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Abstract Bayesian analysis can yield a probabilistic

contaminant source characterization conditioned on avail-

able sensor data and accounting for system stochastic

processes. This paper is based on a previously proposed

Markov chain Monte Carlo (MCMC) approach tailored for

water distribution systems and incorporating stochastic

water demands. The observations can include those from

fixed sensors and, the focus of this paper, mobile sensors.

Decision makers, such as utility managers, need not wait

until new observations are available from an existing

sparse network of fixed sensors. This paper addresses a key

research question: where is the best location in the network

to gather additional measurements so as to maximize the

reduction in the source uncertainty? Although this has been

done in groundwater management, it has not been well

addressed in water distribution networks. In this study, an

adaptive framework is proposed to guide the strategic

placement of mobile sensors to complement the fixed

sensor network. MCMC is the core component of the

proposed adaptive framework, while several other pieces

are indispensable: Bayesian preposterior analysis, value of

information criterion and the search strategy for identifying

an optimal location. Such a framework is demonstrated

with an illustrative example, where four candidate sam-

pling locations in the small water distribution network are

investigated. Use of different value-of-information criteria

reveals that while each may lead to different outcomes,

they share some common characteristics. The results

demonstrate the potential of Bayesian analysis and the

MCMC method for contaminant event management.

Keywords Uncertainty � Inverse modeling � Source

identification � Adaptive sampling � Value of information �
Data worth framework � Bayesian preposterior analysis

1 Introduction

Contaminant source identification in a water supply net-

work generally has been treated as an inverse problem, has

involved deterministic modeling, and therefore has aimed

to identify the ‘‘best’’ prediction of the source (e.g., van

Bloemen Waanders et al. 2003; Laird et al. 2006; Preis and

Ostfeld 2006; Guan et al. 2006). The nonuniqueness

characteristic of the inverse problem limits the application

of such approaches. Some have adopted a probabilistic

approach (e.g., Propato et al. 2010; Poulakis et al. 2003; De

Sanctis et al. 2008), but with the stochastic modeling

limited to sensor measurement error. Dawsey et al. (2006)

use Bayesian belief networks to identify the contamination

node but they do not characterize its magnitude or duration.

A Bayesian approach can infer the contaminant history

with limited information, which has been applied to similar

fields (e.g., Liu et al. 2010; Wang and Jin 2012). With few

observations, the initial inference about the contamination

source may not be sufficiently strong evidence for the

decision-maker. Utility managers likely would prefer

stronger inference to enact countermeasures such as cutting
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linkages to possible contaminant nodes, or informing res-

idents in possibly affected areas. Utility managers have two

options: wait until more observations are available at which

point a more complete picture of the source hopefully will

emerge or seek out additional measurements by placing

mobile sensors at strategically identified locations. The

latter could help to reduce potential risk of the contaminant

event including the volume of contaminated water and the

population size affected. Here, we address this by asking

the following research question: where should a mobile

sensor be placed soon after detection so as to most

strengthen the inference?

This is essentially a question posed in the context of an

adaptive strategy. Methods for optimal multi-stage deci-

sion-making with uncertainty updating have been studied

in the field of water resources and environmental engi-

neering (see Harrison 2002 for discussion). At every

decision stage, the uncertainty estimates of unobservable

parameters (e.g., contaminant source location) are revised

with available data via Bayes’ theorem. The full optimal

solution is generally intractable, requiring considerable

simplification (e.g., limiting the number of decision vari-

ables and decision stages; see Chao and Hobbs 1997;

Venkatesh and Hobbs 1999; Harrison 2007a, b).

Instead, a value-of-information (VOI) decision rule

approach often is adopted for multi-stage decision-making

with uncertainty updating. This strategy, which may also be

referred to as a data worth or optimal stopping (of sampling)

rule, is a step-wise approach. At each step, the maximally

beneficial next sample is sought. In the groundwater and water

quality field, this framework has been explored with some

sophistication (e.g., Freeze et al. 1992; James and Freeze

1993; James and Gorelick 1994; Dakins et al. 1996; Serre et al.

2003). For example, James and Gorelick (1994) investigated a

groundwater remediation problem with uncertainty in the

hydraulic conductivity field, in the location of the source of the

contamination, and in the time that the source has been active.

