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Abstract This study presents spatio-temporal analysis of

droughts in one of the most drought prone region in India–

western Rajasthan and develops drought intensity-area-

frequency curves for the region. The meteorological

drought conditions are analyzed using 6-month standard-

ized precipitation index (SPI-6) estimated at spatial reso-

lution of 0.5� 9 0.5�. Spatio-temporal analysis of SPI-6

indicates increase in frequency of droughts at the central

part of the region. The non-parametric Mann–Kendall test

for seasonal trend analysis showed increase in number of

grids under drought during the study period. Further,

bivariate frequency analysis of drought characteristics—

intensity and areal extent is carried out using copula

methods. For modeling joint dependence between drought

variables, three copula families namely Gumbel-Hougaard,

Frank and Plackett copulas are evaluated. Based on

goodness-of-fit as well as upper tail dependence tests, it is

found that the Gumbel-Hougaard copula best represents the

drought properties. The copula-based joint distribution is

used to compute conditional return periods and drought

intensity–area–frequency (I–A–F) curves. The I–A–F

curves could be helpful in risk evaluation of droughts in the

region.

Keywords Drought � SPI � Trend analysis � Copulas �
Tail dependence � Intensity–area–frequency curves

1 Introduction

Drought is a natural hazard characterized by lower than

expected precipitation. When drought extends over a sea-

son or longer time periods, it leads to water shortages, and

the available water is insufficient to meet the demands of

human activities and environment (WMO 2006). As com-

pared to other natural hazards, such as floods and hurri-

canes, the spatial extent of droughts is usually much larger

(Obasi 1994). Drought events are mainly characterized by

its magnitude or intensity, duration and spatial coverage.

Intensity refers to the degree of deficit in precipitation (for

meteorological drought assessment) or stream flow (for

hydrological drought assessment) and is measured by the

departure from normal condition. Droughts also differ

significantly in terms of its spatial characteristics from one

region to another.

Drought is a multivariate phenomenon, often charac-

terized by its severity, duration, intensity and spatial extent.

In order to understand spatial and temporal nature of

droughts in regional scale, several studies have been car-

ried out in the past. Regional drought risk can be evaluated

through multivariate relationship such as development of

drought severity–area–frequency (S–A–F) or intensity–

area–frequency (I–A–F) curves. These curves were derived

based on mathematical relationships between drought

severity or intensity and areal extent for various return

periods. Most commonly used probability distributions to

derive these relationships are the Extreme value distribu-

tions. For a given percentage areal extent of drought, the

associated drought magnitude of particular event is

extracted from the historical records and then frequency

analysis is performed. In some cases, when only a few

years’ data are available, the exceedance series for drought

property may be determined by ranking the data and then
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empirical relationship can be established. Kim and Valdés

(2002) investigated the temporal and spatial characteristics

of droughts using palmer drought severity index (PDSI) for

the Conchos River basin Mexico using intensity-area-fre-

quency curves. In their study the point estimates of PDSI

were interpolated using kriging method. Hisdal and Tal-

laksen (2003) derived S–A–F curves in Denmark analyzing

monthly precipitation and streamflow time series using

empirical orthogonal functions (EOF) method. The entire

Denmark was divided into 260 grid-cells of 14 9 17 km,

and the monthly mean and the EOF-weight coefficients

were interpolated by kriging. Using Monte Carlo simula-

tion, long time series of precipitation and streamflow were

generated at each grid cell. The area under drought and the

deficit based on stream flow and precipitation were then

used to produce drought S–A–F curves. Loukas and

Vasiliades (2004) studied spatio-temporal variability of

meteorological droughts in Thessaly region of Greece

during 1960–1993. The observed monthly precipitation

data from 50 meteorological stations were spatially inter-

polated over the study region using multiple linear

regression. The drought characteristics were examined

using standardized precipitation index (SPI) values at

spatial resolution of 8 9 8 km and at multiple time scales,

and then drought S–A–F curves were developed. Mishra

and Desai (2005) analyzed SPI-based drought S–A–F

relationship for the time period 1965–2001 in Kansabati

River basin in India. In their study, inverse distance

weighting approach was used as a spatial interpolation of

SPI data. Andreadis et al. (2005) employed gridded pre-

cipitation and temperature data at 0.5� spatial resolutions as

input to the variable infiltration capacity model—a physi-

cally based macroscale hydrologic model to obtain soil

moisture and runoff. Then they identified hydrological

droughts during 1920–2003 over continental US. A clus-

tering algorithm was used to identify individual drought

events and their spatial extent at each monthly time step.

Severity–area–duration curves at different drought dura-

tions (3, 12, 24 and 48 months) were constructed to relate

area of each drought to its severity. Their analysis showed

that the droughts of the 1930s and 1950s were covering

larger geographical area, whereas the early 2000s drought

in western US was found to be the most severe drought in

terms of magnitude during the study period. Pai et al.

(2010) evaluated district-wise drought climatology over

India during southwest monsoon period using SPI and

percent of normal indices during 1901–2003. The study

concluded that as drought climatology based on SPI was

not biased by aridity, hence SPI is better drought index for

district-wise drought monitoring. Santos et al. (2010)

analyzed meteorological droughts in Portugal from Sep-

tember 1910 to October 2004 using SPI at multiple time

scales such as 1, 6 and 12 months. In their study, the

southern part of the country was found to be severely

affected by drought as compared to northern region. Tal-

laksen et al. (2011) analyzed drought over Europe for the

period 1963–2000, based on observed streamflow and

runoff simulated by WATCH (Water and Global change)

multi-model ensemble comprising nine large scale models.

Drought S–A–F curves were then derived based on simu-

lated runoff from one of the ensemble model. Kumar et al.

