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Abstract This paper studies the emissions of SO2 and

COD in China using fine-scale, countylevel data. Using a

widely used spatial autocorrelation index, Moran’s I sta-

tistics, we first estimate the spatial autocorrelations of SO2

and COD emissions. Distinct patterns of spatial concen-

tration are identified. To investigate the driving forces of

emissions, we then use spatial econometric models,

including a spatial error model (SEM) and a spatial lag

model (SLM), to evaluate the effects of variables that

reflect level of economic development, population density,

and industrial structure. Our results show that these

explanatory variables are highly correlated with the level of

SO2 and COD emissions, though their impacts on SO2 and

COD vary. Compared to ordinary least square regression,

the advantages of SLM and SEM are demonstrated as they

effectively reveal the existence and significance of spatial

dependence. The SEM, in particular, is chosen over the

SLM as the role of spatial correlation is stronger in the

error model than in the lag model. Based on the research

results, we present some preliminary policy recommenda-

tions, especially for those high–high cluster regions that

face significant environmental degradation and challenge.

Keywords Pollutant emissions � Economic growth �
Spatial autocorrelation � Moran’s I � Spatial econometrics �
China

1 Introduction

China’s rapid economic growth in the last three decades

has been well documented and widely touted. By 2010,

China’s gross domestic product (GDP) reached $5.8 tril-

lion, replacing Japan as the world’s second largest econ-

omy (NBSC 2011b). The country is quickly moving from

an agrarian society to an urban one, with over half of its

population now living in urban areas (NBSC 2011b; Yue

et al. 2012). Meanwhile, the rapid industrialization and

urbanization have been accompanied by soaring uses of

resources and massive increases in discharge of pollutants.

In 2006, the Chinese government set a goal of reducing

the emissions of major pollutants by ten percent during the

11th ‘‘Five-Year Guideline’’ period (2006–2010).1 That

target, according to China’s Ministry of Environmental

Protection (MEP), had been met. By 2010, the total

emissions of sulfur dioxide (SO2) and chemical oxygen

demand (COD, a measure of water pollution) dropped

respectively by 12.45 and 14.29 % from the levels of 2005

(MEP 2010). Still, a vast amount of pollutants is being

released into water and air every year. In 2010, the amount

of waste water discharged reached 61.7 billion tons, which

included 23.75 billion tons of industrial waste water and

37.98 billon tons of domestic sewage, and had a
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concentration of pollutants equivalent to 12.38 million tons

COD (MEP 2011b). In the same year, 21.85 million of tons of

SO2 were emitted into the air (MEP 2011b). According to the

12th Five-Year Guideline (2011–2015), China’s real GDP

will double between 2010 and 2020, quadrupling the 2000

GDP. Without doubt, China’s large and fast growing econ-

omy will continue to put more pressure on its environment

and natural resources. Thus, it is imperative to study the

relationship between economic growth and environmental

degradation and assess the environmental consequences of

economic development in order to offer policy recommen-

dations for environmental pollution control and a long-term,

sustainable plan of social economic development.

This paper studies the emissions of SO2 and COD in

China, two major pollutants marked for control under the

11th and 12th Five-Year Guidelines. Using fine-scale,

county-level data, we estimate the spatial autocorrelations

of SO2 and COD emissions in China. The spatial analysis

reveals distinct concentrations of SO2 and COD emissions

in space. To investigate the driving forces of emissions, we

use spatial econometric models, including a spatial error

model (SEM) and a spatial lag model (SLM) to evaluate

the effects of variables that reflect level of economic

development, population density, and industrial structure.

Our results show that these explanatory variables are

highly correlated with the level of SO2 and COD emis-

sions, though their impacts on SO2 and COD vary.

The rest of the paper is organized as follows. The next

section provides a brief review of literature on economic

growth and environmental degradation. In section three, we

measure the spatial distribution of SO2 and COD emissions

in China to identify possible patterns of spatial concen-

tration. We use the spatial autocorrelation index, Moran’s

I statistics, to reveal the geographic patterns of SO2 and

COD emissions. Section 4 focuses on investigating the

driving forces of pollutant emissions using spatial econo-

metric models (SEM and SLM models). The last section

concludes the paper with a brief summary of findings and

discussion of policy implications.

2 Literature review

Many theoretical and empirical studies have examined the

relationship between economic growth and environmental

degradation (Beckerman 1992; Dasgupta et al. 2002; John

and Pecchenino 1994; Taylor and Copeland 2004). The

debate continues whether environmental quality will

improve or deteriorate as countries develop. One point of

view argues that environmental degradation increases with

economic growth due to increased need for energy and

materials (Dinda 2004; Roca et al. 2001). Yet, other

authors argues that according to the environmental Kuznets

curve (EKC) theory, the pollution level first increases with

income but will eventually decrease after income reaches

certain turning point (Franklin and Ruth 2012; Grossman

and Krueger 1991, 1995; Shafik and Bandyopadhyay

1992). A fairly large number of empirical studies have

been conducted to test relationship between environment

and economic growth. Nevertheless, mixed findings are

reported. In addition, there are also evidences that the

testing results depended on the type of pollutants and

specific econometric models (Chowdhury and Moran 2012;

Tamazian and Rao 2010).

Previous studies have shown that socioeconomic factors,

including population density, urbanization, industry con-

struction, technology impacts, environmental policy, etc.,

have strong influence on environmental degradation (He and

Wang 2012; Qi et al. 2013; Stern 2004; Suri and Chapman

1998; Wu et al. 2012). Brajer et al. (2011) tested the emission

of several air pollutants in Chinese cities and their results

provide some support of the inverted-U type EKC trend.

Shen (2006) formulated a SEM model to investigate the

relationship between income and pollutant emissions in

China. The study provides evidence that verifies the impacts

effects of environmental policy and industrial structures as

well as economic growth on pollution. In a cross-section

study of countries, Gangadharan and Valenzuela (2001)

demonstrated that population density and urbanization level

are both positively related to CO2 emissions while the level

of income inequality was inversely related to environmental

quality. Overall, previous studies demonstrated that many

factors have influence on environmental quality. However,

there seems to be no conclusive evidence on which variables

have most impacts on the emission of a particular pollutant.