The worth of an additional measurement was calculated as the

expected reduction in remediation costs. Such a worth mea-

sure is referred to as the expected value of sample information

(EVSI). Here, we develop measures for uncertainty reduction

that proxy for EVSI.

For computational efficiency, we apply the Markov

chain Monte Carlo (MCMC) method. The sampling

approach of the previously cited studies scales poorly in the

number of uncertain parameters as it relies on a fixed

sample with adjustments to the probabilities of each as

observations accumulate. MCMC sampling, in contrast,

samples in proportion to probability density. The MCMC

implementation described in Harrison and Wang (2009) is

applied at it addresses particular challenges in applying

MCMC to water distribution networks that relate to the

discrete nature of water distribution systems.

Observations available from a sparse network of fixed

sensors alone are likely insufficient to achieve strong

inference as to the source of contamination in a timely

manner (Wang and Harrison 2013). The stochasticity in the

water distribution network (e.g., random water demands)

and modeling errors have the effect of greatly inhibiting

uncertainty resolution such that it may not even be possible

to identify a localized part of the network containing the

source. Recognition of the limitations of a fixed sensor

network is the motivation of this research into the strategic

placement of mobile sensors at locations of maximum

worth. This paper tries to answer the following questions:

what will be the possible inferences made if a mobile

sensor is installed at a particular location? Of a set of

potential locations, which is the best location to next gather

a sample?

The organization of the paper is as follows. In Sect. 2,

the MCMC implementation of the adaptive framework is

developed. In Sect. 3, an illustrative example with sto-

chastic water demands is described and results are pre-

sented. In Sect. 4, the results are discussed in more detail.

Finally, conclusions are offered (Sect. 5).

2 Methods

The Bayesian approach to adaptive sampling involves: (1)

developing an initial uncertainty assessment, (2) updating

uncertainty in the contaminant source characterization

given available sensor measurements, (3) assessing the

reduction in uncertainty for each possible simulated out-

come from a potential new sample, (4) predicting the

probability of each outcome, (5) evaluating a ‘‘worth’’

measure that combines the results of 3 and 4, and finally (6)

searching for the location of maximum worth. This is an

iterative process. Steps 2–6 are repeated until there is suf-

ficient confidence in the identification of the source. In this

section, these components are discussed more fully. In the

discussion, for convenience we assume the sensor mea-

surements to be categorical as opposed to continuous so that

we can refer to probability and not probability density.

The conceptual framework is provided in Fig. 1. The

corresponding section of the paper is indicated in the text

box for each step. With regard to the first step, it is

important to notice that available sensor measurements will

accumulate in time, initially consisting of the fixed sensor

measurements at the time of detection but later consisting of

both fixed and mobile sensor measurements. In the second

step, the probability of each possible measurement at each

candidate sampling location is calculated. This requires

runs of forward Monte Carlo simulations incorporating

system uncertainties based on the existing inference of the

contamination history. A ‘‘preposterior’’ analysis step (Step
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3), utilizing existing data, is conducted for each and every

candidate node and possible measurement. Each preposte-

rior analysis requires a run of the MCMC algorithm and

demands extensive computation. While the latest updated

inference is likely stronger than the previous/initial infer-

ence, in this framework it is necessary to evaluate the

degree of uncertainty reduction to be expected from new

sampling. Two criteria are offered and utilized to differ-

entiate candidate nodes (Step 4). Once the most preferred

candidate node is identified (Step 5), a mobile sensor would

be located to gather real data at a later time step (Step 6).

The dashed arrow between the last step and the first step

indicates that once new data is obtained from the mobile

sensor, the process begins anew. The loop continues until

the decision-maker is sufficiently confident as to the source

characterization and is ready to take further action.