(2012) studied the drought pattern across space and time in

India using gridded daily precipitation data at 1� spatial

resolution from June to September (1951–2007). They

noted increasing trend of all India drought during the

month of July.

In a large country like India where precipitation varies

both in space and time, drought is one of the most fre-

quently occurring natural calamities in several parts of the

country. The probability of drought varies from once in

2 years in western Rajasthan to once in 15 years in Assam

(NDMA 2010). Although Rajasthan is the largest State in

India occupying about 10.4 % of the India’s geographical

extent but contributes only 1 % of the country’s total water

resources (Drought report 2004). The state has maximum

probability of drought occurrences in the country (Mall

et al. 2006). The period of monsoon is about 2–3 months

(July to September) and the annual precipitation varies

from 150 to 900 mm in different parts of the state with an

average annual precipitation of about 576 mm and the

temperature varies from 5 to 45 �C in different seasons

(RACP 2012). In India although few studies were carried

out for drought analysis based on precipitation data at

coarser resolution covering a larger area (Chowdhury et al.

1989; Sinha Ray and Shewale 2001; Guhathakurta 2003;

Pai et al. 2010; Ganguli and Janga Reddy 2012; Kumar

et al. 2012), but not many studies analyzed spatio-temporal

pattern and multivariate risks of droughts in the western

Rajasthan region, which is highly vulnerable to frequent

droughts. Analyzing drought characteristics including

spatial extent and intensity are critical to understand nature

of droughts.

The copula approach is a flexible method that allows

marginal distribution of any form to model multivariate

dependence between drought variables. Copulas are joint

distribution functions of standard uniform random variates

(Sklar 1959). One of the earlier applications of copulas in

drought hydrology was by Shiau (2006). Shiau (2006)

investigated bivariate joint distribution of drought proper-

ties severity and duration in Southern Taiwan using SPI

and theory of copulas. Song and Singh (2010) modeled

joint probability distribution of drought duration, severity

and inter-arrival time of droughts using trivariate Plackett

copula for a case study in China. The parameters of

bivariate and trivariate Plackett copulas are estimated using

pseudo log-likelihood and genetic algorithm methods.
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Janga Reddy and Ganguli (2012) applied four different

classes of bivariate copulas—Archimedean, extreme value,

Plackett, and elliptical families for modelling joint distri-

bution of drought characteristics, and noted that extreme

value class Gumbel–Hougaard copula family performed

better as compared to other classes of copulas. This copula

was also used for deriving severity–duration–frequency

curves for western Rajasthan region in India. Mir Abbasi

et al. (2012) employed bivariate copulas to model meteo-

rological drought properties—severity and duration of

northwestern Iran. According to error analysis and tail

dependence coefficient, the Galambos copula was found as

best fitted model, which was then used to analyze bivariate

probabilistic properties of droughts using secondary as well

as conditional return periods. Lee et al. (2012) studied

influence of tail shape of four different copula families—

Gumbel-Hougaard, Frank, Clayton and Gaussian for

bivariate drought frequency analysis in Canada and Iran.

Their study showed that Clayton copula is not an appro-

priate choice for modeling droughts as dependence

between two variables in the upper tail of Calyton copula

was very weak and similar to the independence case,

whereas Frank and Gumbel-Hougaard copula showed

better performance for modeling bivariate drought prop-

erties. Sadri and Burn (2012) investigated frequency

analysis of droughts using copula and performed region-

alization by applying 36-nonregulated streamflow data in

Canadian Prairies. K-means clustering approach was

employed to form initial cluster and then fuzzy c-means

algorithm was employed for deciding final groups. Then

bivariate copula-based regionalization was compared with

traditional multivariate approach defined using bivariate-

Gamma distributions. From the analysis it was noted that

copula-based model provides shorter return periods as

compared to return periods computed using bivariate

Gamma distribution, assuming same value of severity and

duration respectively.

The present study analyzes meteorological droughts in

one of the most drought prone region in India—western

Rajasthan. Gridded precipitation (0.5� latitude 9 0.5� lon-

gitude) data for 35-years (1971–2005) is used to build SPI

time series at a time scale of 6-months (SPI-6) for modeling

metrological droughts in the region. The main objectives of

the present paper are: (1) Modeling drought characteristics

at finer resolution in western Rajasthan of India and identify

the spatio-temporal trends of droughts using the non-para-

metric Mann–Kendall test and Sen’s slope estimators; (2)

Evaluate the performance of Gumbel-Hougaard, Frank and

Plackett copulas for modeling dependence structure of

drought properties, and apply copula-based methodology to

derive I–A–F curves for the region.

The paper is organized as follows: In Sect. 2, the theo-

retical concepts of copula modeling, goodness-of-fit test

and the tail dependence tests to select suitable copula

family are described. The case study and data details are

described in Sect. 3.1. The spatial characteristics of

droughts, identification of drought spatial extent, analysis

of trends and dependence pattern of drought variables are

presented in Sect. 3.2. Then marginal distribution fitting of

drought variables are presented. The next sub-section deals

with application of copulas in modeling joint dependence

of drought variables. The subsequent sub-section presents

copula-based joint and conditional distributions to derive

drought I–A–F curves at various return periods for the

selected copula family. Finally summary and conclusions

are presented in Sect. 4.

2 Methodology

2.1 Characterization of droughts

In this study drought is modeled using SPI. Calculation of

SPI (McKee et al. 1993) for any location and time scale

(such as 3, 6, 9 and 12 months) involves fitting aggregated

long term precipitation of specific time scale to a proba-

bility distribution function (generally Gamma or Pearson

Type III distribution), which is then transformed into a

standardized normal distribution so that the mean SPI for

the location and desired period is zero. This study adopted

SPI-6, which uses 6-month aggregated precipitation data.