The new economic geography literature has claimed that

the agglomeration or the clustering of economic activities

occurs at all geographical levels (country, region, or city),

which is influenced by scale effect, market externality,

knowledge and technology spillover effect (Anselin 2007;

Brülhart and Sbergami 2009; Drucker and Feser 2012; Krug-

man 1998; Patacchini 2008; Ying 2005). Given the fact that

economic growth has increasingly been recognized as a key

factor that influences the environmental degradation, one may

naturally ask the following questions: do pollutant emissions

also display patterns of spatial agglomeration or concentra-

tion? If they do, to what degree they spatially correspond to the

agglomeration of economic activities; and what factors con-

tribute to the spatial concentrations of pollutant emissions?

There are studies that examine the spatial relationships

between economic growth and environmental quality.

Stern (2000) used data for sixteen Western European

countries over thirty-one time periods to indicate that sulfur

emissions were spatio-temporally integrated, and GDP was

a relevant explanatory variable for sulfur emissions. Other

important variables were omitted from the model. Li and
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Zhang (2011) found two distinct characteristics of indus-

trial SO2 emission in China: spatial clustering and spatial

imbalance. Using panel data models that take spatial

dependence into account, Su et al. (2009) found that pol-

lutions were spatially dependent in China, and the esti-

mation results seemed to be more robust than using

ordinary least square (OLS) estimate.

When estimating the relationship between environmental

degradation and economic growth, it seems necessary for us

to take spatial dependence or spatial autocorrelation into

account. Furthermore, other socio-economic variables also

need to be taken into consideration as they have influence

over the environmental degradation. However, the current

literature has not given adequate attention to spatial factor

and other related variables, which are needed to provide an

accurate and generalizable account of the relationship

between environmental degradation and economic growth.

This paper contributes to the literature in several ways.

First, this paper represents the first study that uses detailed

county-level data to investigate the relationship between

economic growth and environmental pollution in China.

Most studies in the current literature are based on national or

provincial level data (Koop et al. 2010; Lindmark 2002; Li

and Zhang 2008; Tol et al. 2009; Vehmas et al. 2007). In this

study, we use a large dataset that includes data on pollutant

emissions for 2,329 counties in China. We believe that fine-

scale data provide a more accurate account of the spatial

patterns and relationships of pollutant emissions.

Second, in addition to GDP, we incorporate other

socioeconomic variables, including population density and

industrial structure, as independent variables that help

explain the spatial patterns of pollutant emissions. Despite

their importance, such variables have generally not

received sufficient attention in the literature.

Third, we employ spatial econometric models to reveal

the relationship between economic growth and pollutant

emissions and to ensure that the spatial dependence factor

be taken into consideration, which has been proved to exist

in environmental phenomena (He et al. 2013; Kim et al.

2003; McPherson and Nieswiadomy 2005). Spatial

econometrics remains an underutilized technique in envi-

ronmental and natural resource economics, and there are

few papers using spatial econometric models when ana-

lyzing environmental data.

3 Measuring the distribution of environmental

pollutants: a spatial autocorrelation analysis

3.1 Measuring spatial distribution

Anselin (1988) identified two properties as particularly

important in the analysis of data that are spatial in nature:

spatial autocorrelation (or spatial dependence) and spatial

heterogeneity. Spatial autocorrelation refers to correlation

of values of a variable through geographic space. It rep-

resents the interdependence of observations across space

that can be attributed to their relative location (e.g.,

neighboring or non-neighboring). If exits, spatial autocor-

relation often indicates a clustering or concentration ten-

dency of attributes. Spatial heterogeneity, on the other

hand, refers to variations in relationships (including clus-

tering patterns) that are caused by absolute location of

observations.

In this section, we first examine the patterns of spatial

concentration of pollutant emissions by measuring spatial

autocorrelation. With positive spatial autocorrelation, high

or low values of an attribute tend to cluster in space

whereas with negative spatial autocorrelation, locations

tend to be surrounded by neighbors with very dissimilar

values (Anselin and Bera 1998; Chi and Zhu 2008). We use

Moran’s I, one of the most widely used spatial autocorre-

lation statistics (Anselin 1995; Getis 2007; Ord and Getis

1995). There are two forms of Moran’s I. The Global

Moran’s I is a measure describing the overall spatial rela-

tionship across all geographic units for the entire study

area. Therefore, there is only one value derived for the

entire study area. The global Moran’s I is calculated from

the following formula (Chakravorty et al. 2003; Li and

Zhang 2011; Moran 1948):

I ¼
n
Pn

i¼1

Pn

j¼1

wijðxi � xÞðxj � xÞ

Pn

i¼1

Pn

j¼1

wij

Pn

i¼1

ðxi � xÞ2
ð1Þ

where x ¼ 1
n
Pn

i¼1 xi, xi and xj are values of pollutant x in two

geographic units (i.e., counties) i and j, wij is the weight

coefficient between counties i and j (which is defined in the

spatial weight matrix), and n is the total number of geo-

graphic units (i.e., counties). The computation of Moran’s

I index is achieved in GeoDA, a free spatial data analysis

software package that was initially developed by the Spatial

Analysis Laboratory of the University of Illinois at Urbana-

Champaign under the direction of Luc Anselin.

The spatial weights matrix formed by weight coefficients

is an integral part of spatial modeling. It is defined as the

formal expression of spatial dependence between observa-

tions (Anselin 1988). This paper adopts a commonly used

strategy to determine the spatial weight wij, namely, spatial

linkage based on border sharing. A binary weight matrices

are constructed to determine wij, that is, let wij = 1 if geo-

graphic units i and j are adjacent to each other; otherwise

wij = 0 (Kim et al. 2009; Porter and Purser 2010).

The statistical significance of Moran’s I can be tested

using Z statistics by comparing calculated Moran’s I

from Eq. (1) and the expected value of Moran’s I, E(I)
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(Chakravorty et al. 2003; Li and Zhang 2011). Standard-

ized Z statistics and E(I) are respectively expressed as

Z ¼ I � EðIÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðIÞ

p ð2Þ

and

EðIÞ ¼ � 1

n� 1
ð3Þ

VARðIÞ ¼ n2w1 þ nw2 þ 3w2
0

w2
0ðn2 � 1Þ � E2ðIÞ ð4Þ

w0 ¼
Xn

i¼1

Xn

j¼1

wij;w1 ¼
1

2

Xn

i¼1

Xn

j¼1

ðwij þ wjiÞ2;w2

¼
Xn

i¼1

ðwi þ wjÞ2

where wi and wj are separately the sum of the elements of

ith and jth row of spatial matrix. The values of global

Moran’s I range from -1 to 1.

