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Abstract The impacts of tillage practices, majorly con-

ventional tillage (CT) and no-till (NT), on soil hydraulic

properties have been studied in recent decades. In this

paper, we incorporated an auto-calibration algorithm into

the Soil and Water Assessment Tool (SWAT) model and

calibrated the model at eight field sites with soil water

content (SWC) observations in the Pataha Creek Water-

shed, WA, USA. The Green–Ampt method in SWAT was

chosen to determine infiltration and surface runoff.

Parameter uncertainty was quantified by ‘‘relatively opti-

mal’’ parameter sets filtered by a critical objective function

value. Cluster analysis was adopted to obtain equal-sized

parameter sets for each site and to compare parameter sets

between tillage practices. The centers of these clusters

were employed as a sample of parameter values. The

clustered parameter sets were then used in scenario anal-

ysis to examine the impacts of cropland tillage practices on

lateral flow, runoff and evapotranspiration (ET). The model

parameters (e.g., soil hydraulic properties) were signifi-

cantly different between CT and NT. In particular, higher

bulk density, larger available water capacity, and higher

effective hydraulic conductivity were found for NT than

for CT. SWCs at three depths of the NT sites were sig-

nificantly higher than those of CT sites, which could be

attributed to tillage practices. However, higher available

water capacity at NT sites indicated that the NT soil had a

higher capacity to hold water. Thus the mean net changes

in SWC during a year were not significantly different

between CT and NT. The statistically different model

parameters neither resulted in statistical differences in

annual outputs (e.g., runoff and ET) nor substantial dif-

ferences in monthly outputs. Our study indicates that the

tillage impacts on hydrological processes are site-specific

and scale-dependent.

Keywords Cluster analysis � Scenario analysis � SWAT �
Tillage � Uncertainty

1 Introduction

Researchers have demonstrated that increased infiltration is

achievable by adopting such management practices as soil

tillage (Strudley et al. 2008). The tillage practices usually

include two categories: conventional tillage (CT) and no-

till (NT) (Schomberg et al. 2009). CT leaves less than 30 %

of the surface covered with crop residue and consists of

plowing to a certain soil depth. NT means no longer any

turning and loosening of the soil materials. It was reported

that continuous NT systems enhanced the development of

macro pores that are mostly created by soil organisms

(worms) and plant roots, thus increasing the hydraulic

conductivity and infiltration capacity of soil (Edwards et al.
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1988; Tyler and Thomas 1977). In contrast, CT destroys

these channels, reducing infiltration and creating more

runoff. Additionally, when the soil is maintained under NT

practices, the residues remaining on the ground will

increase the levels of organic carbon and water-stable soil

aggregates, which will also lead to increased infiltration

(McGregor et al. 1975; Moldenhauer et al. 1983; West

et al. 1992). Further, the amount of evaporation from

stubble-covered NT fields is generally smaller than that

from bare soils of CT areas, leaving more water available

for crops (Blevins et al. 1983; Brun et al. 1986). Based on

the study of Golabi et al. (1988) in Georgia, long-term NT

systems allowed more water infiltration into the soil than

conventional treatments. McGee et al. (1997) determined

that NT treatments resulted in more water storage for the

crops than the CT practice in wheat fallow systems in

Colorado. A similar conclusion was obtained by Blevins

et al. (1983) on soils under 10 years of NT and CT,

respectively, in Kentucky. Radcliffe et al. (1988) compared

soils with 10 years of CT to those with NT histories and

found that infiltration rates were more than doubled in NT

fields compared to those under CT.

There are other advantages associated with NT farming.

For instance, NT has been recommended as an effective

management practice for reducing soil erosion by increasing

surface residues and reducing surface runoff (Fu et al. 2006;

Greer et al. 2006; McCool et al. 1997; Shelton et al. 1983).

Additionally, in cold regions, the surface residues resulted

from NT help insulate the soil surface and shorten the period

the soil stays frozen in winter, thus increasing water infil-

tration and reducing runoff and erosion.

In summary, long-term NT tends to reduce the amount of

surface runoff and increase infiltration compared to CT. The

infiltrated water may contribute to soil water storage. A

specific hypothesis of this research is that land management

practice, such as NT, considerably enhances field infiltration,

and therefore has the potential for increasing recharge to the

subsurface storage. However, more specific questions need

to be answered by both field- and watershed-scale studies:

are the model parameters different between CT and NT? Do

the statistically different parameters result in statistical dif-

ferences in model outputs? Does statistical difference indi-

cate substantial difference in model outputs at different

temporal (monthly or yearly) scales? In this study, model

parameters, different from state variables [e.g., soil water

content (SWC) and ET], refer to the ‘‘constants’’ which stand

for inherent properties of hydrological systems. For exam-

ple, saturated hydraulic conductivity and available water

capacity are soil hydraulic parameters (Sarris and Paleologos

2004; Wang and Xia 2010).

Models often contain many parameters. The analysis on

each single parameter is not enough for the comparison

between different factors (e.g., field sites or tillage

practices). A comprehensive comparison at the parameter-

set level can be more informative. Multiple parameters in a

model constitute a parameter set (i.e., a vector). Clustering

has the advantage to analyze the relationship between

vectors (Likas and Vlassis 2003).