The aggregated precipitation data is fitted to Gamma dis-

tribution function. As two-parameter gamma function is

undefined for zero values but precipitation distribution may

contain zeros, hence a mixed distribution function (which

can account zeros and real values of precipitation) is

employed and the corresponding cumulative distribution

function (CDF) is defined as

FX xð Þ ¼ qþ 1� qð ÞGX xð Þ ð1Þ

where GX xð Þ is the CDF of Gamma distribution estimated

for nonzero precipitation and q is the zero precipitation

probability obtained from historical time series. As pre-

cipitation is not normally distributed, an equiprobability

transformation is carried out from the CDF of mixed dis-

tribution to the CDF of the standard normal distribution

with zero mean and unit variance. This transformed prob-

ability gives the SPI. i.e., Z ¼ w�1 FX xð Þð Þ, where w �ð Þ is

the CDF of standard normal distribution, and w�1 �ð Þ is the

inverse of standard normal CDF.

Drought condition in each grid is identified when the

SPI value falls below a threshold limit, which is taken as 20

percentile value (&threshold value of approximately -0.8)

of SPI in the grid (Svoboda et al. 2002). In specific, the

drought properties are defined as:
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• Percentage area under drought (PAUD): the area is

considered to be under drought (in percentage) when

spatial coverage of drought exceeds certain percentage

thresholds limits of its spatial extent at each monthly

time step. Accordingly drought areal extent (At) at a

time step t is computed using the expression

At ¼
PNgrid

i¼1 1 Zi;t� Zthr

� �
� Ai

PNgrid

i¼1 Ai

; 8t ¼ 1; 2; . . .; n ð2Þ

where 1 Hf g is a logical indicator function of set H, taking

the value of either 0 (if H is false) or 1 (if H is true), Zi;t is

the SPI value at month t, Zthr is the threshold limit of SPI for

identifying drought in the grid, Ai denotes influence area of

grid i and Ngrid is the total number of grids in the region.

• Intensity (It): It is defined as the average of SPI values

at various grid points under drought during time step ‘t’

and is computed using the expression

It ¼ �
1

Ndr grids

XNgrid

i¼1

1 Zi;t� Zthr

� �
� Zi;t

� �
; 8t ¼ 1; 2; . . .; n

ð3Þ

where Ndr grids is the total number of grids under droughts,

which can be estimated by Ndr grids ¼
PNgrid

i¼1 1 Zi;t � Zthr

� �
.

2.2 Copula-based joint distributions for modeling

drought variables

2.2.1 Copula definition and properties

A two-dimensional copula C is a real function defined

on 0; 1½ � � 0; 1½ � with range 0; 1½ �. Every element (u, v) in

the domain satisfies the following conditions: C u; 0ð Þ ¼
C 0; vð Þ ¼ 0; and C u; 1ð Þ ¼ u and C 1; vð Þ ¼ v. For every

rectangle in the domain u1; u2½ � � v1; v2½ �, such that u1� u2

and v1� v2, the 2-D copula satisfies the condition C(u2,

v2) - C(u2, v1) - C(u1,v2) ? C(u1, v1) C 0. Since copulas

are joint distribution functions of standard uniform distri-

butions, a copula function computed at FX xð Þ and FY yð Þ
gives joint distribution function at (x,y) in accordance to

Sklar’s (1959) theorem:

C u; vð Þ ¼ C FX xð Þ;FY yð Þ½ � ¼ FX;Y x; yð Þ ð4Þ

The parametric form of copula function allows grouping

them into various families. More details about copula

functions, associated properties and different copula fam-

ilies can be found in Nelsen (2006). The important copula

classes are Archimedean, Elliptical and Plackett copulas. In

this study, Archimedean class of Gumbel-Hougaard, Frank

family and Plackett copulas are employed to model joint

dependence of drought variables. The expressions for the

CDF and associated parameters range of copula families

are presented in Table 1.

2.2.2 Estimation of copula parameters

The estimation of copula parameters are performed using

maximum pseudo-likelihood (MPL) method. In this pro-

cedure, first marginals are estimated using empirical dis-

tributions and then copula parameters are estimated using

maximization of pseudo log-likelihood function. From d-

dimensional random vector X 2 Xi;1;Xi;2; . . .;Xi;d empirical

distributions (CDF) of the observations are estimated using

their associated ranks, i.e.,

Ui;d ¼
1

nþ 1

Xn

j¼1

1 Xj;d �Xi;d

� �

8i ¼ 1; 2; . . .; n; j 6¼ i; d ¼ 1; 2. . .; n

ð5Þ

For bivariate case, U ¼ Ui;1;Ui;2

� �
; 8i ¼ 1; 2; . . .; n;Ui;1

and Ui;2 are the vectors of pseudo-samples of two random

variables. Then on substituting the empirical CDFs into

bivariate copula density yields log-likelihood function of

the form (Genest and Favre 2007)

LU hð Þ ¼
Xn

i¼1

ln ch Ui;1;Ui;2

� �� �

¼
Xn

i¼1

ln ch
Ri;1

nþ 1
;

Ri;2

nþ 1

� �� 	

8i 2 1; . . .; nf g

ð6Þ

where ch �ð Þ denotes bivariate copula density, Ri;1 and Ri;2

denotes ranks of the observed data. The parameter h can be

Table 1 Expression of CDF, associated parameter and parameter space of the copula families

Copula family C u; vð Þ Parameter space h 2

Gumbel-Hougaard
exp � � ln uð Þhþ � ln vð Þh

h i1
h

� �
1;1½ Þ

Frank � 1
h log 1þ e�hu�1ð Þ e�hv�1ð Þ

e�h�1

� �
h 2 �1;1ð Þn 0f g

Plackett 1
2 h�1ð Þ s� qð Þ h 2 0;1½ Þn 1f g

Note. s ¼ 1þ h� 1ð Þ uþ vð Þ and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4uvh h� 1ð Þ

p
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obtained by maximizing this rank-based pseudo log-

likelihood function numerically,

ĥ ¼ arg max LU hð Þf g ð7Þ

In order to avoid trapping at local optimal solution while

using a gradient based search technique, a real-coded

genetic algorithm (R-GA) is employed to get the optimal

parameters of the copula function.