The global Moran’s I is a global index that represents

the spatial autocorrelation of an entire study area as a

single value. Spatial autocorrelation may differ in accor-

dance with each location, especially when the study area is

relatively large. The second form of Moran’s I, local

Moran’s I, which is also often called local indicator of

spatial association (LISA), is a local indicator of variations

in the study area. It is a measure designed to describe the

heterogeneity of spatial association across different geo-

graphic units within the study area (Chakravorty et al.

2003; Chi and Zhu 2008). Local Moran’s I is defined as

Ii ¼
ðxi � xÞ

m0

X

j

wijðxj � xÞ ; m0 ¼
X

j

ðxi � xÞ=n ð5Þ

where the operation of summing j is limited to the sur-

rounding areas of i. As shown in Eq. (5), the local Moran’s

I decomposes the global Moran’s I into the contribution of

each location. Similar to global Moran’s I, a high (positive)

value of local Moran’s I means the association of similar

values whereas a low (negative) value means the associa-

tion of dissimilar values (Kim et al. 2009; Li and Zhang

2011).

3.2 Spatial distribution of environmental pollutants

The distribution of SO2 and COD emissions is estimated

for 2,392 counties2 in China. The results of global Moran’s

I are summarized in Table 1. The statistical significance of

the Moran’s I values are tested using both z test and

p values. As shown in the table, the high Z scores and low

p values suggest that Moran’s I values are highly signifi-

cant statistically for both SO2 and COD (at 0.01 significant

level) and there seems to be statistically significant spatial

autocorrelation effect in both 2000 and 2010. During

2000–2010, Moran’s I increased for both SO2 and COD

(especially for the former), indicating a tendency of

increased concentration of SO2 and COD emissions in

China.

To visually explore spatial autocorrelation, we create

Moran scatter plots. The Moran scatter plot illustrates the

relationship between the values of the chosen attribute at a

given location and the average value of the same attribute

at neighboring locations (Anselin 1996). The four quad-

rants of the scatter plot correspond to four types of local

spatial autocorrelation. Positive spatial autocorrelation are

shown in quadrant I (high–high type, or HH, indicating

high values surrounded by high values, and quadrant III

(low–low type, or LL, indicating low values surrounded by

low values); negative spatial autocorrelation are displayed

in quadrant II (low–high type, or LH, indicating low values

surrounded by high values) and quadrant IV (high-low, or

HL, indicating high values surrounded by low values).

Figures 1 and 2 respectively present local Moran scatter

plots of SO2 and COD emissions in 2000 and 2010. For

both SO2 and COD emissions, most counties are found in

quadrants I and III, suggesting a fairly high degree of

positive spatial autocorrelation.

The values of both the global Moran’s I and the Moran

scatter plots show a fairly strong spatial autocorrelation at

the national level, revealing spatial concentration of SO2

and COD emissions. To detect the local variation in spatial

autocorrelation and local patterns of spatial association, we

conducted local Moran’s I analysis. The univariate LISA

maps in Figs. 3 and 4 include the counties for which the

local Moran’s I statistics are significant at the 0.05 level.

The positive and significant value of local Moran’s I indi-

cates spatial clustering of similar values (counties in the

high–high and low–low groups or regions), whereas a

negative and significant value indicates spatial clustering of

dissimilar values (counties in the low–high and high-low

groups or regions).

Table 1 Global Moran’s I of SO2 and COD emission in China, 2000

and 2010

Pollutant Years Moran’s I Z score p value

SO2 2000 0.0654 5.5317 0.0000

2010 0.1165 9.3392 0.0000

COD 2000 0.0913 8.1722 0.0000

2010 0.0981 9.172 0.0000

2 In this paper, ‘‘counties’’ refer to county-level administrative units,

which are mostly counties, but also include autonomous counties and

county-level cities.
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In order to have a better understanding of the spatial

clustering in LISA maps, the brief introduction to the

geography of industries that emit more pollutant is neces-

sary. In 2010, the top three industries of SO2 emissions are

electric power industry, ferrous metal (steel, iron etc.)

industry, nonmetal mineral industry, which emit the 73 %

of total SO2 emissions in China (MEP 2011a). Moreover,

petroleum industry and coal mining industries also have

higher SO2 emissions than others. In China, the ferrous

metal and nonmetal industries mainly distribute in Shan-

dong, Hebei, Henan and Liaoning provinces, and coal

mining industry mainly spread in Shanxi, Neimeng and

Liaoning provinces. Shandong province is the largest SO2

emission province, which account for 7.4 % of total SO2

emissions in China, and then are Neimeng, Henan and

Shanxi provinces (MEP 2011a).

For COD emissions, in 2010, the largest three industries of

COD emissions are paper industry, agricultural and sideline

products industry, chemical products manufacturing, which

have the 51.8 % of total COD emissions in China (MEP

2011a). These industries distribute mainly in Shandong,

Henan and Hebei provinces in north of China, and in

Guangdong, Jiangsu, Zhejiang, Fujian and Guangxi prov-

inces in South of China. Guangxi is the top COD emissions

province that has the 7.6 % of total emissions in China, and

then are Shandong, Henan provinces (MEP 2011a).

By comparing the LISA maps of 2000 and 2010

(Figs. 3, 4), we would find that for SO2 emissions, HH

Fig. 1 Moran scatter plot for pollutant emissions in 2000

Fig. 2 Moran scatter plot for pollutant emissions in 2010
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regions became more prominent when the number of

counties increased from 67 to 76. Meanwhile, the number

of counties in the LL clusters decreased from 430 to 362.