In this paper, we conducted watershed-scale modeling

based on field-scale observations at multiple sites in the

Pataha Creek Watershed, WA, USA. We developed a

simple but statistically-based uncertainty analysis method

to quantify the uncertainty in parameters. The parameter

sets for each field site generated by an auto-calibration

algorithm were further filtered by a critical objective

function value estimated from the minimum objective

function value. The numbers of filtered parameter sets may

be very different across all sites. In order to reduce the size

of parameter sets in each group (site) and conduct a bal-

anced statistical test on the differences between parameter

sets under different tillage practices, the k-means clustering

(Bradley et al. 2000) was used to achieve new groups of

parameter sets with equal group size.

The scenario-based analysis is widely used to demon-

strate likely responses of a system to various decisions by

creating a set of possible alternatives (Wang et al. 2013).

Two scenarios (i.e., croplands under CT or NT manage-

ment practices) were developed to investigate the impacts

of tillage practices on hydrological processes.

2 Materials and methods

2.1 Study area and data collection

The Pataha Creek Watershed (46�110–46�340N, 117�250–
118�000W) is a typical agricultural watershed within the

Inland Pacific Northwest region. It drains an area of

478 km2 and is majorly located in Garfield County, WA

(Fig. 1). It is a main tributary of the Tucannon River

located 18 km above the Tucannon’s confluence with the

Snake River. In 1993, the Pataha Creek Watershed was

selected as a ‘‘model watershed’’ by the Northwest Power

Planning Council and the Bonneville Power Administration

(Bartels 2003; Fu et al. 2006). Based on the data of 18

raingauges in the Garfield County, the mean annual pre-

cipitation is 408 mm (Pomeroy Conservation District

2009). The mean annual temperature is 10.5 �C from the

statistics for Pomeroy, WA by Cligen (Nicks et al. 1995).

Field data were collected from January 2009 to June 2010.

Two factors, tillage and climate, were considered in the field

measurements of SWC. CT and NT (*5–15 years) man-

agement are both practiced in this area and precipitation

varies from a relatively low northern zone to a relatively high

southern precipitation zone. Two replicated sites were

selected for each combination; thus, eight field sites were
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monitored in the experiment (see Fig. 1 and Table 1). SWC

and temperature at three depths (25, 50, and 120 cm) were

simultaneously monitored by an EC-TM sensor (Decagon

Inc., Pullman, WA) at a time interval of 10 min. The data

were recorded and stored in an EM-50R data-logger

(Decagon Inc., Pullman, WA).

At each SWC experimental site, eight soil columns

(48.8 mm in diameter, 25.4 mm in height) were sampled

during four field visits for the measurements of bulk den-

sity at the depth of 25 cm. Soil bulk density is calculated as

the dry weight of soil divided by its volume (Wang et al.

2012). The soil texture was determined by soil particle

analysis with hydrometer (Flury 2009) and classified

according to the USDA texture system (Brown 2003). The

analysis of variance (ANOVA) (Giraudoux 2011) was used

to test the effects of factors (e.g., tillage and climate) on

SWC and soil bulk density. The Kruskal–Wallis (KW) test

(Giraudoux 2011) was employed to analyze the pattern of

difference between multiple means of bulk density at the

eight sites.

Digital Elevation Model (DEM) and land cover (National

Land Cover Database 2001) data were downloaded from

Fig. 1 The Pataha Creek Watershed and field experimental sites (DEM)

Table 1 Field sites for SWC measurements

Climate zonea Site Longitude Latitude Elevation (m) Tillage Soil texture Sand (%) Silt (%) Clay (%)

South NT24 -117.5596 46.3742 1,043 NT Silty loam 28.5 53.1 18.4

NT29 -117.5574 46.3835 1,007 NT Loam 38.6 44.4 17.0

CT26 -117.5556 46.4131 940 CT Loam 40.1 43.5 16.4

CT30 -117.5686 46.4125 913 CT Loam 49.3 33.5 17.2

North NT27 -117.6601 46.4887 693 NT Loam 46.7 38.8 14.5

CT28 -117.6744 46.4848 723 CT Loam 46.3 38.9 14.8

NT23 -117.6744 46.4848 723 NT Loam 34.8 44.3 20.9

CT25 -117.6394 46.4772 536 CT Loam 40.2 48.9 10.9

a The field sites are located in two climate (precipitation) zones (see Fig. 1): low precipitation zone in the north and high precipitation zone in the

south of the watershed
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USGS Seamless Data Warehouse (http://seamless.usgs.gov/

index.php). Both DEM and land cover are raster data and

have a spatial resolution of 30 m. Soil data in vector for-

mat was downloaded from the SSURGO database via Soil

Data Mart (http://soildatamart.nrcs.usda.gov/). Weather data,

including precipitation, air temperature, humidity, wind

speed and direction, from four weather stations (see Fig. 1)

located in the two precipitation zones were collected. One

weather station (W24) was installed for this study near Site

NT24 in the southern watershed. The data from the other

three stations (Raws Alder Ridge, Geiger Hill, and Pomeroy

Downtown) were obtained from Weather Underground (http://

www.wunderground.com/).

2.2 SWAT model setup, calibration and verification

2.2.1 SWAT model setup

The Soil and Water Assessment Tool (SWAT) model has

been widely used in a variety of investigations (Arnold and

Fohrer 2005; Boskidis et al. 2012; Gassman et al. 2007).