2.2.3 Goodness-of-fit (GOF) test for copulas

The goodness of fit test based on empirical copula process

is employed to check the adequacy of copula families in

modeling the data. The test is based on empirical process
ffiffiffi
n
p

Cn u; vð Þ � Ch u; vð Þf g; u; v 2 0; 1½ �, which consists of

comparing the distance between rank-based empirical

copula Cn �ð Þ with estimated parametric family of copula

Ch �ð Þ. The empirical copula Cn of data x1; y1ð Þ,…, xn; ynð Þ
is defined as (Genest et al. 2009)

Cn u; vð Þ ¼ 1

n

Xn

i¼1

1 Ûi;1� u; Ûi;2� v
� �

u; vf g 2 0; 1½ �2

ð8Þ

The test statistic is given by Cramér-von Mises (CVM)

distance, which is given by (Genest et al. 2009)

Se
n ¼

Z

0;1½ �2

n Cn u; vð Þ � Ch u; vð Þf g2
dCn u; vð Þ

¼
Xn

i¼1

Cn Ui;1;Ui;2

� �
� Ch Ui;1;Ui;2

� �� �2

ð9Þ

An approximate p value for the corresponding test

statistic is obtained via large sample simulations using

parametric bootstrap method (Genest et al. 2009), which

consist of following steps:

• For some large integer N, k 2 1; . . .;Nf g generate

random samples Xk�
i;d ¼ Xk�

i;1;X
k�
i;2

n o
; 8i ¼ 1; 2; . . .; nf g;

d 2 1; 2f g from distribution Ch and compute their

associated rank vectors Rk�
i;d ¼ Rk�

i;1;R
k�
i;2

n o
.

• Compute Uk�
i;d ¼ Rk�

i;d

.
nþ 1ð Þ for i 2 1; . . .; nf g; d 2

1; 2f g and simulate
•

Ck�
n u; vð Þ ¼ 1

n

Xn

i¼1

I Ûk�
i;1� u; Ûk�

i;2� v

 �

u; v 2 0; 1½ �2

ð10Þ

• Estimate hk�
n from simulated ranked data and compute

corresponding CVM distance

Sk�
n ¼

Xn

i¼1

Ck�
n Uk�

i;1;U
k�
i;2


 �
� Chk�

n
Uk�

i;1;U
k�
i;2


 �n o2

ð11Þ

If Sk�
1:n� . . . � Sk�

n:n denote the ordered value of test

statistics computed in Eq. 11, then critical value of test

statistic at a significance level based on Sn is given as

Sk�
1�að Þnb c:n. Here xb c denotes the integer part of x The p

value corresponding to test statistic Sn is given by using

pval ¼ 1
N

PN

k¼1

1 Sk�
n � Se

n

� �
.

2.2.4 Tail dependence test

The tail dependence coefficient (TDC) captures the con-

cordance between extreme values in the lower left quadrant

tail and upper right quadrant tails of the distribution. For

modeling extremes, upper tail dependence is of much

interest. If u be a threshold value then upper tail depen-

dence between two variables X and Y, denoted as kU is

given by

kU ¼ lim
u!1�

FX xð Þ[ ujFY yð Þ[ uf g ð12Þ

Using copula the above equations can also be expressed as

(Nelsen et al. 2008)

kU ¼ lim
u!1�

1� 2uþ C u; uð Þ
1� u

¼ 2� lim
u!1�

1� C u; uð Þ
1� u

¼ 2� d0C 1�ð Þ ð13Þ

where the function dC �ð Þ is the diagonal section of copula

C and given by dC uð Þ ¼ C u; uð Þ for every u 2 0; 1½ �. The

estimate kU measures the concordance between extremely

low values and extremely high values of random variables

respectively. If kU 2 0; 1ð �, then FX xð Þ and FY yð Þ are said

to show upper tail dependence or extremal dependence. As

discussed by Frahm et al. (2005) the model error could be

large in a parametric TDC estimate. The limitations of

parametric TDC can be overcome by estimating non-

parametric TDC. In this study, Capéraá–Fougéres–Genest

(CFG estimator kCFG
U ; Capéraá et al. 1997; Frahm et al.

2005) estimator is employed to study non-parametric TDC.

If u1; v1ð Þ; . . .; un; vnð Þf g be random sample obtained from

Copula C �ð Þ, then bivariate upper tail dependence

coefficient using kCFG
U is given by (Frahm et al. 2005)

k̂CFG
U ¼ 2� 2 exp

�
1

n

Xn

i¼1

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log
1

ui

� �

log
1

vi

� �s ,

log
1

max ui; við Þ2

 !( )�

ð14Þ
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2.3 Copula-based conditional return period of droughts

The conditional return period TIjA ijað Þ of drought intensity

given PAUD A = a can be expressed as

TIjA ijað Þ ¼ f
1� FIjA ijað Þ ¼

f
1� CIjA¼a

ð15Þ

where f ¼ N
n
, N = total length of SPI time series (in years),

n = total number of drought events during N years and

CIjA¼a denotes conditional CDF of drought intensity given

PAUD. The conditional distribution from copula-based

joint distribution can be derived using relationship

CIjA¼a ¼ oC FI ið Þ;FA að Þð Þ
oFA að Þ .