This finding confirms increased degree of pollutant con-

centration and deterioration in environmental protection in

China. The HH clusters of SO2 emissions can be classified

into three categories. The first category is located in heavy

industrial regions, where high pollution industries are

concentrated. In 2000, major clusters in this category are

located in Liaoning province (including industrial cities

Fushun, Tieling, Jinzhou, etc.) and central Shandong

province (located in Zibo and surrounding areas, a tradi-

tional petroleum industrial region in China where other

high-pollution industries such as porcelain and steel

industries are also important). In 2010, while the HH

cluster central Shandong remains, the HH clusters in Lia-

oning diminished due to decreased industrial activities in

those areas. New HH clusters emerged in eastern Heibei

province, especially in the Tangshan region where

Caifeidian Industrial Zone—a national industrial park—is

located, there is agglomeration of steel, chemical and

electric industries, including the Capital Iron and Steel

Group, or Shougang, which was relocated from Beijing

prior to the 2008 Beijing Olympic Games.

The second category of HH clusters is located in the

regions that are rich in mineral resources and where mining

industries are important. In 2000, one of major HH cluster of

this kind was located in central Shanxi province, the capital

of China’s coal mining industry. Another major HH cluster

of counties are in the Ordos city in central Inner Mongolia

where there are also many coal mines on China’s largest coal

reserve. By 2010, the HH cluster in central Mongolia became

much bigger. Another HH cluster in this category emerged

that includes two counties—Xishui and Pingba—in western

Guizhou province, where coal industry is important for local

and provincial economies. The third category of HH clusters

is situated in the major cities and surrounding suburbs areas.

The HH cluster in southern Jiangsu province, for example,

Fig. 3 LISA map of SO2 emissions, COD emissions in 2000 Fig. 4 LISA map of SO2 emissions, COD emissions in 2010
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includes counties and county-level cities that are part of

highly-urbanized Suzhou–Wuxi–Changzhou city region,

which has literally been connected to the Shanghai metrop-

olis. In addition, counties in the HH clusters in southwestern

Chongqing, and in Guangzhou and Huizhou Cities of

Guangdong province, are all close to major urban areas and

rapidly industrializing with high population densities.

For the LL clusters of counties in SO2 emissions, they

are mostly located in regions with high altitude (moun-

tainous landscape), sparse population, and undeveloped

economy, especially western parts of the country. The

largest LL cluster includes 177 counties—nearly half of LL

type of counties—and is centered in Qinghai-Tibet Plateau,

extending from southern Xinjiang and Qinghai province in

the north to the northern half of Yunnan province in the

south, from entire Tibet in the west and the western half of

Sichuan province (by the western edge of Sichuan Basin)

in the east. Another major LL cluster area is found in the

Loess plateau, covering southwestern Gansu province and

central and southwestern Shanxi province in the Qingling

Mountain region. Other LL clusters are located in the Ta-

rim Desert of Xinjiang province, Sanjiang Plain of Hei-

longjiang provinces, and the border counties between

Jiangxi and Fujian provinces, between Jiangxi and Hubei

provinces, and between Jiangxi and Anhui provinces, most

of which are also mountainous counties.

The LISA maps of COD emissions also reveal a tendency

of increased concentration, with the number of counties in

the HH clusters increasing from 99 in 2000 to 119 in 2010.

Meanwhile, the number of counties belonging to the LL

clusters decreased from 464 to 426 counties. For both years,

there is a clear east–west divide on the maps: the LL clusters

counties in COD emissions are mainly located in western

part of China, whereas the HH clusters are mostly in the east,

divided by a line, if to draw one, that seems to coincide well

with the famous ‘‘Hu Huanyong Line’’.3 Overall, most

counties in the HH category are located in economically

developed and highly populated regions. Still, two types of

HH clusters can be identified based on geographic location.

The first type of HH clusters includes about 70 % of all HH

counties, which are mostly located in major city regions,

major urban areas (such as provincial capitals) and their

surrounding regions. These areas include Pearl River Delta

metropolitan region, the Greater Yangze River Delta

metropolitan region, Changsha–Zhuzhou–Xiangtan city

group in Hunan province, Chengdu city region in Sichuan

province, Xi’an-Xianyang city region in Shaanxi province,

Urumqi city area in Xinjiang, and urban areas in some other

provinces such as Liaoning, Heilongjiang and Shandong.

The second type of HH clusters includes those counties

in industrial regions with agglomeration of industries of

high COD emissions. One of such clusters is located in in

southern Guangxi Autonomous Region. Including over 30

counties, this region has a very high concentration of

industries that have high COD emissions, such as sugar

manufacturing, nonferrous metal industry and paper

industry. In 2010, another cluster of similar kind emerged

in eastern Yunnan province. That area is the national epi-

center of tobacco production in China.

Similar to LL clusters of SO2 emissions, the largest LL

cluster of COD emissions covers the entire Tibet, almost

all counties in Qinghai province, counties in southern part

of Gansu province, western half of Sichuan province and

northern half of Yunnan province. East to this LL cluster is

Sichuan Basin, which is surrounded by this the largest LL

cluster in the west and north and some other clusters in the

east. This interesting pattern illustrates the association of

COD emission with economic development and population

distribution in relation to physical environment (generally

speaking high COD emissions in economically developed,

highly populated areas that are relatively flat and low-

laying and low COD emissions in those mountainous areas

with sparse population). Other LL clusters of COD emis-

sions are scattered Inner Mongolia, Loess Plateau, and

Xinjiang. Compared to 2000, however, the number and

scope of LL clusters in 2010 became smaller.

To conclude, both SO2 and COD emissions appear to

correlate with economic development, population density

and industrial agglomeration. Economically developed

areas with high population densities, are characterized by

both of high COD and SO2 emissions. Mountainous

regions with sparse population, such as Qinhai-Tibet Pla-

teau, Qinling Mountain, Wushan Mountain, Loss Plateau,

Inner Mongolia, etc., have remarkably low SO2 emissions

and low COD emissions. We will investigate the specific

relationships between the SO2/COD emissions and other

variables including level of economic development, pop-

ulation density, and industrial structure.

