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Abstract This paper presents a general spatio-temporal

model for assessing the air quality impact of environmental

policies which are introduced as abrupt changes. The

estimation method is based on the EM algorithm and the

model allows to estimate the impact on air quality over a

region and the reduction of human exposure following the

considered environmental policy. Moreover, impact testing

is proposed as a likelihood ratio test and the number of

observations after intervention is computed in order to

achieve a certain power for a minimal reduction. An

extensive case study is related to the introduction of the

congestion charge in Milan city. The consequent estimated

reduction of airborne particulate matters and total nitrogen

oxides motivates the methods introduced while its deriva-

tion illustrates both implementation and inferential issues.

Keywords Spatiotemporal models � Spatiotemporal

intervention analysis � Air quality monitoring � Congestion

charge � Particulate matters � Nitrogen oxides � STEM

1 Introduction

Environmental, energy and industrial policies are often

motivated by the need to improve air quality in terms of

pollutants concentration reduction. This is usually pursued

by a supposedly appropriate cut of emissive activity, for

example reduction of car traffic, substitution of carbon with

green energy or requalification of heavy industry. Hence a

fundamental step is to assess if a given policy actually

obtains a relevant reduction of pollutant concentrations. In

this paper, we develop a general statistical methodology for

spatiotemporal impact assessment.

The general approach proposed is motivated by and

benchmarked on a real application related to the impact of

traffic reduction. In particular, on January 16, 2012, the

Municipality of Milan introduced a new traffic restriction

system known as congestion charge. This requires drivers

to pay a fee of five Euros for entering the central area,

known as ‘‘Area C’’ which is inside the so called ‘‘Cerchia

dei Bastioni’’. According to Municipality, in the first two

months, car traffic decreased by 36 % in Area C and, at the

overall city level, Municipality reported a traffic reduction

by 6 % which started at the beginning of January, before

the congestion charge. This preemptive reduction may be

partly due to the preparatory campaign played out by the

administration and partly to an overall decrease in gas

consumption at the national level caused by the economic

crisis.

January and February were cold and heavily polluted

months with a large number of days exceeding the thresh-

olds fixed by the European regulations (see Arduino and

Fassò 2012). Although the congestion charge is intended as

a measure of traffic control, the question which arises is

whether there has been an impact on air quality or not. Air

quality is usually defined according to the concentrations of

various pollutants entering a suitable air quality index, see

e.g. Bruno and Cocchi (2007). We will focus here on two

important compounds entering most air quality indexes,

namely particulate matters and nitrogen oxides which are

important for their toxicity. Particulate matters are pre-

dominantly secondary pollutants. Hence they have a back-

ground level which is large in percentage and difficult to

reduce through local traffic policies. Moreover their health

effects are known to depend not only on their concentration
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but also on particle size, composition and black carbon

content, therefore, having extensive data on particle num-

bers (see e.g. Hong-di and Wei-Zehn 2012) or on black

carbon content (see e.g. Janssen et al. 2011) would be very

useful to understand air quality from a health protection

point of view. To a large extent, total nitrogen oxides are

compounds of primary pollutants. Hence they are closely

linked to local traffic and have a background level which is

smaller in percentage than particulate matters.

In general, comparing concentrations before and after

intervention is a non-trivial problem. In fact, considering

PM10 concentration in Milan city center depicted in Fig. 1,

we note that the January–February mean of the last three

years is 71.3 lg/m3 which is smaller than the after-inter-

vention mean, obtained between January 16 and the end of

February, which is 76.7 lg/m3.

Hence the air quality impact of the congestion charge

may be obscured by atmospheric conditions, which are

known to greatly affect the air quality of the Po Valley

basin in general and the Milan area in particular. Moreover

a second possible confounder is related to the economic

crisis which is reducing both car use and gas consumption

around Italy.

This paper aims at an early estimation of the spatially

distributed reduction in the yearly average of pollutant

concentrations. To do this, it aims to focus on the following

three scientific questions, which are exemplified by means

of the Milan case study.

1. The first point is whether or not the congestion charge

has a measurable permanent impact on air quality after

adjusting for meteorological conditions and traffic

reduction due to economic crisis.

2. Moreover, the second point aim is to know if there is a

different impact within the intervention area (area C)

and the rest of the city.

3. Finally, the third point is related to the spatial and

temporal information content required to have sound

conclusions. That is the number of days, required to

‘‘observe’’ a statistically significant permanent impact

with high probability and the number of stations

required to understand the spatial impact.

In time series analysis the non spatial part of questions

one and two are treated by intervention analysis after the

celebrated paper of Box and Tiao (1975). See also e.g.