3 Case study application

3.1 Study area and data

The state of Rajasthan in India has variable topographic

features. The dry and parched region occupies major por-

tion of the state. The state is surrounded by the Aravalli

Hills stretching from Mount Abu in southwest Kota and

Bundi in northeast, covering more than 850 km2 area. The

location map of the study region western Rajasthan is

shown in Fig. 1. The location lies between the latitude

69.5�–76.5�E and the longitude 24.50�–30.50�N. On an

average the altitude of the state varies from 100 to 350 m,

but in some places altitude is over 750 m high. The Thar

Desert lies in north-west part of the state. The average

temperature during winter varies between 8 and 28 �C, and

in the summer, it rises up to about 25–46 �C.

Gridded (0.5� latitude 9 0.5� longitude) daily precipitation

data obtained from Indian Meteorological Department (IMD),

Pune for 35 years (1971–2005) is used to study drought risk at

western Rajasthan. The study area comprises 98 grid points

with total area 2,00,063 Km2. The details of the development of

high-resolution daily gridded precipitation data for Indian

region were given in Rajeevan and Bhate (2008). Daily pre-

cipitation data are aggregated to monthly time scales, which in

turn are used to develop SPI, calculated at monthly time scales,

in order to identify droughts in each grid.

3.2 Trend analysis of droughts

The SPI values calculated at each grid cell are used to

analyse the spatio-temporal patterns of drought. The SPI

values at various grid cells vary from minimum of -3.92 to

maximum of 3.60 during the study period. To analyse the

trends, modified Mann–Kendall trend test (Hamed and Rao

1998) with correction for auto-correlation is employed

(since SPI time series are generally auto-correlated). Brief

details of Mann–Kendall test are given in Appendix. The

Mann–Kendall test statistic is computed for each month of

monsoon season (June, July, August and September) after

correcting for ties. Figures 2 and 3 show Mann–Kendall test

statistics for the months of June (Fig. 2a), July (Fig. 2b),

August (Fig. 3a) and September (Fig. 3b). The figures show

that central part of the region experienced decreasing trend

of SPI, resulting in drought conditions as compared to rest of

the region. Significance of trend is checked at 5 % signifi-

cance level. Positive trend in SPI time series is observed

during the month of June in northern region, indicating wet

conditions in the region. During the month of August 12 %

of the grid cells in the region showed downward trend,

which is statistically significant at 5 % level, whereas none

of the upward trends in SPI time series over the grid cells is

significant. Since, monsoon is very important for agricultural

operations, the trends during monsoon season are also

evaluated using seasonal Mann–Kendall trend test (Hirsch

et al. 1982). Figure 4 presents seasonal Mann–Kendall trend

statistics for monsoon period. As observed from the figure,

most of the central region and few grids in north-eastern

region (i.e., the block numbers 30, 31, 32, 41, 42, 43, 44, 55,

56, 61, 67 and 68) experienced increase in droughts as

indicated by the Mann–Kendall test statistic.

At each monthly time step, the drought affected grids in

the region are identified based on SPI value of 20 percentile

threshold limit. The magnitude of trends for number of grids

under drought during monsoon months are quantified using

two methods: (1) Least square linear regression (2) Sen’s

slope estimator. Linear regression fit relating number of grid

cells under drought with years during each month in the

monsoon season are depicted in Fig. 5. The graphs show

presence of increasing linear trend in the number of grids

under droughts for the months of August and September.

The slope of least square regression estimate can be sensi-

tive to extreme values. To address this problem, Sen’s slope

estimator (Sen 1968; Hirsch et al. 1982) based on non-

parametric method is employed to estimate the magnitude of

temporal trends in the data. The significance of trends is

evaluated using Mann–Kendall test statistics at 5 and 10 %

significance level. Table 2 lists corresponding test statistics

and the magnitude of the trend obtained using Sen’s slope

estimator. The results of Mann–Kendall test show upward

trend in number of grids under drought but not statistically

significant except in the month of June. The increase in trend

during total monsoon period is found to be 0.13/season,

which is statistically significant (at significance level

a = 0.10) as evaluated by Mann–Kendall trend test.

3.3 Selection of drought areal threshold

The areal threshold of drought from gridded drought data is

identified using histogram analysis of percentage area

1980 Stoch Environ Res Risk Assess (2013) 27:1975–1989
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under drought and number of months under drought at

different areal extents. Figure 6 presents number of months

under drought for different areal threshold limits (j = 1,

2,…, Kb c; where K is the maximum percentage of area

under drought in month t) (Fig. 6a), histograms of

percentage area under drought (Fig. 6b) and number of

months under drought (Fig. 6c). From Fig. 6, it is noticed

that as areal threshold increases, the months under drought

are decreasing in number. Figure 6b and c indicate posi-

tively skewed distribution of data. The number of bins in

Fig. 1 Location of the study area—western Rajasthan, India

Fig. 2 Trend maps of SPI-6 during 1971–2005 for western Rajasthan during a June, b July. M–K test statistics denote modified Mann–Kendall

test statistics Z�MK
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the histograms is taken as
ffiffiffiffiffiffiffiffiffi
Nobs

p
, where Nobs is the number

of observations. From Fig. 6b it can be observed that from

second bin onwards, the histogram tends to be uniform in

shape. Hence, areal threshold for the present analysis is

selected as 7 %. As observed from Fig. 6c, the number of

months, which have at least 7 % of areal extent under

drought, is 240 months out of total 415 months considered

(i.e., SPI-6 time series computed for the time periods of

1971–2005). A minimum of 7 % area under drought is

about 14,004 km2. Based on this criteria total 30 drought

events are identified during the study period. Figure 7

presents intensity and PAUD in different months at areal

threshold of 7 % during the study period (1971–2005).

