base year. The trends in the precipitation

changes are not determined using the same methods as

those presented with the temperature changes. Results

show that the changes in precipitation amounts increase for

some months of the year, while it decreases for the other

months of the year. The changes in precipitation vary

depending on the month of the year and the method of

downscaling. All the downscaling methods produce large

changes in the precipitation during the winter months

(between November and April); while, the changes in

precipitation are small during the summer months (between

March and October). Herein, the results from July

and December are utilized to discuss the results shown

in Fig. 5. The five downscaling methods generate
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precipitation changes in July that vary between -38.1 and

4.4 % for 2020s, -33.3 and 11.9 % for 2050s, -31.8 and

16.8 % for 2080s. While in December, the downscaling

methods generate changes in precipitation between 0.8 and

375.3 % for 2020s, 27.6 % and 111.2 % for 2050s, 44.9

and 201.5 % for 2080s. ASD provides the largest increase

in the precipitation changes in the future periods, especially

in the months of February, March, April, November and

December. For example, ASD shows an increase in the

precipitation changes during April of 92.1, 129.5 and

164.5 % for the future years (2020s, 2050s and 2080s),

respectively.

For the annual mean daily precipitation, the five

downscaling methods predict changes that range from

-4.5 % (CF method) to 36.4 % (ASD method) for 2020s,

from 3.7 % (SDSM method) to 48.4 % (ASD method) for

2050s and from 4.7 % (SDSM method) to 61.7 % (ASD

method) for 2080s.

In view of the obvious seasonal changes of the water-

shed hydrology and water resources, the regional climate

change scenarios are analyzed seasonally. Figure 7 pre-

sents scatter plots of Tmax and seasonal changes in the

precipitation for the future years.

Figure 7 shows that the predicted Tmax increases for all

of the downscaling methods during all of the seasons. The

significant increases in temperature range between 0.2 and

2.8 �C for 2020s and from 2.7 to 6.8 �C for 2080s. In

general, the temperature increases are largest in the sum-

mer for each of the future years.

For the total precipitation, the five downscaling methods

show significant seasonal variability, with the most notable

variability for the ASD method. However, total precipita-

tion changes are not significant in the summer months for

the ASD method, which show changes of 4.6, 0.5 and

1.2 % for the future years (2020s, 2050s and 2080s),

respectively. In contrast, the total precipitation changes in a

significantly during the other seasons for each of the future

years (i.e. -67.2, -56.2 and -47.7 % in winter seasons,

69.2, 94.6 and 115.9 % in spring seasons and 49.3, 61.8

and 83.2 % in autumn seasons).

For the three future periods, the downscaling methods

produce seasonal increases in the total precipitation with an

ordinal order of winter, autumn, spring and summer. CF

method and AdvCF method result in smaller increases in

total precipitation as compared to the other downscaling

methods in the spring, summer and autumn of 2020s, with

the AdvCF method producing the smallest changes in total

precipitation for each season.

4.2.3 Error evaluation in the estimates of means

The comparative plots of the means of daily precipitation,

Tmax and Tmin of observed for the base years and down-

scaled for the future years have been analysed in Sects.
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4.2.1 and 4.2.2. In this section, all the difference between

observed data and the downscaled data are tested at the

95 % confidence level based on the paired-sampled T-test.

The p values of the T-test for the difference of the observed

and downscaled via five downscaling methods are shown in

Tables 3, 4, and 5 respectively for daily precipitation, daily

Tmax and daily Tmin.

Table 3 shows the statistical significance test results

(p value) of difference between observed and downscaled

daily precipitation for the three future periods. For 2020s, the

difference produced by AdvCF method and CF method are

significant (p \ 0.05) in all 12 months; the ASD method

results show significant in 9 months; and the LarsWG5

method and SDSM results show significant in 2 months. For

2050s, similar results are obtained by AdvCF method and CF

method. The ASD method results are significant in 9 months.

The LarsWG5 results are significant in 5 months and the

SDSM results are significant in 8 months. For 2080s, the

same results are obtained by AdvCF and CF method. The

results of ASD method and LarsWG5 method are significant

in 9 months. The results are significant in 7 months pro-

duced by SDSM. In generally speaking, the trend of errors in

daily precipitation downscaled via five downscaling meth-

ods for the future years (2020s, 2050s and 2080s) are sig-

nificant in most of months. The most significant is AdvCF

method and CF method, whose errors are not insignificant in

any of month. And the errors of other three methods are

insignificant in only a few months. It indicates that the choice

of downscaling methods will affect the results of the regional

scenarios. The results obtained by any of downscaling

methods are not completely accurate. All the downscaling

methods contain uncertainties.