Streamflow originates from four sources: surface runoff,

lateral subsurface flow, return flow (base flow), and pond/

reservoir outflow. SWAT partitions ground water into two

aquifer systems: a shallow aquifer and a deep aquifer. Water

percolating past the bottom of the root zone becomes

recharge for both aquifers. Base flow is contributed from the

shallow aquifer. Water entering the deep aquifer (a confined

aquifer) is considered to be lost from the watershed system

(Neitsch et al. 2002).

Different from the SCS (Soil Conservation Service) curve

number method developed by the USDA (United States

Department of Agriculture), the Green–Ampt infiltration

method considers rainfall intensity and duration (King et al.

1999) and has been incorporated into SWAT (Arnold and

Fohrer 2005; Neitsch et al. 2002). In the SCS curve number

method, the curve number (ranging from 0 to 100) is a

function of the soil’s permeability, land use and antecedent

soil water conditions. The curve number is used to calculate

surface runoff with rainfall as input. The Green–Ampt

method calculates infiltration as a function of the wetting

front matric potential and effective hydraulic conductivity

(Neitsch et al. 2002). Water that does not infiltrate becomes

surface runoff. We selected the Green–Ampt method to

determine infiltration and surface runoff in this study. The

effective hydraulic conductivity in Green–Ampt method can

be estimated from saturated hydraulic conductivity and

curve number (Nearing et al. 1996; Neitsch et al. 2002):

KE ¼ 56:82 � K0:286
sat

1þ 0:051 � expð0:062 � CNÞ � 2 ð1Þ

where CN is the curve number; KE is the effective

hydraulic conductivity (mm/h); Ksat is the saturated

hydraulic conductivity (mm/h), which is a quantitative

measure of a saturated soil’s ability to transmit water when

subjected to a hydraulic gradient (NRCS 2013).

The study area was delineated into 207 subbasins, with

the elevation ranging from 260 to 1,772 m. The land cover

were reclassified into 12 categories, where the cropland

(distributed in 112 subbasins) occupies 47.2 % of the total

watershed area. In addition, nine soil types and corre-

sponding soil properties were initially assigned to the

subbasins.

An integrated SWAT modeling system was developed

for this research. AVSWAT (ArcView SWAT) interface

was provided by the SWAT developers to generate input

files for the SWAT model by using the GIS (Geographic

Information System) software ArcView (Di Luzio et al.

2005). The input files organize input information according

to the type of input at different levels (watershed, subbasin,

or Hydrological Response Unit). Major inputs for SWAT

include watershed configuration, subbasin delineation, soil

type/land cover/plant growth database, management data-

base, and climate inputs (Di Luzio et al. 2005). The Data

Transformation Services (DTS) tool developed by Micro-

soft (Daniel et al. 2007) was used to transfer SWAT output

data from text files to a Microsoft Access database. In

addition, a SWAT calibration and output analysis interface

was developed in C?? language (Wang and Xia 2010).

2.2.2 SWAT model calibration and verification

The 18-month experiment was divided into two periods.

The first 12 months (January–December of 2009) were the

calibration period and the later 6 months (January–June of

2010) were used for model verification. The model simu-

lations were run at a daily time-step. Under NT with res-

idue cover, the Manning’s roughness coefficient for

overland flow (OV_N) and the biological soil mixing

efficiency (BIOMIX) were set to 0.3 and 0.4 compared to

0.14 and 0.1 for CT, respectively (Arabi et al. 2008; Ullrich

and Volk 2009).

Based on previous studies (Arnold and Fohrer 2005;

Barlund et al. 2007; Neitsch et al. 2002; van Griensven and

Bauwens 2003; Wang and Xia 2010), 11 parameters were

selected for model calibration (Table 2). A stochastic

parameter optimization algorithm, the SCE-UA (Shuffled

Complex Evolution developed at the University of Ari-

zona), was directly incorporated into the source code of

SWAT2000 model for auto-calibration. The most impor-

tant features for SCE-UA are the combination of compet-

itive evolution and complex shuffling, which enhance the

survival ability of offspring in the population (Duan et al.

1992; Wang and Xia 2010).

The model was calibrated and verified by using the

SWCs at the eight sites instead of runoff data, since the
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streamflow is greatly disturbed by agricultural irrigation.

The simulated soil water (mm) of the whole soil profile

from the SWAT outputs was converted to volumetric SWC

(m3 H2O m-3 soil). The average observed SWCs over the

three soil depths were used as observations.

The following objectives were used for optimization:

Ratio of simulated to observed average SWC:

RSO ¼ �hsim=�hobs
ð2Þ

Nash-Sutcliffe efficiency criterion ðWang et al. 2009Þ:

NSEC ¼ 1�
P
½hobsðiÞ � hsimðiÞ�2
P
½hobsðiÞ � hobs�2

ð3Þ

where �hsim and �hobs are simulated and observed average

SWC (m3 m-3), respectively; hobs (i) and hsim (i) are

observed and simulated SWC at time i respectively; NSEC

is the Nash–Sutcliffe efficiency criterion (Arnell and

Reynard 1996; Wang et al. 2009), which is also called the

Coefficient of Determination (Devore 2008). NSEC is the

percent of the variation that can be explained by the model

with the optimized parameter values. The ratio of simu-

lated to observed average SWC (RSO) denotes the good-

ness-of-fit of mean SWC during the simulation period.