4 Investigating the driving forces of pollutant

emissions: a spatial econometric analysis

4.1 Spatial econometric models and specifications

In this section, we will use regression models to investigate

the driving forces of pollutant emissions in China. When

3 ‘‘Hu Huanyong Line’’, also known as ‘‘Aihui-Tenchong Line’’, is

an imaginary line proposed by Chinese population geographer Hu

Huanyong in 1935 by connecting two places—Aihui, Heilongjiang

Province in the northeast and Tengchong, Yunnan Province in the

southwest. West of the line, land and population respectively

accounted for 57 and 4 % of the national total in 1935 (about 57

and 6 % in today), while east of the line, land and population

respectively accounted for 43 and 96 % of the national total in 1935

(about 43 and 94 % in today). For more description of the concept,

see Naughton (2007).
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spatial autocorrelation exists, which has been proved to be

the case in this study in the previous section, using OLS

models to estimate the regression of the spatial data would

lead to bias or invalid results (Anselin 1988). Spatial

regression models take spatial autocorrelation into con-

sideration. Two basic models attempt to model spatial

dependence, the spatial lag model (SEM) and the spatial

error model (SLM) (Anselin 1988; Tsutsumi and Seya

2009). While SLM allows for the observed value of nearby

observations, SEM deals specifically with spatial autocor-

relation in the error terms (Chi and Zhu 2008; Maddison

2006). In SLM, explanatory variables include a spatial lag

for the dependent variable as well as a set of exogenous

variables. The expression for the spatial lag model is:

Y ¼ qWY þ Xbþ e ð6Þ

where Y is a vector of dependent variables, X is the matrix

of explanatory variables, W is the spatial weight matrix, q
is the spatial autoregressive parameter, b is a vector of

regression coefficients, and e is the vector of independent

disturbance terms.

The standard spatial model with autoregressive distur-

bances represents an alternative form of spatial depen-

dence. A SEM is given by:

Y ¼ Xbþ e ð7Þ
e ¼ kWeþ l ð8Þ

where k is the spatial autoregressive coefficient, X is the

matrix of explanatory variables, W is the spatial weight

matrix, b is the regression coefficients, e is the spatially

autoregressive error term, and l is the vector of indepen-

dent disturbance term representing normal distribution.

Based on the analysis of LISA maps in the previous

section, we make the following three hypotheses that

applicable to China: (1) emissions of SO2 and COD have a

statistically significant relationship with GDP, and SO2 is

more sensitive to economic development than COD; (2)

emissions of SO2 and COD have a positive correlation with

population density, as high population density is often

associated with more business activities and more energy

consumption, and thus indicates more pollutant emission;

(3) industrial structure also has significant impacts on

pollutant emissions. We use proportion of tertiary industry,

instead of the proportion of secondary industry, as an

explanatory variable, because not all the secondary indus-

try have the high SO2/COD emissions, but tertiary activi-

ties are generally thought to be less energy intensive and

generate less pollutant than the industries in the secondary

sector. Therefore, we believe that use of ‘‘tertiary activi-

ties’’ is better than using the proportion of secondary

industries when the effects of industrial structure on pol-

lutant emissions are discussed.

In order to test the above hypotheses and evaluate the

impacts of those variables, we propose regression models

using pollutant emissions as dependent variable and influ-

encing factors as independent variables. As the spatial

interdependence has to be taken into account when esti-

mating the models proposed, we use the two spatial

econometrics models (SLM and SEM) to estimate. The

basic form of the econometric model is:

y ¼ f GDP; PEO; INDUð Þ ð9Þ

where y is total SO2 or COD emissions of counties in 2010.

GDP represents per capita GDP, PEO represents population

density as measured in person per square kilometer, and

INDU denotes a variable of industrial structure as mea-

sured by the proportion of tertiary industry.

The data of SO2 and COD emissions are collected from

a variety of sources, including Annual Statistical Report on

Environment of China (MEP 2011a), Reports on Environ-

mental Quality in China (MEP 2011b), etc. Data on GDP,

population density and industry structure are collected

from National Statistical Yearbook (NBSC 2011b), China

Statistical Yearbook for Regional Economy (Comprehen-

sive Department, NBSC 2011), and China County Statis-

tical Yearbook (NBSC 2011a), etc.

Table 2 presents descriptive statistics of data and vari-

ables. We would like to make a note that SO2 is mainly

contained in exhaust gas, while COD exists in waste water.

Exhaust gas and waste water come from both industrial and

domestic sources

Some previous studies used double logarithmic of pol-

lutant emissions and GDP in the regression model and

proved that there was significant relationship between

variables in double logarithmic form (Bimonte 2002;

Hettige et al. 2000; Kahuthu 2006; Kheder and Zugravu

2012). Logarithmic transformation can reduce the heter-

oskedasticity effect. In order to figure out whether or not

logarithmic transformation is necessary for our dataset, we

conduct a spatial association test to decide the variable

form. We use bivariate Moran’s I, which is a measure of

the correlation of one variable with another variable in

space, to estimate the spatial association of two variables in

different forms: original form, single logarithmic trans-

formation, and double logarithmic transformation. The

results of bivariate Moran’s I are presented in Table 3.

The result of bivariate Moran’s I demonstrate that,

double logarithmic form of SO2, COD emissions and GDP,

PEO; and single logarithmic form of SO2, COD emissions

and INDU (logarithmic form of SO2 and COD emission,

original form of INDU) have the most significant spatial

autocorrelation. Thus, for the dependent variable (SO2 or

COD emission), we use its logarithmic transformation. We

also use logarithmic transformation for independent
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variables GDP and PEO and use the original form of var-

iable INDU in the regression model (Eq. 8).

4.2 Results

We first estimated the model using OLS, and then compare

estimation results with those from SEM and SLM.

Lagrange multiplier tests are conducted to help identify

whether the spatial autocorrelation is due to spatial lag or

error and help decide whether SEM or SLM is a better

model with robust estimation. If both tests for spatial error

and spatial lag are significant, higher test statistics implies

a better model.

In order to assess the impacts of explanatory variables,

we introduce three models by adding one explanatory

variable each time: while there is one explanatory variable

(GDP) in the first model, variables PEO and INDU in

logarithmic form are respectively added in the second and

third models. By doing this, we can test the robustness of

the models by comparing the coefficients of each model

and determine the best-fit one. The OLS results show that,

when incorporating more explanatory variables, the cor-

relation between independent and dependent variables

becomes stronger (Table 4).