Table 4 shows the significant results (p value) of the

paired-sample T-test in daily Tmax at the 95 % confidence

level. The test results for the difference of means between

observed data and the downscaled data for the future years

are significant (p \ 0.05) in most of the months for all the

downscaling methods. Only ASD methods errors are

insignificant in two months in 2020s, and SDSM methods

errors are insignificant in 3 months in 2020s and 1 month

in 2050s. All the downscaling methods errors are signifi-

cant in all of the months in 2080s. For the daily Tmin, the

results of the five methods predict the similar level. The

Table 5 shows p value of the paired-sample T-test in Tmin.

For 2020s, Only ASD errors are insignificant in 1 month

and SDSM errors are insignificant in three months. AdvCF

method, CF method and LarsWG5 method errors are sig-

nificant in all 12 months. All of the five methods errors are

significant in all the 12 months for the 2050s and 2080s.

Based on this evolution, all five downscaling methods are

similar at 95 % confidence level for daily Tmax and Tmin.

But the SDSM method and ASD method generate the least

errors. AdvCF method, CF method and LarsWG5 errors are

significant in all the future months.
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Fig. 7 Season changes for Tmax

and total precipitation of the

future years (2020s, 2050s and

2080s) comparison with the

base years (1980s, shown as the

OBS data)
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4.2.4 Uncertainty of annual precipitation and Tmax

and Tmin

The probability density functions (PDFs) of the annual

precipitation, Tmax and Tmin are used to show the uncer-

tainties in the downscaling methods (shown in Fig. 8). The

PDF of each variable (precipitation, Tmax or Tmin) are

presented according to the mean and variance for each

future period, respectively. Figure 8 shows the PDFs for

each variable and each future period. For all the predict-

ands, the differences between the results of the five

downscaling methods increase with time.

The annual mean precipitation for the base years (1980s)

in Fig. 8 is represented by a black line, which has a median

value of 900.8 mm and a variance value of 168.6 mm2.

The ASD method shows the most significant increase in the

median value with the following values: 1179 mm for

2020s, 1271 mm for 2050s and 1381 mm for 2080s. These

Table 3 Results (p value) of the T test for the equality means of the observed and downscaled daily Tmax at the 95 % confidence level

Period Month p value

AdvCF CF ASD SDSM LarsWG5

2020s Jan 0.000 0.000 0.001 0.000 0.000

Feb 0.000 0.000 0.000 0.002 0.000

Mar 0.000 0.000 0.080 0.244 0.000

Apr 0.000 0.000 0.051 0.661 0.000

May 0.000 0.000 0.000 0.000 0.000

Jun 0.000 0.000 0.000 0.000 0.000

Jul 0.000 0.000 0.000 0.000 0.000

Aug 0.000 0.000 0.000 0.000 0.000

Sep 0.000 0.000 0.000 0.000 0.000

Oct 0.000 0.000 0.000 0.104 0.000

Nov 0.000 0.000 0.000 0.008 0.000

Dec 0.000 0.000 0.000 0.000 0.000

2050s Jan 0.000 0.000 0.000 0.000 0.000

Feb 0.000 0.000 0.000 0.000 0.000

Mar 0.000 0.000 0.000 0.006 0.000

Apr 0.000 0.000 0.000 0.121 0.000

May 0.000 0.000 0.000 0.000 0.000

Jun 0.000 0.000 0.000 0.000 0.000

Jul 0.000 0.000 0.000 0.000 0.000

Aug 0.000 0.000 0.000 0.000 0.000

Sep 0.000 0.000 0.000 0.000 0.000

Oct 0.000 0.000 0.000 0.000 0.000

Nov 0.000 0.000 0.000 0.000 0.000

Dec 0.000 0.000 0.000 0.000 0.000

2080s Jan 0.000 0.000 0.000 0.000 0.000

Feb 0.000 0.000 0.000 0.000 0.000

Mar 0.000 0.000 0.000 0.000 0.000

Apr 0.000 0.000 0.000 0.000 0.000

May 0.000 0.000 0.000 0.000 0.000

Jun 0.000 0.000 0.000 0.000 0.000

Jul 0.000 0.000 0.000 0.000 0.000

Aug 0.000 0.000 0.000 0.000 0.000

Sep 0.000 0.000 0.000 0.000 0.000

Oct 0.000 0.000 0.000 0.000 0.000

Nov 0.000 0.000 0.000 0.000 0.000

Dec 0.000 0.000 0.000 0.000 0.000
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changes lead to the increase in the probabilities of 30.9,