2.1 Updating uncertainty with sensor measurements

Let h represent a vector of uncertain, unobserved param-

eters. For example, h may refer to the contaminant source

location, start time, and injection start time. The initial

uncertainty in the source characterization is described with

the assignment of the prior probability, p(h). The prior

probability may incorporate expert knowledge regarding,

for example, aging parts of the water distribution network

that are vulnerable to a contamination incident. The prob-

lem of Bayesian analysis is to incorporate data y so that

p(h) can be revised to posterior probability, p(h|y). In the

source characterization problem, the data would originate

from fixed or mobile sensors in the network. The updating

of p(h) to p(h|y) is governed by Bayes’ theorem, a rule of

probability:

p h yjð Þ ¼ p y hjð Þp hð Þ
R

h p y hjð Þp hð Þdh
ð1Þ

A standard numerical evaluation of Eq. (1) is not compu-

tationally tractable if there are many components of h
(Gilks et al. 1996). Instead, a Markov chain Monte Carlo

(MCMC) approach is typically required. MCMC for

Bayesian analysis involves forming a carefully constructed

chain of h. For an infinitely long chain, the frequency with

which a particular state h is visited is its posterior proba-

bility (Gelman et al. 1995). Even with MCMC, evaluation

of Eq. (1) is computationally expensive.

An MCMC approach was tailored for water distribution

systems (Wang and Harrison 2013). The likelihood term

p(y|h), the most computationally expensive part of an

MCMC iteration, is evaluated with a forward Monte Carlo

simulation: for a given h, the water distribution model is

run N times, once for each of N realizations of the likeli-

hood terms (e.g., stochastic water demands); the likelihood

of the observed y is estimated by observing the frequency

of its observation. For computational efficiency, the N

realizations are farmed to different processors, with control

of the MCMC algorithm by one processor. This MCMC

procedure is called repeatedly within the adaptive frame-

work presented here (Steps 1 and 3 of Fig. 1).

2.2 Predictive probabilities

Next, we need to be able to evaluate the probability of each

potential outcome ~y. This is given by the posterior pre-

dictive probability p ~yjyð Þ, which is defined as: (Gelman

et al. 1995)

p ~yjyð Þ ¼
Z

h

p ~yjy; hð Þp hjyð Þdh: ð2Þ

The term p ~yjyð Þ is the probability of potential outcome ~y
given previous observations y; p ~yjy; hð Þ is the probability of

potential outcome ~y given the joint of previous observa-

tions y and a certain contamination scenario h. The right

hand side of Eq. (2) integrates out the uncertainty in the

contamination inference. We applied Monte Carlo to

sample from the posterior predictive distribution as

follows:

(a) the MCMC chain is randomly sampled to obtain

samples hk from p(h|y)

(b) for each hk, the Monte Carlo likelihood simulation

model is run; if y is reproduced, then the sample is

retained; otherwise it is rejected.

(c) p ~yjyð Þ is estimated from the resulting sample

1. Make inference based on available measurements (2.1)

2. Predict future measurements of possible nodes (2.2)

3. Update inference incorporating simulated outcomes (2.3)

4. Assess value of information for different sampling nodes (2.4)

5. Identify the location of maximum worth (2.5)

6. Locate the mobile sensor to desired location

Fig. 1 Conceptual adaptive framework
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2.3 Bayesian preposterior analysis

If sampling a new node i, the outcome ~yi is subject to

uncertainty as described in the previous Sect. 2.2. For a

speculative value of ~yi we can evaluate how the uncertainty

will change with its observation. This is a key aspect of

Bayesian preposterior analysis (Berger 1993). In other

words, we are interested in evaluating:

p hjy;~yið Þ ¼ p y;~yijhð ÞpðhÞ
R

h p y;~yijhð ÞpðhÞdh
ð3Þ

This equation is different from Eq. (1) only in that the set

of observations now includes the speculative observation.

The same MCMC procedure is used as initially except now

including the speculative observation. It must be performed

for each potential outcome at every candidate location.

Fortunately, however, this work can be done in parallel.

2.4 Development of an uncertainty reduction measure

conditioned on ~y

We next require a measure of the uncertainty reduction

W ~yið Þ that comes with the observation of ~yi. This is needed

input to distinguish the worth of the candidate sampling

locations. A more formal decision analytic loss measure

could be formulated, incorporating actual costs and build-

ing in risk aversion. Here, we offer two simpler measures

for uncertainty reduction that operate off of the marginal

posterior probability of the nodes, P xijy;~yið Þ. The first is

the maximum nodal probability across the network:

Wmax ~yið Þ ¼ max
i

P xijy;~yið Þ

The measure of maximum nodal probability simply sug-

gests, for the most probable node of contamination, the

confidence that it is the true source location. However, it

ignores the whole distribution of nodal probabilities. There

may be more worth in having, for example, five nodes of

moderate probability, with all other nodes having zero

probability, than one highly probable node with many

nodes of low probability.