The overall objective function (J) was the combination

of the above two objectives:

J ¼ w1 � 1� NSECj j þ ð1� w1Þ � 1� RSOj j ð4Þ

where w1 is a weighting factor, 0 B w1 B 1, usually w1 = 0.5,

indicating that the two objectives are equally important. This

objective function takes account of the goodness-of-fit of both

the mean value and the temporal variation for SWC. An

objective function value close to zero (i.e., both NSEC and

RSO approach 1.0) indicates a good agreement between sim-

ulated and observed SWCs.

2.3 Uncertainty analysis based on SCE-UA

optimization

In the model calibration process, we were more interested in

obtaining a group of ‘‘relatively optimal’’ parameter sets than

in pursuing a single ‘‘optimal’’ parameter set (Wang and

Chen 2012). These parameter sets can be used to quantify the

uncertainty in parameters (Shen et al. 2013; Wang and Chen

2013a). In this study, the optimal parameter set generated in

each loop of the SCE-UA searching process was combined to

form a feasible parameter space. The optimal parameter set

in each searching loop is not the global optimum, but a local

or a ‘‘relative’’ optimum during the optimization. Parameter

uncertainty at each SWC site was evaluated by calculating

the critical objective function values (Batstone et al. 2003):

Jcr ¼ Jopt 1þ p

n� p
Fa;p;n�p

� �

ð5Þ

where Jcr is the critical value that defines the parameter

uncertainty region, Jopt is the optimum (minimum) objec-

tive function value that is calculated by Eq. (4), n is the

number of measured data points, p is the number of

parameters, and Fa,p,n-p is the value of the F distribution

for a, p, and n - p. In this study, p = 11, n = 365, we

used a = 0.05, with F0.05,11,354 = 1.8157 to estimate the

95 % confidence parameter uncertainty regions. From

Eq. (5), we know that Jcr [ Jopt. Those parameter sets

Table 2 Parameters for model calibration

Par Name Description Lower bound Upper bound SWAT file Fortran subroutine

file

1 CN2 Initial SCS curve number II value 40 98 *.mgt Readmgt.f

2 ESCO Soil evaporation compensation factor 0 1 *.hru Readhru.f

3 EPCO Plant uptake compensation factor 0 1 *.hru Readhru.f

4 ALPHA_BF Baseflow alpha factor (days) 0 1 *.gw Readgw.f

5 CH_N2 Manning’s n value for main channel 0.01 0.5 *.rte Readrte.f

6 CH_K2 Channel effective hydraulic conductivity (mm/h) 0 150 *.rte Readrte.f

7 SURLAG Surface runoff lag time (days) 0.5 10 Subsurlag.lag Hydroinit.f

8 SOL_AWC Available water capacity (mm H2O/mm soil) 0 0.4 *.sol Readsol.f

9 SOL_K Saturated hydraulic conductivity (mm/h) 0 100 *.sol Readsol.f

10 GW_DELAY Ground water delay (days) 0 100 *.gw Readgw.f

11 RCHRG_DP Deep aquifer percolation fraction 0 0.1 *.gw Readgw.f

CN2 is used to estimate the effective hydraulic conductivity in the Green–Ampt equation

SURLAG is extended to a spatially-distributed parameter, and a new data file ‘subsurlag.lag’ is created to store the calibrated SURLAG values

for each subbasin

SOL_K is calibrated for the first layer, SOL_K values of the other soil layers are modified correspondingly based on the values initiated by soil

types in AVSWAT
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(found by SCE-UA algorithm) resulting in objective

function values less than Jcr form the surface of the con-

fidence space.

2.4 Cluster analysis

The cluster analysis was used in this study to reduce the

sizes of ‘‘relatively optimal’’ parameter sets for each site

and compare parameter sets between tillage practices (CT

and NT). The basic idea for k-means clustering is to min-

imize the clustering error, which is measured by the sum of

squared distances of each parameter set from the corre-

sponding cluster center (Likas and Vlassis 2003).

For the purpose of reducing the size of parameter sets at each

site, the following procedure was developed: (i) Determine the

number of clusters (i.e., k clusters) for the parameter sets of each

site, which can be determined by the ratio of the between-group

variance to the total variance and ploting ‘‘within groups sum of

squares’’ against ‘‘number of clusters’’ (Likas and Vlassis

2003). (ii) Compute the centers (i.e., means) of these k clusters

and use them as a sample of parameter values. (iii) These

k parameter sets of each site were used for subsequent scenario

analysis of tillage impacts on hydrological processes.

The aforementioned procedure will generate k parameter

sets for each of the study sites under CT or NT manage-

ment practice. The differences in the parameter sets among

these field sites were identified by both k-means and Ward

Hierarchical Clustering in R language (R Development

Core Team 2011). The Ward Hierarchical Clustering seeks

to build a hierarchy of clusters by using the Ward

agglomerative algorithm, i.e., each element (e.g., parame-

ter sets grouped by field sites in this study) starts in its own

cluster, and pairs of clusters (elements) are merged as one

moves up the hierarchy (Murtagh and Legendre 2011).