41.1 and 53.3 %, respectively. In contrast, the SDSM

method predicts the smallest changes compared to the base

years (1980s) of -2.7 % (2020s), -5.1 % (2050s) and

3.2 % (2080s), and has median values of 876.7, 855.1 and

930.1 mm, respectively. The variance changes are not the

same as those of the median value. For the variances, the

ASD method produces the largest changes (217.1, 146.1

and 263.4 mm2), while LarsWG5 shows the smallest

changes (65.46, 70.08 and 80.80 mm2).

All the downscaling methods analyzed herein produce

increases in the annual mean Tmax for the future years. The

median value of Tmax for the base years (1980s) is 20.2 �C.

From the results, the five downscaling methods show

increases in the mean Tmax for the next 110 years. The

annual mean Tmax values will increase with range between

Table 4 Results (p value) of the T test for the equality means of the observed and downscaled daily Tmin at the 95 % confidence level

Period Month p value

AdvCF CF ASD SDSM LarsWG5

2020s Jan 0.000 0.000 0.016 0.000 0.000

Feb 0.000 0.000 0.277 0.000 0.000

Mar 0.000 0.000 0.033 0.003 0.000

Apr 0.000 0.000 0.000 0.000 0.000

May 0.000 0.000 0.000 0.000 0.000

Jun 0.000 0.000 0.000 0.000 0.000

Jul 0.000 0.000 0.000 0.000 0.000

Aug 0.000 0.000 0.000 0.176 0.000

Sep 0.000 0.000 0.000 0.000 0.000

Oct 0.000 0.000 0.000 0.241 0.000

Nov 0.000 0.000 0.000 0.577 0.000

Dec 0.000 0.000 0.000 0.000 0.000

2050s Jan 0.000 0.000 0.000 0.000 0.000

Feb 0.000 0.000 0.000 0.000 0.000

Mar 0.000 0.000 0.000 0.000 0.000

Apr 0.000 0.000 0.000 0.000 0.000

May 0.000 0.000 0.000 0.000 0.000

Jun 0.000 0.000 0.000 0.000 0.000

Jul 0.000 0.000 0.000 0.000 0.000

Aug 0.000 0.000 0.000 0.000 0.000

Sep 0.000 0.000 0.000 0.000 0.000

Oct 0.000 0.000 0.000 0.000 0.000

Nov 0.000 0.000 0.000 0.000 0.000

Dec 0.000 0.000 0.000 0.000 0.000

2080s Jan 0.000 0.000 0.000 0.000 0.000

Feb 0.000 0.000 0.000 0.000 0.000

Mar 0.000 0.000 0.000 0.000 0.000

Apr 0.000 0.000 0.000 0.000 0.000

May 0.000 0.000 0.000 0.000 0.000

Jun 0.000 0.000 0.000 0.000 0.000

Jul 0.000 0.000 0.000 0.000 0.000

Aug 0.000 0.000 0.000 0.000 0.000

Sep 0.000 0.000 0.000 0.000 0.000

Oct 0.000 0.000 0.000 0.000 0.000

Nov 0.000 0.000 0.000 0.000 0.000

Dec 0.000 0.000 0.000 0.000 0.000
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3.7 and 4.7 �C. LarsWG5 provides the largest increase with

a median value of 24.9 �C, while ASD has the smallest

increase with a median value of 23.9 �C. The median

values of the AdvCF, CF and SDSM methods are 24.5,

24.5 and 24.0 �C, respectively. In addition, SDSM shows

the largest variance in the mean Tmax and LarsWG5 shows

the smallest variance in the mean Tmax.

For the annual mean Tmin results, all the downscaling

methods obtain the same increasing trend in the median

and variance values. The base years (1980s) have a median

value of 10.4 �C and variance of 0.36 (�C)2 for the annual

mean Tmin values. In the following 110 years, the annual

mean Tmin will increase with range between 2.9 and

4.9 �C. Results show that the LarsWG5 method produces

the largest increase with a median value of 15.3 �C, while

the ASD method shows the smallest increase with a median

value of 13.3 �C. The median values for the AdvCF,

CF and SDSM methods are 14.7, 14.7 and 13.4 �C,

Table 5 Results (p value) of the T test for the equality means of the observed and downscaled daily p at the 95 % confidence level