The OLS results also demonstrate that both SLM and

SEM are significant for the three models. For both SLM

and SEM, the p value for the initial LM test is 0.000, and

their LM values—Lagrange Multiplier (lag) and Lagrange

Multiplier (error)—are high and close (Table 4). We fur-

ther compare the robust forms of the test statistics (robust

LM values) in order to determine which one—SLM or

SEM—is more robust. The results indicate that for SO2

emissions, both robust Lagrange Multipliers—Robust LM

(lag) and Robust LM (error) in Table 4—are significant at

the 0.01 significance level. Nonetheless, p value for SEM is

smaller than p value for SLM. For COD emissions p value

for SEM is also smaller than p value for SLM. Moreover,

whereas the robust LM for SEM is significant at the 0.01

significance level for all the three models, the robust LM

for SLM is significant only at the 0.05 significance level for

Model 2 and Model 3. These results indicate that that the

role of spatial correlation is stronger in the error model

compared to the lag model. Thus, we chose SEM over

SLM to estimate the three models (Model 1, Model 2 and

Model 3).

The result of Lagrange multiplier tests from OLS could

help decide whether SEM or SLM is a better model with

robust estimation. Nevertheless, it has been concluded

from the literature that From the previous study, we know

that because spatial autocorrelation is not formally incor-

porated into OLS, the use of OLS may yield biased esti-

mates. Moran’s I statistic of pollutant emissions have

demonstrated the spatial heterogeneity of the data, so the

regression model should be based on the SLM or SEM

models via maximum likelihood estimation, rather than

OLS estimation. The results of SLM and SEM are

respectively listed in Tables 5 and 6.

Based on the values of log likelihood (LogL), AIC and

SC in Tables 5 and 6, the fit improves considerably when

the spatial lag variable or LAMBDA is added to the model.

The results show that the fit of the regression models are

improved when spatial dependence effect is taken into

account. Comparing the results between spatial lag and

spatial error, the LogL, AIC and SC are more significant in

spatial error, indicating that the changes of pollutant

emissions in one county would affect its neighbors through

explanatory variables. Thus, as explained earlier, SEM is

chosen over SLM to estimate the three models (Model 1,

Model 2 and Model 3).

Model 1 is used to test the relationship between pollu-

tant emissions and economy development. The results in

Table 6 provide evidences that support a positive correla-

tion between per capita GDP and pollutant (both SO2 and

COD) emissions. In the SEM model, the regression coef-

ficients between SO2 emissions and per capita GDP and

between COD emissions and per capita GDP are both

significant at the 1 % level. This tells that the counties with

Table 2 Descriptive statistics of key variables

Variable Indicator Unit Obs. Mean Std. dev.

SO2 SO2 emission Ton 2,392 8678.98 16535.7

COD COD emission Ton 2,392 5176.33 10726.8

GDP Per capita GRDP Yuan/person 2,392 27326.8 28894.1

PEO Population density Person/km2 2,392 529.84 1637.61

INDU Proportion of tertiary industry % 2,392 34.61 11.34

Table 3 Association of variables: results of bivariate Moran’s I

GDP LnGDP PEO LnPEO INDU LnINDU

SO2 0.1376 0.1588 0.0412 0.1334 -0.0417 -0.0307

LnSO2 0.1769 0.2409 0.0945 0.4075 -0.0989 -0.0693

COD 0.1299 0.165 0.0574 0.1591 -0.0301 -0.0157

LnCOD 0.1496 0.247 0.1308 0.429 -0.0895 -0.0624
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higher levels of economic development are more likely to

have more pollutant emissions and higher environmental

risk. In addition, comparing the coefficients of two

pollutant emissions, we could find that SO2 emissions are

subject to greater influence of economic development.

These findings support the first hypothesis.

Table 4 Estimation results of OLS

Variables LnSO2 LnCOD

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

CONSTANT -1.2740*** -1.1078*** -0.5099 1.5748*** 1.7103*** 1.7795***

(0.437) (0.3872) (0.4030) (0.3191) (0.2731) (0.2857)

LnGDP 0.9283*** 0.6659*** 0.6463*** 0.6320*** 0.4183*** 0.4160***

(0.0440) (0.0403) (0.0403) (0.0321) (0.0284) (0.0285)

LnPEO 0.4623*** 0.4697*** 0.3767*** 0.3775***

(0.0180) (0.0180) (0.0127) (0.0127)

INDU -0.0128*** -0.0015

(0.0025) (0.0018)

R2 0.1572 0.3387 0.3457 0.1395 0.3702 0.3704

F 445.669 611.716 420.554 387.42 702.045 468.196

LogL -4486.65 -4196.6 -4183.83 -3734.73 -3361.49 -3361.15

AIC 8977.31 8399.2 8375.67 7473.46 6728.98 6730.29

SC 8988.87 8416.54 8398.79 7485.02 6746.32 6753.41

Jarque–Bera 801.9578*** 1105.168*** 710.0906*** 544.6164*** 1232.994*** 1222.166***

Spatial dependence

Moran’s I 38.8662 32.3089 31.5618 34.8017 26.6899*** 26.5482***

Lagrange multiplier (lag) 1235.2285*** 749.7329*** 718.0724*** 902.1991*** 430.4511*** 429.2631***

Robust LM (lag) 16.1767*** 8.8407*** 8.4170*** 13.7769*** 4.9900** 4.9855**

Lagrange multiplier (error) 1501.0761*** 1033.4904*** 984.8589*** 1203.1462*** 704.5161*** 696.0556***

Robust LM (error) 282.0243*** 292.5981*** 275.2035*** 314.7240*** 279.0550*** 271.7779***

Lagrange multiplier

(SARMA)

1517.2528*** 1042.3311*** 993.2759*** 1216.9231*** 709.5061*** 701.0411***

Figures in parentheses are standard errors. *, **, *** denote statistical significance levels at 10, 5, and 1 %, respectively

Table 5 Estimation results of SLM model

Variables LnSO2 LnCOD

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Rho (q) 0.6122*** 0.5057*** 0.5009*** 0.5283*** 0.3805 0.3860***

(0.0185) (0.0199) (0.0201) (0.0198) (0.0206) (0.0205)

CONSTANT -2.9511*** -2.5619*** -2.3692*** -0.5898** 0.1119 -0.0641

(0.3455) (0.3329) (0.3486) (0.2748) (0.2595) (0.2717)

LnGDP 0.6086*** 0.5106*** 0.5062*** 0.4331*** 0.3370*** 0.3409***

(0.0380) (0.0362) (0.0403) (0.0287) (0.0265) (0.0266)

LnPEO 0.2708*** 0.2748*** 0.2673*** 0.2638***

(0.0179) (0.0181) (0.0137) (0.0137)