Hipel and McLeod (2005). Soni et al. (2004) discuss spa-

tio-temporal intervention analysis in the context of neuro-

logical signal analysis using STARMA models. In river

networks water quality monitoring, Clement et al. (2006)

considered a spatiotemporal model based on directed acy-

clic graphs. Here, we extend these methods to a general

multivariate spatiotemporal air quality model and develop

some examples related to Milan congestion charge. In

principle intervention analysis for air quality time series

could also be based on neural networks, for example

extending Corani (2005) or Gardner and Dorling (1999).

Nevertheless this approach does not exploit the spatial

dimension in the same explicit way and it is not further

considered here.

The rest of the paper is organized as follows. We begin

Sect. 2 with a preliminary vector autoregressive model and

develop the section with a general spatiotemporal model,

which is capable of various levels of complexity according

to the information content of the underlying monitoring

network. The model allows us to estimate the impact on air

quality and the reduction of human exposure following the

considered environmental policy. Maximum likelihood

estimation is obtained by a version of the EM algorithm and

impact testing is proposed as a likelihood ratio test. More-

over we give formulas for the minimum number of obser-

vations after intervention guaranteeing a certain high

probability of detecting a prespecified hypothetical reduc-

tion of pollution. In Sect. 3 the above approach is applied to

the introduction of the congestion charge in Milan city. To

do this, the general model is tailored to the reduced moni-

toring network that the environmental agency, ARPA

Lombardia, implemented for monitoring particulate matters

(PM10 and PM2.5) and nitrogen oxides (NOX) in the city. The

concentration reduction is then assessed for the above pol-

lutants using a preliminary approach based on vector auto-

regressions and a final spatiotemporal model named STEM

used when the spatial information contained in the moni-

toring network is sufficient. Section 4 discusses the results

and gives concluding remarks to the paper, which is closed

by an acknowledgment section.
Fig. 1 PM10 at Verziere Station. Black vertical line is the intervan-

tion date on Jan 16, 2012
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2 Impact modelling

In this section we discuss the extension of intervention

analysis to spatiotemporal data. To begin with, we intro-

duce impact modelling in the simple case where data are

collected by a single station, and no spatial correlation

arises, or by a limited number of stations, and spatiotem-

poral correlation is modelled by a vector autoregression,

see e.g. Hipel and McLeod (2005). This approach is sug-

gested here only as a preliminary analysis to be integrated

by a full spatio–temporal model as discussed in Sect. 2.2

2.1 Autoregressive approach

Let y(sj, t) be the observation of a pollutant concentration

from station located in sj, j = 1,…, q and time t = 1,…, n.

Moreover, let yt ¼ y s1; tð Þ; . . .; y sq; t
� �� �

be the vector of

all concentrations at time t and, similarly, let xt be the

covariate vector including trends and confounders. Hence

the exploratory intervention model is given by

yt ¼ �at þ bxt þ Gyt�1 þ et:

In this model et is a Gaussian white noise and the impact at

is a step function vanishing before intervention time t�: For

t� t� we have at = a which is a q - dimensional vector

whose positive elements define the pollution reduction size

at the corresponding location sj, j = 1, …, q. The

persistence matrix G is taken as a diagonal matrix:

G ¼ diag g1; . . .; gq

� �
:

Note that the multivariate approach is important here,

because the errors et may be strongly (spatially) correlated.

According to the AR(1) dynamics, the scalar steady

state impact on yt is given by

d ¼ a

1� g
: ð1Þ

Moreover, ignoring the uncertainty of the pre-intervention

estimation of g, we get the approximate variance for d̂;

namely

Var d̂
� �
ffi Var âð Þ= 1� ĝð Þ2:

It follows that the city average steady state effect is given

by �d ¼ Rq
j¼1d̂jpj with variance given by the well known

quadratic form Var �dð Þ ¼ p0Var D̂
� �

p: In the last formula,

D̂ ¼ d̂1; . . .; d̂q

� �
and the weights p ¼ p1; . . .; pq

� �
can be

based on the population density.