Period Month p value

AdvCF CF ASD SDSM LarsWG5

2020s Jan 0.000 0.000 0.281 0.961 0.022

Feb 0.000 0.000 0.000 0.165 0.048

Mar 0.000 0.000 0.000 0.138 0.678

Apr 0.000 0.000 0.000 0.100 0.251

May 0.000 0.000 0.000 0.705 0.981

Jun 0.000 0.000 0.000 0.642 0.112

Jul 0.000 0.000 0.838 0.000 0.463

Aug 0.000 0.000 0.013 0.256 0.846

Sep 0.000 0.000 0.12 0.213 0.579

Oct 0.000 0.000 0.000 0.061 0.193

Nov 0.000 0.000 0.000 0.138 0.362

Dec 0.000 0.000 0.000 0.022 0.168

2050s Jan 0.000 0.000 0.483 0.121 0.000

Feb 0.000 0.000 0.000 0.020 0.000

Mar 0.000 0.000 0.000 0.017 0.002

Apr 0.000 0.000 0.000 0.018 0.004

May 0.000 0.000 0.000 0.877 0.955

Jun 0.000 0.000 0.014 0.010 0.622

Jul 0.000 0.000 0.124 0.000 0.268

Aug 0.000 0.000 0.963 0.374 0.357

Sep 0.000 0.000 0.000 0.715 0.931

Oct 0.000 0.000 0.000 0.019 0.707

Nov 0.000 0.000 0.000 0.009 0.115

Dec 0.000 0.000 0.000 0.000 0.001

2080s Jan 0.000 0.000 0.665 0.042 0.000

Feb 0.000 0.000 0.000 0.005 0.000

Mar 0.000 0.000 0.000 0.051 0.000

Apr 0.000 0.000 0.000 0.021 0.000

May 0.000 0.000 0.000 0.559 0.276

Jun 0.000 0.000 0.004 0.143 0.521

Jul 0.000 0.000 0.102 0.000 0.083

Aug 0.000 0.000 0.791 0.000 0.001

Sep 0.000 0.000 0.000 0.000 0.004

Oct 0.000 0.000 0.000 0.286 0.000

Nov 0.000 0.000 0.000 0.171 0.000

Dec 0.000 0.000 0.000 0.000 0.000
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respectively. Lastly, smallest variance in the annual mean

Tmin was found with the LarsWG5 method with a variance

\0.1 (�C)2.

4.3 Hydrologic impacts of climate change

Figure 9 displays the monthly discharge results from the

hydrologic model for the five downscaling methods for the

future years (2020s, 2050s and 2080s). Results from the

downscaling methods showed that most of peak values for

the discharges are in the range of 4,000–5,000 m3/s;

however, the ASD method showed a significant increase in

the discharge results versus the other methods with some

months producing a discharge of 10,000 m3/s. These dif-

ferences in the discharges may be related to the different

climatic scenarios (Tmax, Tmin and P); however, it should

also be mentioned that the XAJ-RR model is sensitive to

precipitation. Tiny changes in precipitation could lead to

large fluctuations in the discharge values. Another reason

for the differences in the discharges could be related to the

A2 scenario used in this research being a high emission

scenario, thus it makes large increases in temperature and

precipitation as compared to the OBS for the future.

In regards to the annual mean discharges from the

hydrologic model (results shown in Table 6), all of the five

downscaling methods show increases in the discharge as

compared to that of the base years. The ASD method

produced the largest increase in the annual mean dis-

charges during the three future periods with the percent

changes between the future and base years of 98.2, 97.3

and 82.3 %, respectively. While, the SDSM method pro-

vided the smallest increase in the discharge values with

changes of 0.8, 3.2 and 7.6 % for the future years (2020s,

2050s and 2080s), respectively. These trends in the mean

annual discharges are consistent with the trends shown for

the precipitation. In looking at the results presented in

Table 6, the ASD method results show an interesting trend

of decrease in the changes between the future and base

year, while the other downscaling methods all show the

changes increasing over the future years. In addition, the

AdvCF method produces larger increases in the changes

than the CF method for each of the future periods.

In contrast, the variance results presented in Table 6

show a decreasing trend in the changes as compared to the

mean results discussed earlier. Results show that only the

ASD method obtains higher variances changes for the

future years than those of the base years and that these

changes decrease over the future years, while the other

downscaling methods provide lower variances changes for

the future years than the base years and have changes that

increase over the future years.