In contrast, the second measure, based on information

entropy, incorporates the whole distribution of nodal

probabilities. Information entropy is defined as:

entropy ¼ �
X

i

P xijy;~yið Þ ln P xijy;~yið Þ

The entropy of random variables was first developed by

Shannon (1948) and is an indispensable concept in

information theory and decision science. In the context of

contaminant inference, it simply provides an approach to

quantify the degree of uncertainty in the inference. Newly

observed data should in general reduce the inference

uncertainty to some degree, depending on the value of the

measurement:

Went ~yið Þ ¼ entropy

These two criteria are offered for their easy understand-

ability and simple calculation. No exhaustive list of eval-

uation criteria is offered in this paper mainly because it is

somewhat subjective. The decision-maker can choose other

criteria for differentiating the worth of inferences while

keeping within this overall framework, which is further

discussed further in Sect. 4.

2.5 Expected worth of a new sample

In developing the aggregate worth measure, we evaluate

the expectation of the uncertainty reduction measure W ~yið Þ
using the predictive probability:

E W ~yið Þ½ � ¼
Z

~yi

W ~yið Þp ~yijyð Þd~yi ð4Þ

2.6 Optimization problem

Next, a search strategy is needed to identify the location of

maximum worth. The optimization problem is:

maxi E W ~yið Þ½ � ð5Þ

The search strategy could involve an exhaustive search

through all nodes or a more formal search method. It

should be noted that the evaluation of expected worth of

one sampling location is independent of and therefore can

be done in parallel with another location, a property that

can be exploited by the search algorithm. In this study, we

consider a finite number of potential sampling locations to

demonstrate the methodology.

3 Results

Example Network 3 in EPANET 2.0 is used as the illus-

tration in this study, as it has been studied extensively (e.g.,

Preis and Ostfeld 2006), including Wang and Harrison

(2013). The physical network, depicted in Fig. 2, is left

unchanged, with 97 nodes, two of which are water supply

sources and three of which are tanks.

The scenario is as following. The total simulation period

for the illustrative example is 28 h (168 time steps). The

hydraulic simulation step is 10 min; the water quality time

step is 10 min. Categorical measurements are taken at the

sensor location shown in Fig. 2. U, L and H, represent

three categories: Undetected, Low and High. The threshold

between U and L is 0.05 mg/L and it is 0.1 mg/L between

L and H. The prior on the parameters of the contaminant
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event, including source node (X), magnitude (M) and start

time (T) is shown in Table 1. The proposal function for

each parameter is adjusted in three phases of MCMC

simulation as described in detail in Harrison and Wang

(2009). The only stochastic source of error considered is

the stochastically varying set of water demands, described

by a simple stochastic model: Di(t), the demand at node

i and time t, normally and independently distributed with

mean li with coefficient of variation, COV, set equal to

0.40. In the study scenario, node 157 is the hidden con-

taminant source with magnitude 1.0 kg/min. One fixed

sensor is deployed at node 111 as shown in Fig. 2. For

demonstration purposes, we consider the four candidate

sampling locations shown. They are chosen to represent

different areas of the water distribution network.

3.1 Initial inference after contaminant detection

The uncertainty in the source location after initial detection

(at the L level) is shown in Table 2. The reported probabil-

ities are the averages using five random seeds. Only the nodes

with nonzero estimated probability are shown. Prior to

detection, the probability of each node being the contaminant

source is 1.03 % (=1/97). After initial detection, it is inferred

that one node has probability greater than 10 % (node 187

with 12.1 %), ten nodes are between 5 and 10 % probability,

two between 1 and 5 % probability, and nine with positive

probability less than 1 %; the remaining 75 nodes (not

shown) are estimated to have near 0 % probability. The same

information is shown graphically in Fig. 2. A swath of pos-

terior probability extends across the network.

3.2 Preposterior analysis

The predictive probability (Step 2 of Fig. 1) for a time 1 h

after initial detection (t = 1 h) is shown in column 1 of

Table 3 for each potential outcome and at each candidate

node. The predictive probabilities vary considerably among

the candidate nodes.