2.2 STEM approach

Following the modern hierarchical modeling approach to

spatiotemporal data, we consider here a general model able

to assess the impact on air quality of an environmental rule

in a geographic region D: To do this, we define a spatio-

temporal model for the observed concentration at coordi-

nates s 2 D and day t = 1, 2,…, n, denoted by y(s,t), able

to capture the effect of the environmental intervention,

dated t� ¼ n� mþ 1 and observed for m ¼ n� t� þ 1

days, namely

y s; tð Þ ¼ �a s; tð Þ þ b tð Þx s; tð Þ þ f s; tð Þ: ð2Þ

The quantity a s; tð Þ represents the expected spatiotemporal

impact of the environmental intervention and a(s,t) = 0 for

t\t�: In general terms a is a suitable spatiotemporal

process and the effectiveness of a environmental policy can

be assessed by the expected impact on pollution

concentrations over region D and time horizon M, which

is given by

D ¼ 1

M

Xt�þM�1

t¼t�

Z

D

E a s; tð Þð Þp s; tð Þds

The weighting function p s; tð Þ may be used for averaging,

e.g. p s; tð Þ ¼ Dj j�1; or risk assessment. For example, we

may be interested in human exposure and, following Fi-

nazzi et al. (2013), we may take the weighting function

p(s, t) as the dynamic population distribution or a time-

invariant p(s) as a static population distribution over the

study area. If D\0 then the impact is negative and we have

an increase in pollutant concentration.

The simplest model for reduction assessment, is given

by a scalar deterministic impact

a s; tð Þ ¼ a ð3Þ

which assumes constant impact over time and space after

intervention. At an intermediate complexity level, we may

use a(s, t) = a(s) which gives a time-invariant reduction

map, appropriate for assessing a localized permanent sta-

tionary impact. Of course the choice among the above

alternatives relies also on the spatial information content of

the monitoring network.

Confounders may be covered by a linear confounder

model component bx(t) or, more generally, by a time

varying linear component b(t) x(t), where b(t) is a deter-

ministic varying coefficient vector or a stochastic process.

For example, Finazzi and Fassò (2011) use Markovian

dynamics for b(t).

In Eq. (2), the spatiotemporal error fðs; tÞ allows for

spatial and temporal correlation using either separability or

non-separability, see e.g. Porcu et al. (2006), Bruno et al.

(2009) and Cameletti et al. (2011). In this paper, in the

light of limited spatial information available, we use a

simple additively separable latent process with three

components adapted from Fassò and Finazzi (2011),

namely
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fðs; tÞ ¼ zðtÞ þ xðs; tÞ þ eðs; tÞ ð4Þ

where z(t) = c z(t - 1) ? g(t) is a stable Gaussian Mar-

kovian process, with jcj\1 and rg
2 = Var(g). The purely

spatial component x(s, t) is given by iid time replicates of

a zero mean Gaussian spatial random field characterized by

a suitable spatial covariance function cðjs� s0jÞ: Finally

eðs; tÞ is a Gaussian measurement error iid over time and

space, with variance r2
e :

2.3 Estimation and inference

We denote the parameter array characterizing model (2) by

h = (ha, h*a), where ha is the component related solely to

the effect a �ð Þ ¼ a �jhað Þ and h*a is the parameter compo-

nent for the global dynamics of y independent on the

intervention. Although, in general the impact could depend

on h : D ¼ D hð Þ; it is convenient to define models for

which D depends solely on ha. In the simple case of

equation (3) , we have a ¼ ha / DðaÞ:
With this notation, the estimated model parameter array

is given by ĥ ¼ ðĥa; ĥ� aÞ; which may be computed using

maximum likelihood as in Fassò and Finazzi (2011). In

particular the estimates are computed using the EM algo-

rithm, hence the acronym STEM for this approach. Note

that the EM algorithm relies on a posteriori common latent

effects, namely ẑðtÞ ¼ EðzðtÞjYÞ; which are computed by

the Kalman smoother, and a posteriori local effects, namely

x̂ðs; tÞ ¼ Eðxðs; tÞjYÞ; which are computed by Gaussian

conditional expectations. An efficient software for EM

estimation, filtering and kriging, called D-STEM, has been

recently introduced by Finazzi (2012) and is largely used in

Sect. 3.

Using the above model, the effectiveness of an envi-

ronmental measure may be proven by rejecting the non-

change hypothesis given by

H0 : D hað Þ ¼ 0: ð5Þ

Suppose that D hað Þ ¼ 0 for ha = 0. We can then test the

above non effect hypothesis by the (one sided) likelihood

ratio test. In particular, if ha = a is a simple scalar

parameter, we can approximate the likelihood ratio test by

a simple t test and reject H0 for large significant values of
â

se âð Þ where seðâÞ is a suitable estimate of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðâÞ

p
:

Moreover, if a(s) is a Gaussian field, it may be estimated

by kriging-like computations, giving the impact map âð�Þ
and the 1 - p level approximate confidence bands given

by

â �ð Þ � zp=2se â �ð Þð Þ

where zp is the (1 - p) quantile of the standard Gaussian

distribution.