2.5 Scenario analysis regarding tillage impacts

Two scenarios were designed to assess the impacts of tillage

practices on hydrological regime in the Pataha Creek

Watershed. The scenarios were to set all the croplands

(47.2 % of watershed area) to CT or NT managements. In the

absence of long-term observations, 50-year daily weather

data generated by CLIGEN (Zhang and Garbrecht 2003) for

Pomeroy, WA in SWAT were used to drive model. The

monthly average precipitation database for Pomeroy, WA in

CLIGEN was modified by the observations at 18 raingauges

(Pomeroy Conservation District 2009). The clustered

k parameter sets for each of the eight sites (four sites with CT

and four with NT practice) were used to parameterize the

model. Thus there were 49k model runs (each model run is

associated with a parameter set) for each of the two scenarios

(CT and NT). Mean monthly and annual runoff and ET were

analyzed.

3 Results

3.1 Measurements of soil texture, bulk density, and soil

water concent

The soil textures of the eight sites were classified as loam

except Site NT24, which is silty loam (see Table 1). The

average bulk density of each site ranges from 1.13 to

1.34 g cm-3 (Fig. 2). Statistical tests by ANOVA and KW

test at a = 0.05 indicate: (i) in terms of tillage and climate

factors, the impact of tillage on bulk density is significant

(P \ 0.001 by ANOVA); neither climate (P = 0.26 by

ANOVA) nor the interaction between tillage and climate

(P = 0.22 by ANOVA) are significant. (ii) NT24 and

NT27 have significantly higher bulk densities than the

other sites, whereas CT26 has significantly lower bulk

density. (iii) Bulk density under NT (1.31 ± 0.11 g cm-3)

is significantly higher than under CT (1.20 ± 0.11

g cm-3). Higher bulk density under NT than under CT has

been reported by many studies (e.g., Bhattacharyya et al.

2006; Heard et al. 1988; Roth et al. 1988).

Monthly average SWC data at the three depths (25, 50,

and 120 cm) were compared. Generally, the monthly

average SWCs increased with depth. At each depth, the

SWCs at the CT sites were usually lower than those at the

NT sites. Further statistical analyses indicate that only

tillage impact on SWC is significant at 25- and 50-cm

depth, whereas both tillage and climate have significant

influences on SWC at 120-cm depth.
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Fig. 2 Comparison of soil bulk density; the numbers below site

names denote the sample sizes (n); the error bars refer to standard

errors; different letters on error bars indicate significantly different

means at P \ 0.05 according to the KW test

230 Stoch Environ Res Risk Assess (2014) 28:225–238

123



3.2 Model calibration and validation

As stated before, the averaged SWCs from the three depths

were used for the observed SWCs for the whole soil profile.

Comparisons between the simulated and observed SWCs

for each site during the calibration period (1/1/2009–12/31/

2009) and the verification period (1/1/2010–6/21/2010) are

shown in Fig. 3a–h. From model calibration results of the

eight field sites (Table 3), all the RSO criteria were very

close to 1.0, indicating that the simulated average SWCs

were very close to the observed mean SWCs. The NSEC

criteria ranged from 0.80–0.90 (average 0.86) and

0.62–0.90 (average 0.72) for the CT sites and NT sites,

respectively, which showed good agreement between the

simulated and observed SWCs at each site.

Although model verifications were not as good as cali-

brations (Table 3), the trend predictions agreed well except

for CT25 and CT28 (see Fig. 3). Regarding model verifi-

cations, the model underestimated the SWCs at three CT

Sites, i.e., RSO = 0.77, 0.67, and 0.83 for CT25, CT28,

and CT30, respectively. However, at CT30, the predicted

SWCs agreed well with the observations during the last

month of the verification period. The large discrepancy at

CT25 during the verification period was attributed to the

Fig. 3 Comparison between simulated and observed daily SWCs (calibration period: 1/2009–12/2009; verification: 1/2010–6/2010). a–h Site

NT23–CT30
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change in land surface condition, i.e., the soil surface was

covered by plastic mulch for growing trees. In addition, the

discrepancy between simulations and observations might

be caused by the variations in local precipitation that were

not captured by the raingauge observations.

3.3 Uncertainty and cluster analyses of parameter sets

According to Eq. (5), the parameter sets describing

parameter uncertainty region were determined by Jcr at

eight field sites. The size of selected parameter sets for

each site ranged from 102 to 1,762 with an average of 935.

As previously mentioned, we used cluster analysis to

reduce the size of parameter sets. The plots of ‘‘within

groups sum of squares’’ against ‘‘number of clusters’’

implied that the number of clusters can be set as k = 100

(see Fig. 4 for an example from NT27 with 1,762 param-

eter sets). In addition, with k = 100, the ratios of the

between-group varaince to the total variance reached

95–98 %, which also supported the selection of k = 100.

Finally, 100 parameter sets (i.e., centers of the 100 clusters)

were obtained for each of the eight sites by k-means

clustering.