Figure 10 presents the PDFs of the annual mean dis-

charge for both the future years and the base years. The

PDFs show the uncertainties and how they relate to

downscaling methods. The annual mean discharge for the

base years (1980s) is from 0 to 2,000 m3/s with a median

value of 993.3 m3/s. Figure 10 shows that all of the

downscaling methods produce increases in annual mean
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precipitation, annual mean Tmax
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base years (1980s, shown as the

OBS data) and the future years

(2020s, 2050s and 2080s)
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discharge for the future years as compared to the base

years. Results indicate that the ASD method provides the

largest increases in the median values in the annual mean

discharge with a range of 82.3–98.2 % in the future years,

while the SDSM method produced the smallest increases in

the median value in the future years, which varied from 0.8

to 7.6 %. The annual mean discharge results increase in

magnitude in the follow order for the five downscaling

methods: ASD, LarsWG5, AdvCF, CF and SDSM. Lastly,

the mean and variance of annual mean discharge increase

with time for each of the downscaling methods.

From the results presented in Fig. 10 it is evident that

one cannot ignore uncertainty in the choice of the down-

scaling method utilized in determining the impact of cli-

mate change on the hydrology and water resources in a

region. Each of the different downscaling methods provide

different results, thus, the uncertainty with the downscaling

methods can lead to uncertainties in the hydrological

variables.

5 Discussion

Uncertainty is important when studying the impact of cli-

mate change on hydrology and water resources. Recently,

many researchers have been examining the uncertainty in

climate models, such as GCMs and GGES. The down-

scaling methods provide a tool to solving the mismatch

scale issue between GCMs (large-scale) and hydrological

models (small-scale). This area of research has enjoyed

much development during the last two decades. The

uncertainty in the downscaling methods introduces uncer-

tainty in the hydrologic models.

Herein, five different downscaling methods are assessed

for their impact of climate change on hydrology and water

resources. A combination of the data from the HadCM3

model and the A2 scenario were used to investigate the

uncertainty in the upstream portion of the Huaihe River

basin in China. This paper examines the statistical vari-

ables of the regional climate scenarios (i.e. P, Tmax and
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Fig. 9 The discharges

predicted for the future years

(2020s, 2050s and 2080s) at the

upstream portion of the Huaihe

River basin. The abscissa shows

360 months for 30 years during

the chose period

Table 6 Changes of annual mean discharge and variance for the future years (2020s, 2050s and 2080s) compared with the base years (1980 s)

Period AdvCF ASD CF LarsWG5 SDSM

Mean increase value (%) 2020s 4.8 98.2 2.2 17.2 0.8

2050s 18.9 97.3 16.1 20.0 3.2

2080s 19.1 82.3 18.0 44.8 7.6

Variance increase value (%) 2020s -19.4 55.3 -21.0 -20.3 -35.7

2050s -9.2 22.7 -10.9 -17.3 -46.8

2080s -6.4 13.9 -9.9 -6.2 -29.1
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Tmin) produced by the five downscaling methods to

investigate their uncertainty. For instance, the statistical

variables investigated within this study for the future years

(2020s, 2050s and 2080s) were: daily precipitation,

monthly mean Tmax and Tmin, POT and PBT, changes of

Tmax and precipitation with seasons, error evaluation in the

estimates of means between the base years and the future

years, and PDF of three predictants. Paired-sample T-test

was used to estimate the significance at the 95 % signifi-

cant level.

All of the downscaling methods suggest increases in

temperature for the future years. This conclusion is the

same as previous studies’. But Chen et al. (2011a) pre-

sented temperature (average of Tmax and Tmin) increases

range between 3.6 and 6.3 �C for spring, 0.4 and 4.1 �C for

summer, 1.8 and 4.8 �C for autumn and between 5.7 and

9.1 �C for winter, which concluded that the winter tem-

perature increase were greater than for others in canada for

the 2,085 horizon in Canada. While this paper concluded

that the summer temperature (Tmax) increase are greater

than other seasons in the upstream portion of the Huaihe

River Basin for 2080s, increases range between 2.8 and

4.3 �C for spring, 5.2 and 6.8 �C for summer, 3.0 and

5.1 �C for autumn and between 2.7 and 4.2 �C for winter.