The worth measures are then computed (Step 3 of Fig. 1)

based on the inferences made for each potential outcome

(columns 2 and 3 of Table 3). As a reference point, the

maximum probability after the initial inference update was

12.1 %; the information entropy measure was 2.56. For all

nodes and outcomes, there is a reduction in uncertainty from

acquisition of the additional measurement.

Source  
(hidden) 

Fig. 2 Example EPANET 2.0 Network 3. The inference after initial

detection is shown with the probability of each node being the source

proportional to the area of the node (circles); nodes with estimated

zero probability are shown as open circles. Also, the candidate sensor

locations (triangles) are shown. The fixed sensor node is node 111

(red triangle). (Color figure online)
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The expected worth measures, the dot product of the

predictive probabilities and worth measures, are also

indicated in Table 3. Using both the maximum probability

and entropy measures, node 101 appears to be the best next

node to sample, with node 169 as the second best. Node

101 has the highest expected maximum probability,

25.8 %, and the lowest expected entropy, 1.78.

4 Discussion

The goal of this work was to develop an adaptive frame-

work for contaminant source identification and to demon-

strate its value for an illustrative network. After the

triggering of a sensor, rather than waiting for measure-

ments from the fixed sensor network, the question was

whether a mobile sensor could be strategically placed at a

location that will yield information that will more quickly

home in on the true source node. The results offer support

for an adaptive framework for sampling.

In previous work (Harrison and Wang 2009; Wang and

Harrison 2013), we demonstrated the updating of a statis-

tical inference given measurements from a fixed sensor

(node 111). The inference was updated at the time of initial

detection and at a time 1 h later (t = 1). Here, we consider

the option to place a mobile sensor at an alternate location

in time for a measurement made at t = 1 h. Four locations

across the network were considered. For comparison pur-

poses, the original fixed sensor (111) was included as one

of the four locations.

All three of the alternate locations were evaluated as

being better than the fixed sensor, suggesting the value of

the adaptive framework. Use of both expected worth

measures indicated that node 101 was the best of the four.

Whereas a sample made at the fixed sensor at t = 1 h has a

maximum probability worth measure of 19.8 %, a sample

at node 101 has a maximum probability worth measure of

25.8 %. That is, on an expected value basis, the maximum

confidence in the source node is greater by about 6 % if

sampling node 101 instead of the fixed sensor. Similarly,

information entropy, a measure of the spread in uncertainty

across the nodes, is better with sampling 101, 1.78 as

compared to 2.21.

A possible explanation for the comparatively low worth

of the measurement at the fixed sensor at t = 1 h is that the

information content at that location was in some sense

already exhausted. Much had been gained with the detec-

tion (and, importantly, preceding U observations) by the

fixed sensor. Moving forward, to discern further between

potential source nodes requires measurements in another

part of the network.

For a fuller picture, it is necessary to account for the

stochastic water demands. The stochastic variation inhibits

the uncertainty resolution in the source node and source

characteristics. Reversals in flow directions occur. The

travel time to the sensor is affected. The contaminant can

reach larger portions of the network. It is not straightfor-

ward to identify meaningful locations to place sensors

absent the kind of analysis presented here and the consid-

eration of stochastic water demands.

In the case under consideration, there is little conse-

quence in the choice of expected worth measures. Both the

maximum probability and information entropy measures

point to node 101 as being the best node. Also, it may be

noted that 101 has the best worst case outcome (maximum

probability of 21.2 % and information entropy of 1.91). In

general, for the best management of the water distribution

Table 1 Prior distributions assigned to the unobservable parameters h

Component of h

Source node (X) Source magnitude (M) Source start time (T)

Distribution type Discrete uniform Uniform Discrete uniform

Distribution parameters Probability = 1.03 % Low = 0.20 kg/min

high = 1.8 kg/min

Low = 18.5 h prior to detection

high = time of detection

Table 2 Inference after initial detection

Rank after

detection

X P(X) (%) Rank after

detection

X P(X) (%)