3.4 Analyzing dependence of drought variables

The qualitative assessment of dependence between drought

variables is analyzed using graphical tools such as ranked

scatter plots, Chi plots and Kendall plots as shown in

Fig. 8. Details about Chi-plot and Kendall plots for

assessing dependence were available in Genest and Favre

(2007). From the ranked scatter plot (Fig. 8a), it can be

observed that the drought variables are positively associ-

ated with each other as most of points concentrated in the

upper-right quadrant of the ranked scatter plot. The control

limits in case of Chi-plots (Fig. 8b) are set to enclose 0.95

confidence limit 1:78=
ffiffiffi
n
p

ð Þ. Most of the observation pairs

ki; við Þare found to be clustered outside the upper end of

the control limits, which indicates that significant positive

dependence exists between drought variables. The Kendall

plot (Fig. 8c) shows that at the origin, the observation pairs

Wi:n;Hið Þ touch the diagonal line. This is an indication that

there is no lower tail dependence. Further, Wi:n;Hið Þ pairs

are closer to the diagonal line in the lower part and far from

it in the middle and upper parts of the plot. The points in

the upper portion of the Kendall-plot diverge from the

diagonal line, indicating the presence of upper tail

dependence.

For quantitative assessment, the sample estimates of

Pearson’s linear correlation r and two non-parametric

dependence measures viz., Spearman’s q, Kendall’s s are

computed. The Pearson’s r between drought variables is

0.49 and Kendall’s s and Spearman’s q are 0.34 and 0.47

respectively. The statistical significance of dependence is

assessed by two-tailed t test and p values of correlation

coefficient, which are less than 0.0001 for all the three

cases, indicating that the correlations are significant at 5 %

significance level.

3.5 Marginal distributions for drought variables

In order to fit marginal distribution for drought variables,

several parametric class of distributions are investigated,

such as generalized extreme value (GEV), Lognormal,

Gamma and Exponential distribution functions. The

validity of each probability model is tested using K–S GOF

Fig. 3 Trend maps of SPI-6 during 1971–2005 for western Rajasthan during a August, b September

Fig. 4 Seasonal (June–September) trend map of SPI-6 for western

Rajasthan (1971–2005)
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test. The results of estimated parameters along with their

performance measures are presented in Table 3. For each

of the cases, K–S test is checked at 5 % significance level.

The critical value of K–S test statistics (da¼0:05
critical ) is obtained

from 1,000 bootstrapped samples generated from the dis-

tributions. It is found that intensity and PAUD can be best

modelled by GEV and lognormal distributions respec-

tively. The suitability of these distributions in modeling

drought variables is also evident from higher p value of the

estimate. Figure 9 gives graphical illustration of the PDF,

CDF and probability–probability (P–P) plots of marginal

distribution of drought variables. All three figures show

good agreement between theoretical and empirical

distributions.

3.6 Joint dependence modeling of drought variables

using copula

Bivariate joint distribution of drought variables intensity

and PAUD is modeled using Gumbel-Hougaard, Frank and

Plackett copulas. The copula parameters are estimated

using MPL method, in which maximization of log-likeli-

hood function is performed using GA. The GA parameters

used include: population size of 50, generations of 100,

scattered cross-over function with crossover rate of 0.8,
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Fig. 5 Linear regression fit

relating number of grids under

drought with years during

monsoon months—a June,

b July, c August and

d September. blinear denotes

slope estimated using linear

regression fit

Table 2 Mann–Kendall test statistics (Z�MK ) and magnitude of trends

(bnp) using Sen’s slope for number of grids under drought during each

month of monsoon (/month) and for total monsoon season (/seasons)

Months Z�MK bnp

June 2.182** 0.07

July 0.413 0.08

August 1.396 0.29

September 0.984 0.19

Total monsoon season (June–September) 1.842* 0.13

Note. Double (**) and single asterisks (*) represent trend is signifi-

cant at 5 and 10 % significance level respectively
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Gaussian mutation function with mutation rate of 0.01.

Table 4 presents estimated copula parameters, log-likeli-

hood values (LL) and GOF statistics of copula families

estimated at 5 % significance level. Associated Cramer-

von-Mises distance statistics Sn and p values of the

estimate are also listed in the Table 4. The probability-

values (p values) are computed using parametric bootstrap

procedure with N = 500 and 1,000 replications. It can be

seen that Gumbel-Hougaard copula resulted in higher LL

values. It is also observed that the Gumbel-Hougaard
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Fig. 6 Identification of drought areal threshold. a Number of months under drought at different percentage areal threshold, b histogram of

percentage area under drought (PAUD), c histogram of number of months under drought
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Fig. 7 Drought Intensity and
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during study period
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Fig. 8 Graphical depiction of dependence between drought variables—intensity and PAUD using a ranked scatter plot, b Chi plot and c Kendall

plots. UIi
and UAi

denotes empirically transformed marginal distribution for intensity and PAUD
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copula resulted in larger p value as compared to other two-

copulas. The GOF test statistics show that Frank and

Plackett copulas failed at 5 % significance level. For fur-

ther graphical assessment, a Monte Carlo simulation is

performed for generating a series of random pairs from

each of the copula families and compared it with actual

observations. Figure 10 gives comparison of observed

drought variables with thousand paired samples generated

from copula families. It is noticed that Kendall’s s value of

the simulated samples from Gumbel-Hougaard copula

family is close to that of the observed drought variables

(s 	0.34).