Gao et al. (2010) used ANN to project streamflow derived

from the ECHAM5/MPI-OM model under three emission

scenarios (A2, A1B and B1) in the same area and the same

period with this study. The interannual fluctuations of

streamflow displayed a relatively significant increasing

trend under the SRES-A2 scenario, especially from 2051 to

2085. It was projected that the runoff of the Huaihe River

fluctuates significantly in the future and would decrease in

the end of twenty first century. But their study used a single

downscaling model. In this paper, five downscaling meth-

ods display a relatively increasing trend of discharge

derived from the HadCM3 model under A2 scenario. The

overall results of the ASD method suggest the largest

increase (82.3 %) and the SDSM method suggest the least

increase (7.6 %) in the 2080s. This projection is in line

with the increasing precipitation, the ASD method suggests

the largest increase (53.3 %) and the SDSM method sug-

gests the least increase (3.2 %) in the 2080s. Khan et al.

(2006b) investigated the uncertainty of downscaling

methods by non-parametric test at two meteorological

stations in the current, while this paper test it over the basin

in the future. The results of this paper are more significant

in many months due to the climate change in the future. In

this paper, POT and PBT of observed in the base years and

downscaled in the future years are compared to demon-

strate the increasing of temperature in the other view,

which indicate the uncertainty of downscaling methods too.

This paper takes a multifaceted view of the uncer-

tainties of downscaling methods. These results illustrate

that the uncertainties shown in hydrological variables are

related to those that are produced with the downscaling

methods. It is demonstrated that interpreting and using the

output of only one downscaling method are need for

extreme caution.
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There are many factors cause the uncertainties of

downscaling methods: (1) Method uncertainties due to

structural errors of the downscaling methods. (2) Method

uncertainties due to processes of screen predictors; for

example, a partial correlation analysis is applied in SDSM

method and a stepwise linear regression approach is used in

ASD method, only strong correlation with predictants are

take into account. (3) Method uncertainties due to pro-

cesses of variance inflation and bias correction, for exam-

ple, which were set automatically in ASD and set manually

in SDSM. (4) Method uncertainties due to different optimal

algorithms used to calculate parameters. (5) Method

uncertainties due to resolution of GCM outputs in the

future, for example, IDW was utilized to interpolate the

GCM outputs in AdvCF method. This paper takes a mul-

tifaceted view of the uncertainties of downscaling methods.

Compared with previous studies, the results are more

obvious and the reasons are more fully.

6 Conclusions

Five downscaling methods were used to investigate the

uncertainty of downscaling methods. Regional climate

scenarios and hydrological variables projected by five

methods were presented above. The comparative down-

scaling results show that uncertainties exist in downscaling

methods. All the studies about climate change based on a

single downscaling method should be caution. The uncer-

tainty about downscaling methods should be pay attention

to as GCMs and GGES.

Because of the uncertainties in the GCMs, emission

scenarios, downscaling methods and hydrological models,

the errors are inevitable between simulations and OBSs of

predictands. The A2 scenarios assume a high population

growth, which results in higher emission. The A2 scenario

has high emissions than the other scenarios defined by

IPCC, which is due to the assumption of rapid population

growth. Therefore, the downscaling methods for the A2

scenario would produce the largest changes than the other

emissions scenarios. All five downscaling methods were

found to predict an increase in Tmax by 2080s as compared

to the OBS of the 1980s, with the range of the changes

between 3.7 and 4.7 �C. In the case of Tmin, these changes

ranged between 2.8 and 4.9 �C. These increases in Tmax

and Tmin would be reduced if the A2 emission scenario

were replaced with the other low-emission scenarios.

Results indicate that all the downscaling methods produce

varying increases in the annual mean precipitation by

2080s, which range between 3.2 and 53.3 %.

The output from the model, HadCM3, was downscaled

by the five methods discussed herein to produce different

future regional climate change scenarios. These results

were then utilized in the XAJ-RR model to predict the

hydrological changes in the Huaihe River basin. The XAJ-

RR model employs precipitation, evapotranspiration and

15 model parameters to produce discharge information.

The evapotranspiration is relevant to Tmax and Tmin vari-

ables. Results from the hydrology model show that the

choice of downscaling methods plays a significant role in

accurately capturing the impacts of climate change, and

that the uncertainty present in the downscaling methods

leads to uncertainty in the results from the hydrology

models.

Several assumption were utilized in determining the

impact of climate change on the hydrology and water

resources in the Huaihe River basin, thus the results pre-

sented herein can only be used to provide forecasts or some

guidance. The downscaling methods must be chosen in a

deliberate fashion, as these methods are just as important to

assessing the impact of climate change on the hydrology as

choosing the GCMs and GGES. The accurate evaluation of

the impact of climate change is important for the planning

and management of the water resources in the future.
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