The parameter means for eight field sites and the means

and standard deviations for CT and NT are summarized in

Table 4. Compared with CT, the NT sites had higher val-

ues for parameters ESCO, EPCO, ALPHA_BF, CH_N2,

CH_K2, SOL_AWC, SOIL_K, and KE, but lower values

for the other parameters. KW tests on one parameter at a

time indicated that each of them was significantly different

between CT and NT. Barplots of three parameters clearly

showed the difference in ESCO (soil evaporation com-

pensation factor), SOL_AWC (available water capacity),

and KE (effective hydraulic conductivity) between tillage

practices (Fig. 5).

As for comparisons between parameter sets, the parame-

ter vector consisting of ten parameters (ESCO, EPCO,

ALPHA_BF, CH_N2, CH_K2, SURLAG, SOL_AWC,

GW_DELAY, RCHRG_DP, and KE) was used as the study

object, since KE is calculated from CN2 and SOL_K and is

able to represent the two parameters. The cluster dendrogram

generated by the Ward Hierarchical Clustering elucidated

the ‘‘distance’’ between field sites (Fig. 6). Generally, the

four CT sites and four NT sites are seperated from each other

and fall into two wards (clusters), which concurs with the

result from k-means (with k = 2). For the CT sites, CT25 in

the northern low precipitation zone and CT26 in the southern

high precipitation zone had similar parameter sets, so did

CT28 (north) and CT30 (south). For the NT sites, the

parameter sets at NT27 (north) were close to those at NT24

(south)

3.4 Scenario analysis

As previously mentioned, the 400 parameter sets from four

CT sites and 400 parameter sets from four NT sites were

regarded as parameter samples for CT and NT scenarios,

respectively. The simulated 50-year weather data indicated

an annual mean precipitation and potential ET of 410 mm

(112 mm as snowfall) and 1,428 mm, respectively.

From the perspective of 50-year mean annual values, no

significant differences in ET, total runoff (QT), later flow

(QL), shallow aquifer return flow (QR), total aquifer

recharge (RCT), deep aquifer recharge (RCD), or change in

SWC (DSWC) were found. However, the average SWCs

under NT were significantly higher than SWCs under CT,

where the difference was 14 mm at the watershed scale

when SWCs were converted to water depth.

Table 3 SWAT model calibration and verification using daily SWCs

Site Calibration

(1/1999–12/1999)

Verification

(1/2010–6/2010)

RSOa NSECb Jc RSO NSEC J

CT25 1.00 0.87 0.07 0.77 -492.25 246.74

CT26 1.01 0.80 0.11 0.94 0.17 0.44

CT28 1.00 0.90 0.05 0.67 -38.45 19.89

CT30 1.00 0.86 0.07 0.83 -3.72 2.45

NT23 1.00 0.62 0.19 0.99 0.32 0.34

NT24 1.00 0.66 0.17 1.02 0.18 0.42

NT27 0.99 0.90 0.06 0.94 -0.02 0.52

NT29 1.00 0.69 0.16 1.00 -0.03 0.52

a Ratio of simulated to observed average SWC
b Nash–Sutcliffe efficiency criterion
c Overall objective function J = 0.5 9 |1 - NSEC| ? 0.5 9 |1 - RSO|
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In terms of 50-year mean monthly values (Table 5),

although statistical differences in runoff (QT) and later flow

(QL) between CT and NT were found for some months, the

practical differences were within 0.1 mm. Mean monthly

ETs under NT were significantly different from ETs under

CT except the ET in August, 2009. ETs under NT in eight

months (January, February, May–July, September, Novem-

ber, and December) were 0.03–0.78 mm (average 0.3 mm)

lower than ETs under CT. For the other three months (March,

April, and October), ETs at NT were 0.28–1.55 mm (average

0.7 mm) higher than ETs at CT.

4 Discussions

4.1 Parameter uncertainty and comparison

The parameter space constrained by Jcr (critical objective

function value) can quantitatively express the uncertainties

in parameters. Jcr gives out the upper boundary for ‘‘good’’

parameter sets that generate ‘‘good’’ agreements between

simulated and observed model outputs. Compared to a

single ‘‘best’’ parameter set, multiple ‘‘good’’ parameter

sets are more practical to demonstrate the fact that there

may coexist multiple choices of parameter sets or model

structures for acceptable model simulations. This kind of

phenomenon has been called ‘‘equifinality’’ (Beven and

Freer 2001; Wang and Chen 2013b). In terms of the

coefficient of variation (CV), ESCO (soil evaporation

compensationf actor), SOL_AWC (available water capac-

ity), and GW_DELAY (ground water delay) presented

relatively low CVs under 15 %, whereas EPCO (plant

uptake compensation factor), RCHRG_DP (deep aquifer

percolation fraction), and KE (effective hydraulic con-

ductivity) showed CVs as high as 32–44 % (Fig. 7). The

high CVs for KE were originated from high variations in

SOL_K (saturated hydraulic conductivity). Relatively high

correlations (absolute correlation coefficient [0.5) also

occurred in parameters between ESCO and EPCO, ESCO

and SOL_AWC, and among SURLAG (surface runoff lag

time), CH_K2 (channel effective hydraulic conductivity),

and RCHRG_DP.

When multiple ‘‘good’’ parameters representing

parameter uncertainty are employed to run a model, the

uncertainty is also propagated with model simulations.

Thus the comparison between model output is not just

focused on two individual value (or data series), but based

on the statistics of model outputs. Take this study as an

example, we statistically compared hundreds of monthly

and annual outputs generated by 800 parameter sets under

CT and NT managements.