To evaluate the performance of the copulas in modeling

extremes (tails) of the data, non-parametric CFG estimator

kCFG
U

� �
based tail dependence test is performed for the

copula models. For evaluating kCFG
U estimate of copula

families selected, a number of (n = 1,000 and 5,000)

Table 3 Estimated parameters and performance measures for the fitted marginal distributions for drought variables

Drought variables Distributions Shape Scale Location K–S distance dn da¼0:05
critical

p value Remarks for KS-test

Intensity GEV 0.055 0.178 1.183 0.050 0.051 0.057 Pass

Log normal 0.176 0.244 – 0.067 0.054 0.005 Fail

Gamma 31.723 0.041 – 0.078 0.057 0.002 Fail

Exponential – 1.300 – 0.510 0.064 0.000 Fail

PAUD GEV 0.313 13.14 21.37 0.060 0.048 0.003 Fail

Log normal 0.665 3.299 – 0.050 0.054 0.106 Pass

Gamma 2.519 13.290 – 0.056 0.055 0.047 Fail

Exponential – 33.471 – 0.199 0.066 0.000 Fail
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random samples are generated from each copula family and

the computation of k̂CFG
U is repeated for hundred different

runs. Then corresponding mean l̂ k̂CFG
U


 �
and standard

deviation r̂ k̂CFG
U


 �
of hundred runs are computed. Then,

empirical CFG estimate is calculated from observed data

by empirically transforming the drought variables, which is

found to be k̂CFG
empirical = 0.407. The corresponding results

are presented in Table 5, which shows satisfactory per-

formance of Gumbel-Hougaard copula for modeling upper

tail dependence of drought properties. The parametric

upper tail dependence coefficient of Gumbel-Hougaard

copula is computed as kparam
U ¼ 2� 21=h = 0.413, which is

found to be very close to the non-parametric CFG estimate

l kCFG
U

� �
= 0.414 (for n = 5,000 simulated random pair)

and also close to the empirical estimate k̂CFG
empirical = 0.407.

The results indicate satisfactory performance of Gumbel-

Hougaard copula in modeling upper tail dependence of

drought variables.

3.7 Drought intensity–area–frequency (I–A–F)

relationship

Drought I–A–F curve gives the relationship between spatial

intensity of drought and its areal extent corresponding to a

return period. In other words, I–A–F curves give infor-

mation about the frequency of area that would be affected

by drought of a given intensity (Hisdal and Tallaksen

2003). The drought I–A–F TIjA ijað Þrelationships are

derived from copula-based joint and conditional distribu-

tion of drought variables. For a specified value of return

period TIjA ijað Þ, the drought intensity corresponding to an

areal extent can be obtained by numerically solving Eq. 15,

in which the value of d = 1.15. For Gumbel-Hougaard

copula the expression for CIjA¼a is given by

CIjA¼a ¼ u�1 exp � � log uð Þð Þhþ � log vð Þð Þh

 �1

h

� 	

1þ � log vð Þ
� log uð Þ

� �h
" #�1þ1

h
ð16Þ

Table 4 Estimated copula parameter and associated goodness-of-fit tests for copula families

Copula Family Copula parameter (ĥ) LL Se
n N = 500 N = 1,000

Scritical p value Scritical p value

Gumbel-Hougaard 1.50 37.07 0.070 0.266 0.102 0.147 0.081

Frank 3.40 31.35 0.068 0.034 \0.0001 0.034 \0.0001

Plackett 4.98 33.66 0.066 0.035 0.002 0.035 \0.0001

Note. Best estimator is shown as bold, N denotes number of replications
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Fig. 10 Scatter plots of observed versus thousand simulated samples from copula families a Gumbel-Hougaard, b Frank and c Plackett

characterizing drought intensity and PAUD values. Observed and simulated drought variables are denoted by black and gray dots respectively

Table 5 Coefficient of upper tail dependence for copula families

Copula family N = 1,000 N = 5,000

l̂ k̂CFG
U


 �
r̂ k̂CFG

U


 �
l̂ k̂CFG

U


 �
r̂ k̂CFG

U


 �

Gumbel-Hougaard 0.415 0.021 0.414 0.009

Frank 0.357 0.024 0.355 0.012

Plackett 0.377 0.023 0.375 0.012

Note. N denotes number of replications
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where u ¼ FA að Þ and v ¼ FI ið Þ. The results obtained for

various combinations of PAUD and intensity values are

used to plot historical drought I–A–F curves for different

return periods as shown in Fig. 11. From Fig. 11, it can be

observed that intensity of drought increases with increase

in PAUD.

Using the derived I–A–F relationships, it is possible to

estimate drought intensity quantiles for specified percentage

areal extent and return periods. For example, the drought event

with 50-year return period and 8.8 % PAUD has intensity value

of 1.55, whereas drought event with 25-year return period and

90 % PAUD has intensity value of 2.13. The derived I–A–F

curves can be useful to understand spatial characteristics of

drought events (i.e., spatial coverage and intensity values) and

the associated risks. This information can be helpful in drought

preparedness planning and management.

4 Conclusions

As drought is one of the creeping natural disasters that can

take place virtually in all climatic regions, the analysis of

drought spread and its magnitude is having high importance

in planning and management of droughts in various regions.

In this study, gridded precipitation data are used to model

droughts at finer resolution and to quantify the occurrence,

trends and spatio-temporal characterization of droughts.