INDU -0.0038* 0.0033**

(0.0022) (0.0016)

R2 0.473 0.5108 0.5109 0.3915 0.4716 0.473

LogL -4023.55 -3899.27 -3897.77 -3390.16 -3185.24 -3183.29

AIC 8053.11 7806.54 7805.53 6786.31 6378.48 6376.58

SC 8070.45 7829.6 7834.43 6803.65 6401.6 6405.48

Likelihood ratio test 594.6596*** 594.6596*** 572.1374*** 689.1536*** 352.4999*** 355.716***

Figures in parentheses are standard errors. *, **, *** denote statistical significance levels at 10, 5, and 1 %, respectively

438 Stoch Environ Res Risk Assess (2014) 28:429–442

123



Model 2 extends the specifications of Model 1 by adding

the variable of population density. The regression results of

the SEM models suggest that population density has sig-

nificant and positive effects on SO2 emissions and COD

emissions, which provides support for the second hypoth-

esis. Compared to Model 1, both LogL and AIC increase in

Model 2 (Table 6). In Model 2, the regression coefficients

of per capita GDP with SO2 emissions and the COD

emissions respectively fall to 0.7340 and 0.3942. The

regression coefficients of population density are respec-

tively 0.4820 for SO2 and 0.4244 for COD, implying

noticeable impacts of population density on pollutant

emissions. Economic development (measured by per capita

GDP) appears to be a more important factor influencing

SO2 emissions and spatial spillovers than population den-

sity. For COD emissions, however, population density has

greater influence than the economic development. Popu-

lation concentration contributes much to the clustering of

COD emissions. These results support hypothesis 2.

Model 3 incorporates another independent variable,

INDU, which is a variable of industrial structure as mea-

sured by the proportion of tertiary industry. The estimation

results show that all the three explanatory variables

(LnGDP, LnPEO, and INDU) have a significant relation-

ship with both SO2 emissions and COD emissions, with

regression coefficients that are significant at the 0.01 sig-

nificance level. In Model 3, the regression coefficients of

LnGDP and LnPEO are significant at the 0.01 significance

level for both SO2and COD. The regression coefficient of

INDU is -0.0054 for SO2 emissions, which is significant

at the 0.05 significance level. This confirms that the

development of tertiary industry generally helps decrease

SO2 emissions in a county, and thus has positive effect on

air pollutant control. This result supports with hypothesis 3.

Nevertheless, for COD emissions, the regression coeffi-

cient of INDU is 0.0040 at the 0.05 significant level,

meaning that the higher percent of tertiary industry does

not help decrease COD emissions. Thus, this result does

not provide evidence to support the assumption in

hypothesis 3 as the sign of the regression coefficient was

expected to be negative.

Anyhow, when comparing the three models, all the

goodness-of-fit measures suggest that Model 3 provides the

best fit. Among the three explanatory variables in Model 3,

the level of economic development as measured in per

capita GDP is a leading factor that affects SO2 emission,

followed by population density. The results from the SEM

model reveal that on the county level in China, an increase

of 1 % in per capita GDP could possibly lead to an average

increase of 0.72 % in SO2 emissions; an increase of 1 % in

population density could result in an average increase in

SO2 emission by 0.50 %. Meanwhile, our results confirm

that a shift in industrial structure towards a service econ-

omy may help reduce SO2 emissions. Many regions with

high SO2 emissions are concentrated with heavy industries

with relatively low share of service industries. These esti-

mation results suggest that economic growth of counties,

especially the development of heavy industries, may lead

to remarkable increase in SO2 emissions, and thus aggra-

vate air pollution. Due to spatial spillover effects, eco-

nomic growth also leads to the spatial concentration of

SO2 emissions. Regions with rich mineral resources or

Table 6 Estimation results of SEM model

Variables LnSO2 LnCOD

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

CONSTANT -1.4714*** -2.0437*** -1.7994*** 2.1287*** 1.6108*** 1.4298***

(0.5055) (0.4675) (0.4780) (0.3790) (0.3351) (0.3445)

LnGDP 0.9339*** 0.7340*** 0.7201*** 0.5689*** 0.3942*** 0.4034***

(0.0500) (0.0477) (0.0480) (0.0377) (0.0344) (0.0346)

LnPEO 0.4820*** 0.4982*** 0.4244*** 0.4147***

(0.0271) (0.0280) (0.0188) (0.0194)

INDU -0.0054** 0.0040**

(0.0024) (0.0016)

LAMBDA (k) 0.6915*** 0.6271*** 0.6240*** 0.6413*** 0.5579*** 0.5621***

(0.0187) (0.0209) (0.0210) (0.0205) (0.0230) (0.0229)

R2 0.506 0.5507 0.5512 0.4398 0.522 0.5236

LogL -3980.2324 -3838.5627 -3836.0244 -3331.3749 -3110.5563 -3108.035

AIC 7964.46 7683.13 7680.05 6666.75 6227.11 6224.07

SC 7976.0245 7700.465 7703.1683 6678.3096 6244.4522 6247.1895

Likelihood Ratio Test 1012.843*** 716.0703*** 695.6194*** 806.715*** 501.8641*** 506.222***

Figures in parentheses are standard errors. *, **, *** denote statistical significance levels at 10, 5, and 1 %, respectively
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concentrated heavy industries, in particular, are where the

HH clusters of SO2 emissions are found.

For COD emissions, the primary explanatory variable is

LnPEO, and the secondary is LnGDP, both are significant

at the 0.01 significance level. The results from the SEM

analysis show that an increase of 1 % in population density

would causes an increase of 0.41 % in COD emissions,

whereas an increase of 1 % in per capita GDP is associated

with an increase of 0.40 % in COD emissions. However,

the finding on the impact of industrial structure—the

association of higher percentage of tertiary industry with

increase in COD emissions—contradicts hypothesis 3. The

seemingly surprising result, we suspect, may be due to the

influence of the other two variables. As pointed out before,

the leading effect that influences COD emissions is popu-

lation density. Regions with high population density are

often highly urbanized areas with high level of economic

development. For those regions, tertiary industries, or ser-

vices, usually take a high share in the economy. In other

words, the impact of variable INDU might be overshad-

owed or even distorted by the other two variables of pop-

ulation density and economic development.