Comparisons of parameters between CT and NT indi-

cated differences in them. Generally, KE (effective

hydraulic conductivity) was 44 % higher at NT sites than

CT sites in this study. Higher hydraulic conductivity/

infiltration rate under NT has been reported by many

studies (Azooz and Arshad 1996; Benjamin 1993; Bhatta-

charyya et al. 2006; Gicheru et al. 2004; Mizuba and

Hammel 2001; Singh et al. 1996). However, opposite

conclusions have also been observed (Ferreras et al. 2000;

Heard et al. 1988; Lipiec et al. 2006; Moreno et al. 1997).

Moret and Arrúe (2007) even found lower hydraulic con-

ductivity under NT than under CT and reduced tillage ac-

cross the entire range of hydraulic head. While examing

individual site, we also found that KE at CT25 was higher

than KEs at both NT27 and NT29, which implied that

Table 4 Parameter statistics for eight field sites and different tillage practices

Site Statistics CN2 ESCO EPCO ALPHA_BF CH_N2 CH_K2 SURLAG SOL_AWC SOL_K GW_DELAY RCHRG_DP KE

CT25 Meana 76 0.74 0.21 0.32 0.38 74.36 4.93 0.27 11.51 66.35 0.05 15.90

CT26 Mean 81 0.87 0.28 0.26 0.33 94.86 4.78 0.21 17.83 63.12 0.05 13.47

CT28 Mean 79 0.85 0.55 0.28 0.24 36.60 7.48 0.30 9.95 62.18 0.09 12.49

CT30 Mean 85 0.79 0.28 0.29 0.14 44.26 5.38 0.25 17.41 72.06 0.04 10.15

CT Meanb 80 0.81 0.33 0.29 0.27 62.52 5.64 0.26 14.18 65.92 0.06 13.01

Stdc 6 0.05 0.14 0.06 0.10 24.65 1.17 0.03 4.22 7.19 0.02 4.23

NT23 Mean 69 0.96 0.63 0.39 0.20 80.24 6.40 0.35 19.81 56.38 0.04 27.84

NT24 Mean 74 0.90 0.27 0.48 0.32 79.25 4.60 0.35 13.87 59.30 0.05 18.04

NT27 Mean 75 0.92 0.41 0.79 0.35 54.44 7.35 0.32 7.80 56.39 0.05 14.27

NT29 Mean 78 0.87 0.67 0.71 0.41 90.37 2.64 0.29 15.81 70.78 0.02 14.78

NT Mean 74 0.91 0.49 0.59 0.32 76.07 5.25 0.33 14.32 60.71 0.04 18.73

Std 6 0.04 0.20 0.17 0.08 17.84 1.91 0.02 4.98 9.11 0.01 7.83

KE is the effective hydraulic conductivity in the Green–Ampt method, KE is computed from CN2 and SOL_K by Eq. (1)
a Mean value of 100 parameter sets
b Mean value of 400 parameter sets from four CT or NT sites
c Standard deviation of 400 parameter sets from four CT or NT sites
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higher KE under CT was also possible because of the

complexity and heterogeneity in soil properties.

Both ESCO and EPCO were lower under CT than for NT

in this study. Greater ESCO means less soil evaporative

demand (maximum evaporation), and greater EPCO means

greater potential water uptake by plant (Neitsch et al. 2002).

Thus the higher ESCO under NT might partly explain the

lower ET under NT scenario in eight months, since ESCO

affects the evaporative demand and actual ET is controlled

by both potential ET and soil water conditions.

Higher SOL_AWC (available water capacity) for NT

fields indicated that the NT soil had a higher capacity to hold

water. Greater SOL_AWC with NT has been reported by

many researches (Bescansa et al. 2006; Gicheru et al. 2004;

Jones et al. 1994; Lampurlanes et al. 2001; Mizuba and

Hammel 2001; Moreno et al. 1997), whereas higher

SOL_AWC under CT than NT was also observed (e.g., Miller

et al. 1999). The mean values of SOL_AWC (0.26 and 0.33

for CT and NT, respectively) were higher than the

SOL_AWC (0.24) reported by Neitsch et al. (2005) for loamy

soils. However, Madsen et al. (1990) reported a SOL_AWC

range of 0.2–0.3 for loam/silty loam soils. In addition, fol-

lowing Hudson’s regression method (Hudson 1994), the

average SOL_AWC for silty loam soils with 5 % organic

matter content (for this study) is 0.28. Therefore, relatively

high SOL_AWC values from our study are reasonable.

4.2 Impact of tillage practices on hydrological

processes

The model simulation indicated that almost no surface

runoff was generated under both CT and NT, which is

consistent with the observations by Alvi and Chen (2003)

in the same watershed. The scenario analyses regarding the

Fig. 5 Barplots of parameter values for eight sites and two tillage

practices, a ESCO: soil evaporation compensation factor, b SOL_AWC

(mm H2O/mm soil): available water capacity, and c KE (mm/h):

effective hydraulic conductivity in Green–Ampt method (see Eq. (1))
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234 Stoch Environ Res Risk Assess (2014) 28:225–238

123



impacts of CT and NT for croplands (47.2 % of entire

watershed area) on hydrological processes indicated no

significant difference in mean annual values and slightly

difference in mean monthly runoff and ET. Some previous

studies also found that tillage did not significantly impact

the water budget (e.g., Chaplot et al. 2004). Higher SWCs

under NT than under CT were observed and verified by

scenario anlyses in this study, which agreed with previous

studies (Bescansa et al. 2006; Lampurlanes et al. 2001).