Drought is modelled spatially by computing SPI-6 at various

grids from gridded precipitation data. The drought condition

in each grid is identified when SPI-6 falls 20 percentile

values or below threshold limit. Trends in spatial distribution

of droughts are analyzed for individual monsoon months and

for the whole monsoon season. The trend analysis indicates a

significant decrease in SPI magnitude (indicating increase

in dry or drought conditions) in the central part of the region

as compared to other parts. Also, the non-parametric

Mann–Kendall seasonal trend analysis indicates increase in

number of grids under drought.

Based on histogram analysis for PAUD a minimum of

7 % PAUD is chosen to identify an effective drought event

in the region. Then a copula-based methodology is applied

to analyze spatio-temporal patterns of droughts in terms of

I–A–F curves for different return periods. The marginal

distribution of drought variables, intensity and PAUD are

separately modeled by GEV and lognormal distributions

respectively. For modeling joint distribution of drought

variables, three copula families—Gumbel-Hougaard, Frank

and Plackett copulas are employed. Based on analytical

goodness-of-fit test and tail dependence test, the results

show that Gumbel-Hougaard copula best represents the

joint distribution of drought variables. Then copula-based

joint and conditional distributions are used for investigat-

ing the relationships between drought intensity and areal

extent in terms of I–A–F curves, which could be useful in

planning and management of droughts in the region.

Appendix

Mann–Kendall test

The most popular non-parametric test to detect trends in

hydroclimatic variables is the Mann–Kendall (MK) test

(Mann 1945; Kendall 1975), which evaluates randomness of

the data against trend. The null hypothesisH0 for this test

assumes that no temporal trend exists, and the alternate

hypothesis H1 assumes that a significant temporal trend

(upward or downward) exists.

The test statistic ZMK is computed as,

ZMK ¼

S� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p if S [ 0;

0; if S ¼ 0;

Sþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p if S\0

8
>>>>>><

>>>>>>:

ð17Þ

where S is defined by,

S ¼
Xn�1

k¼1

Xn

j¼kþ1

sgn xj � xk

� �
;

sgn xj � xk

� �
¼

1; if ðxj � xkÞ[ 0

0; if ðxj � xkÞ ¼ 0

�1; if ðxj � xkÞ\0

8
><

>:

ð18Þ

where xj and xk are the data points in time periods j and k

(j [ k) respectively, and n is number of observed data

points. According to Kendall (1975) for n C 10, the test

statistic S is approximately normally distributed with the

mean of E(S) = 0, and the variance of,
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Fig. 11 Drought intensity–area–frequency curves at different return

periods
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Var Sð Þ¼ 1

18
n n�1ð Þ 2nþ5ð Þ�

Xg

i¼1

ti � ðiÞ � i�1ð Þ � 2iþ5ð Þ
" #

ð18Þ

where g is the number of tied groups and ti is the number of

data points in the i-th group. Later, it was also noted that a

correction factor (g) should be incorporated in Var(S) to

correct the influence of serial correlation on the test

(Hamed and Rao 1998). The modified variance Var*(S) is

given by,

Var� Sð Þ ¼ Var Sð Þ � g;

g ¼ 1þ 2

n n� 1ð Þ n� 2ð Þ �
Xn�1

i¼1

1 qSðiÞj j � q�a
� �

� n� ið Þ n� i� 1ð Þ n� i� 2ð ÞqS ið Þ½ �
ð19Þ

where qS ið Þ is the autocorrelation corresponding to ith lag

of ranks of the observations (i = 1, 2,…up to n=4b c lags);

q�a is confidence interval of auto-correlation at significance

level of a which is approximately 
 2ffiffi
n
p at a = 0.05; 1 Hf g

is a logical indicator function of set H and taking the value

of either 0 (if H is false) or 1 (if H is true). Hence, the

modified MK test statistics is given as

Z�MK ¼
ZMK
ffiffiffi
g
p ð20Þ

For seasonal Mann–Kendall test, the statistics Si for each

time period are summed to form the overall test statistic

Sseasonal and Var� Sið Þ is computed across m season by

summing individual seasonal variance (Hirsch et al. 1982)

Sseasonal ¼
Xm

i¼1

Si ð21Þ

Var� Sseasonalð Þ ¼
Xm

i¼1

Var� Sið Þ ð22Þ

Corresponding test statistic ZMK is computed using Eq. 17.

In a two-tailed test for trend at significance level of a, H0

should be rejected, if Z�MK

�
�

�
�[ Zcritical (i.e., accept alternate

hypothesis that significant trend exists in the time series),

where Zcritical ¼ Z1�a=2 at significance level a. At a = 0.05

and 0.10, the values of standard normal variate Z1�a=2 are 1.96

and 1.64 respectively. Hence in the time series (at significance

level of a), an upward trend exits if Z�MK [ Zcritical, and

decreasing trend exists if Z�MK \�Zcritical.

Sen’s slope estimator

If a trend exists in a time series then the slope (change per

unit time) can be estimated by a simple nonparametric

procedure developed by Sen (1968). The method to esti-

mate Sen’s slope estimator is described below.

• The slope estimates (say bi) of N pairs of data are first

computed by,

bi ¼
xj � xk

� �

j� k
; i ¼ 1; 2; . . .;N; and j [ k ð23Þ

where xj and xk are the data points in time periods j and

k (j [ k) respectively. Here, if there are n values of data

in the time series, it results in as many as N = nC2 number

of slope estimates (i.e., bi values).

• Then, the Sen’s slope estimator (bnp) is the median of

those N number of bi values:

bnp ¼
bðNþ1Þ=2; if N is odd

1

2
bN=2 þ bðNþ1Þ=2

� �
; if N is even

8
<

:
ð24Þ
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