The results of Model 3 show that autoregressive

parameters—q in the spatial lag model (Table 5) and k in

the spatial error model (Table 6)—are positive and statis-

tically significant (at the 1 % level). These results confirm

significant spatial dependence and strong spillover effects.

In SEM model, k is respectively 0.6240 and 0.5621 for SO2

and COD, which means that an increase of 1 % in one

county’s SO2 emission or COD emissions would lead to an

increase of 0.62 % in SO2 emission or 0.56 % increase in

COD emissions of its neighbors. It demonstrates that the

pollutant emissions have strong spillover effects among

neighboring counties, the up and down of pollutant emis-

sions in one county could result in corresponding changes

in neighbor counties. The spillover effects in pollutant

emissions can occur through the agglomeration effects of

economic development and population concentration. The

spillover effects, or ‘‘demonstration effects’’, also take

place when a locality’s economic and/or environmental

policies are imitated followed by its neighbors. In China,

similar to the national target of economic growth, the

national target of total pollutant emission control each year

is decomposed at the provincial and sub-provincial levels.

Provinces and counties are evaluated on their achievement

in economic growth and controlling pollutant emission.

Theoretically, this system of evaluation of government

performance could lead to competition among provinces

and counties in controlling pollution while developing the

economy. For instance, if one county implements strict

environmental protection measures, or invests in technol-

ogy to reduce the pollutant emissions, neighboring counties

might follow and take similar measures to strengthen

environmental protection. In the opposite case, if a county

has very weak or reluctant environmental protection pro-

gram or bureaucracy with stimulating industrial develop-

ment and attracting investment as its top priority, its

neighbors may also take similar measures in order not to be

left behind in economic growth.

5 Conclusions and discussions

This study provides strong evidence of spatial autocorre-

lation of major pollutant emissions at county level in

China. The significant values of both global Moran’s I and

local Moran’s I, for instance, point to fairly strong pattern

of spatial clustering of pollutant emissions. This research

has identified several types of HH and LL clusters for both

SO2 and COD emissions. We find that overall both SO2 and

COD emissions appear to correlate with economic devel-

opment, population density, mineral resources, and indus-

trial agglomeration. Economically developed areas with

high population densities, especially the Pearl River Delta

and Yangtze River Delta regions, are generally character-

ized by both of high COD and SO2 emissions. Mountainous

regions with sparse population, such as Qinhai-Tibet Pla-

teau, Qinling Mountain, Wushan Mountain, Loss Plateau,

Inner Mongolia, etc., have remarkably low SO2 emissions

and low COD emissions.

Our further analysis using spatial econometric models

confirm that economic development, population density

and industrial structure are driving forces of SO2 emissions

and COD emissions in China. The model (Model 3) that

includes all the three explanatory variables has a better fit

than models (Model 1 and Model 2) that only include fewer

of these variables. Comparing spatial regression models

with OLS, the advantages of SLM and SEM over OLS are

shown as they effectively reveal the existence and signifi-

cance of spatial dependence. The SEM, in particular, is

chosen over SLM as the role of spatial correlation is

stronger in the error model compared to the lag model. The

results from this study conform with the literature that

spatial autocorrelation and geographic dependence should

be considered in the analysis of spatial data. The paper

demonstrates that the inclusion of spatial interaction in

regression models could increase the accuracy of estima-

tion results when analyzing the effect of explanatory

variables on pollutant emissions.

The estimation results of the SEM model show that the

economic development does play a crucial role in SO2

emissions, and population concentration also has a signif-

icant impact. Moreover, we find that the growing tertiary

industry in the economy helps decrease SO2 emissions.

Thus, it is noteworthy that in China at current stage of

economic development, rapid economic growth, especially
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the development of heavy industries and resource-oriented

industries would aggravate air pollution and worsen envi-

ronmental degradation. The policy implications from these

findings are that environmental policies should consider

regional characteristics and differences instead of applying

the similar policy to all the regions. Meanwhile, environ-

mental policies should take into spatial spillover effects

into consideration and pay particular attention to some

special areas. Special guidelines or rules, for instance, may

need to be enforced in industrial areas where heavy

industries, such as Caofeidian in Tangshan of Hebei

province and Zibo in Shandong province, though a more

discreet approach is needed. More environmental protec-

tion efforts should be made in regions where mining or

other resource-oriented industries concentrate, such as

Ordos in Inner Mongolia and eastern Guizhou where air

pollution has already been very serious. A comprehensive

pollution control responsibility system need to be formu-

lated and implemented more effective, in which localities

are held responsible for pollution they generate and they

are not affected by their neighbors.

For COD emissions, the leading influencing factor is

population concentration, and economic development also

has significant impact. However, the finding on the role of

industrial structure—the association of higher percentage

of tertiary industry with increase in COD emissions—

contradicts hypothesis 3. We suspect that this surprising

result may be due to strong influence of the other two

variables on COD emissions. The HH clusters of COD

emissions are mostly located in mega city-regions such as

Pearl River Delta, and Yangtze River Delta, Changsha–

Zhuzhou–Xiangtan city group, as well as provincial capi-

tals represented by Nanjing, Chengdu and Xi’an. The

policy implication is that strict water environmental pro-

tection policies need be taken implemented in those highly

urbanized and heavily populated areas where tremendous

waste water discharge. Governments need to take measures

to slow down the expansion and sprawl of cities, encourage

residents and industries to conserve water, and invest more

in technologies and facilities to treat waste water and

improvement sewage treatment efficiency.

We want to highlight again that the spatial autocorre-

lation of SO2 and COD emissions has significantly strong

relationship with the economic development. The eastern

region of China, which is economically advanced and

heavily populated, has lower environmental quality and

more severe environmental problems. On the other hand,

western China has an undeveloped economy and lower

pollutant emissions. Therefore, at the national level, the

government should encourage some heavy industries and

high energy-consumption industries in the east to be relo-

cated to the west. This will certainly help address the

persistent and rising gap between the east and the west in

economic development. To be sure, some measures (e.g.,

new technologies) need to be taken to avoid a simple

transfer of pollution from east to west. On the regional

level, this study finds that high pollutant emissions are

found not only in major urban areas, but also in many

counties and small cities on the fringe of those major urban

areas. A regional plan of urban development should be

developed and adopted in those areas to coordinate

industrial development and urban growth, and to prevent

environmental quality from deteriorating in those areas.
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