The high SWCs under NT were majorly mediated by the

high SOL_AWC for NT sites. One of the reasons for this

might be that greater percentage volume of larger pores

([30 lm) exist in soils for NT than for CT (Benjamin

1993; Ehlers 1975; Logsdon et al. 1990; Miller et al. 1999).

The results from scenario analyses were different from

our hypothesis and expectation, where we presumed that

tillage practices would affect hydrological regime if soil

hydraulic properties and parameters were significantly

different from each other. In both our study and aforemen-

tioned field-scale studies, soil properties and model param-

eters responded to tillage practices. However, model

simulations at watershed scale seemed to eliminate the dif-

ference and produce similar water budget from the mean

annual perspective. Higher SOL_AWC for NT fields indi-

cated that the NT soil had a higher capacity to hold water.

Thus the mean net changes in SWC during a year were not

significantly different between CT and NT. Our sub-water-

shed calibrations and watershed modeling disclosed impor-

tant information on tillage impacts: (i) the significant

differences in soil properties and model parameters do not

necessarily mean significant difference in hydrological

response at watershed scale; and (ii) sometimes statistical

difference does not indicate substaintial difference com-

pared to the order of magnitude of a variable. The practical

indiscrimination that were statistically significant indicate

that our sample size (i.e., 400 parameter sets for each sce-

nario) was too large (Johnson 1999). Therefore, model

simulations at the watershed scale are as important as field-

scale experiments and modelings.

5 Conclusions

The conclusions with respect to tillage impacts were

derived as follows. (i) The soil properties and model

parameters were significantly different between CT and

NT. In particular, higher bulk density, larger available

water capacity, and higher effective hydraulic conductivity

were found for NT than for CT. (ii) SWCs at three depths

of the NT sites were significantly higher than those of CT

sites. According to the statistical test, the differences in

Table 5 Comparison of mean monthly lateral flow, runoff, and ET between CT and NT by KW test (a = 0.05)

Month Lateral flow Runoff ET

CT NT CT NT CT NT

1 2.65 ± 0.08a 2.61 ± 0.06* 3.38 ± 0.10 3.32 ± 0.05* 23.65 ± 0.21 23.55 ± 0.17*

2 3.87 ± 0.13 3.82 ± 0.11* 4.82 ± 0.16 4.75 ± 0.10* 33.78 ± 0.26 33.57 ± 0.40*

3 4.28 ± 0.12 4.30 ± 0.16 5.49 ± 0.16 5.49 ± 0.16 52.99 ± 0.71 53.27 ± 0.28*

4 3.63 ± 0.09 3.68 ± 0.14* 4.42 ± 0.12 4.44 ± 0.13 53.68 ± 0.83 55.22 ± 0.57*

5 4.20 ± 0.10 4.24 ± 0.15 4.55 ± 0.12 4.57 ± 0.14 45.50 ± 0.51 45.19 ± 0.47*

6 2.88 ± 0.06 2.90 ± 0.09 3.01 ± 0.08 3.02 ± 0.09 35.74 ± 0.48 34.95 ± 0.56*

7 1.54 ± 0.03 1.54 ± 0.04 1.60 ± 0.04 1.59 ± 0.04 27.60 ± 0.22 27.26 ± 0.47*

8 1.40 ± 0.03 1.40 ± 0.04 1.42 ± 0.03 1.42 ± 0.04 19.17 ± 0.17 19.22 ± 0.31

9 1.30 ± 0.03 1.30 ± 0.04 1.31 ± 0.03 1.31 ± 0.04 14.72 ± 0.08 14.69 ± 0.20*

10 3.89 ± 0.08 3.93 ± 0.13* 3.90 ± 0.08 3.94 ± 0.13* 22.21 ± 0.77 22.63 ± 0.86*

11 5.87 ± 0.15 5.93 ± 0.21* 5.96 ± 0.15 6.02 ± 0.21 18.07 ± 0.35 17.91 ± 0.26*

12 3.82 ± 0.11 3.79 ± 0.11* 4.23 ± 0.12 4.20 ± 0.11* 17.48 ± 0.16 17.20 ± 0.12*

a Mean ± standard deviation in units of mm

* Significant difference at P \ 0.05

Fig. 7 CV of parameters under CT and NT management (KE is the

effective hydraulic conductivity in the Green–Ampt method, see

Table 2 for description of other parameters)
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SWCs were dominated by the tillage management, not the

climate conditions. (iii) The increased infiltration under NT

did not result in significant changes in mean annual water

budget at a watershed scale, because NT soil of this study

had a higher capacity to hold water. (iv) Although statis-

tical differences in mean monthly runoff and ET (e.g.,

greater ET in eight months under CT than under NT) were

found, the differences were not substantial compared to the

amounts of monthly runoff and ET. In summary, the sta-

tistically different model parameters neither resulted in

statistical differences in annual hydrological outputs nor

practical differences in monthly outputs.
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