1 187 12.1 12 119 4.6

2 259 9.6 13 163 2.1

3 257 9.6 14 263 0.58

4 269 9.3 15 261 0.29

5 159 9.0 16 117 0.19

6 189 8.5 17 195 0.06

7 120 8.0 18 193 0.06

8 121 7.8 19 191 0.044

9 123 6.5 20 267 0.036

10 161 5.8 21 105 0.016

11 157 5.5 22 115 0.016

Nodes with zero estimated probability are not shown
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system, the worth measure that is selected should be the

one that most accurately captures the consequence of

uncertainty reduction. Is it more important to have a great

degree of confidence that the most probable source is

indeed the source (the maximum probability measure) or to

shrink the overall uncertainty in the source (information

entropy)? Importantly, the framework can accommodate

more meaningful measures, for example, reflecting reme-

diation and exposure costs as well as attitudes towards risk

(i.e., risk aversion). The use of such measures within a data

worth framework has been demonstrated in the ground-

water field (e.g., Freeze et al. 1992; James and Freeze

1993; James and Gorelick 1994).

As pointed out in Harrison and Wang (2009), the key

limitation to an adaptive framework in an operational set-

ting relates to the likelihood evaluation. The evaluation

currently relies on Monte Carlo simulation with sampling

of water demands. This evaluation is required at each

MCMC iteration. Fortunately, the inference updating for

each node and outcome can be done in parallel, and indeed

the Monte Carlo simulation can be done in parallel, as was

the case here. Nevertheless, a more efficient means of

evaluating the likelihood would make the approach more

practical for application in operational settings. It is more

imperative when considering multiple sensors and longer

observation time series as sample sizes need to be larger to

obtain sufficient sampling densities. General strategies do

exist for improving the efficiencies but testing and further

development are needed.

5 Summary and conclusion

An adaptive sampling framework was presented that

facilitates inference of the contamination history in water

distribution networks. Numerous previous works have

focused on making inferences by incorporating sensor

measurements collected during a lengthy simulation per-

iod. The philosophy behind the adaptive approach pre-

sented here is to infer the contaminant history as soon after

detection as possible. This would aid utility managers

charged with taking actions to limit exposure and re-

establish service.

Previous work (Wang and Harrison 2013) described the

updating of the source characterization inference using data

from a fixed sensor. The adaptive framework here seeks to

speed up the source identification. After the inference made

at the time of contaminant detection by the fixed sensor,

four candidate sampling locations, including the original

sensor for comparison, were investigated to determine

which would result in the greatest uncertainty reduction.

The framework involves probabilistic predictions based on

Table 3 Predictive probability

(column 1) and the uncertainty

reduction using two different

measures for worth—maximum

probability across nodes

(column 2) and information

entropy (column 3)

Both expected worth measures

point to node 101 as being the

best among the candidates. For

a point of reference, upon first

detection, the maximum

probability was 12.1 % and the

entropy measure was 2.56.

Three significant digits are

shown for matching text

references to the table but, given

the sampling errors of MCMC,

only two significant digits are

warranted

Candidate node 1 2 3

Predictive

probability (%)

Maximum

probability (%)

Information

entropy (-)

111(fixed sensor) Measurement @ t = 1 h

U 7.7 29.9 1.73

L 22.0 22.1 1.96

H 70.2 18.0 2.33

Expected worth 19.8 2.21

101 Measurement @ t = 1 h

U 57.8 21.2 1.91

L 6.2 88.7 0.46

H 35.9 22.3 1.79

Expected worth 25.8 1.78

169 Measurement @ t = 1 h

U 30.8 25.2 1.84

L 0.3 44.3 1.05

H 68.9 21.2 1.93

Expected worth 22.5 1.90

208 Measurement@ t = 1 h

U 39.8 14.4 2.38

L 7.8 20.5 2.15

H 52.3 23.0 2.04

Expected worth 19.4 2.19
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the initial inference and stochastic water demand modeling,

and requires worth measures for uncertainty reduction.

The results indicate the value of an adaptive framework

over reliance on fixed sensors. A subsequent measurement

at the original, fixed sensor made 1 h after detection yiel-

ded less uncertainty reduction than the three alternate

locations. This was robust to the choice of worth measure.

An adaptive framework for placing mobile sensors can

avoid the costs of installing and maintaining a dense net-

work of sensors throughout the water distribution system.
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