2.4 Days for detection and information

Under regularity assumptions, the observed Fisher infor-

mation matrix In, for large n and m, may be approximately

partitioned as follows

In;h ffi m
ia i� a;a

ia;� a
n
m

i� a

� �
ð6Þ

where the matrix blocks ia; i� a and ia;� a are the corre-

sponding blocks of the non singular information ih ¼

�E o2

ohdh0
log f hð Þð Þ

� �
: It follows that the precision in the

estimation of the pollution reduction a depends mainly on

m.

Hence in testing (5) for ha = a, the number of days

required to detect a reduction of size a� with high proba-

bility p is then computed with formulas which generalise

the classical sampling results. In particular for the simple

scalar parametrization of a �ð Þ; applying the well known

matrix inversion lemma (see e.g. Gentle, 2007, 3.4.1) to

expression (6), we have the approximated formula

m�m� ¼ ia �
m

n
ia;� ai�1

� ai� a;a

� ��1 zp þ z1�p

a�

� �2

: ð7Þ

3 Milan case study

The monitoring network of Milan city, depicted in Fig. 2,

is composed by one station for PM2.5, four stations for

PM10 and eight stations for NOX. We consider the log-

transformed and centered concentrations between January

1st, 2009, and July 20, 2012, totalling n = 1297 of which

and m = 186 after the introduction of the congestion

charge, dated January 16, 2012.

In order to adjust for the confounders, we considered

meteorological conditions in Milan, namely wind speed

(daily maximum and average) and direction, humidity,

temperature, solar radiation and pressure. Moreover, we

used the additional covariates given by the concentration

readings of the same pollutants from Meucci station in the

city of Bergamo, which is approximately 45 km North-East

of Milan. This is an important proxy for all other meteo-

rological and economic factors which are common to the

northern plain of Lombardy.

Considering the limited amount of spatiotemporal infor-

mation contained in the data, in order to avoid overfitting and

shadowing of the change point t�;we use a deterministic b tð Þ
with a minimal seasonal structure given by:

b tð Þ ¼ bs t 2 Summer

bw t 2 Winter

	
: ð8Þ

Similarly the spatial covariance function of the spatial

component x s; tð Þ in Eq. (4) is given by
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c s� s0j jð Þ ¼ r2
x exp � s� s0j jr

q

� �
: ð9Þ

Although r could be estimated as a continuous parameter

governing mean square differentiability of x, due to the

limited spatial information, we calibrated this parameter

only for r = 1 or 2 and concluded that r = 1 is better in

terms of attained log-likelihood, both for particulate mat-

ters and nitrogen oxides.

3.1 Fine particulate matters

We start with the single station on fine particulate matters

PM2.5, namely Pascal station, which is a ground station

external to ‘‘Area C’’ and located in the relatively central

quarter named ‘‘Città studi’’. Here, fine particulate con-

centrations have a three-year average of approximately

30 lg/m3 before intervention. After January 16 the Janu-

ary–February three-year average increased from 53.7 lg/

m3 to 54.1 lg/m3, questioning the congestion charge

effect.

To fit the model for fine particulate matters, we use the

centered log transformed concentrations which have vari-

ance ry
2 = 0.70, and, after row deletion of missing data, we

get the fitted model of Table 1 based on the remaining

1038 observations. Using the seasonal structure of equation

(8) for b, it is worth noting that wind speed has an effect

both in summer and winter while, not surprisingly, solar

radiation is not significant in winter. After adjusting for

Bergamo concentrations which are quite significant in the

model, the residual autocorrelation is not large resulting in

g = 0.212.

Since we are in log scale, the permanent effect, com-

puted as both â or d̂ of Eq. (1), may be interpreted as a

percent change. According to this model, at Pascal station,

we observe a 0.12 permanent reduction of PM2.5 on log

scale with a one-sided p value smaller than 0.2 %. From

the bottom row of Table 1, we see that fitting is quite good.

The residuals result to be satisfactorily white noise but

moderately non Gaussian as shown by Fig. 3 and by

unreported kurtosis which is larger than three. Although

some alternatives to conditional Gaussian models could be

developed, see e.g. Bartoletti and Loperfido (2010) or

Nadarajah (2008), the above results were validated by

simulation experiments and by comparison with robust

estimation methods getting very close results to Table 1.

Days for detection From the practical point of view it is

important to see which is the number of days required to

detect a certain reduction in the annual average of PM2.5.

Following the approach which gives formula (7), we con-

sider the t-test for the hypothesis of no impact H0:d = 0

against a reduction d [ 0 based on large values of the

statistic â
se âð Þ : Using the nominal significance level

p = 5 %, the number of days for detecting a permanent

reduction of size d� ¼ 0:10 in log scale with probability

Fig. 2 Milan Area C (red line) and monitoring network. Pushpins:

NOX only, from top right counterclockwise Lambro, Marche,

Zavattari, Liguria and Abbiategrasso stations. Ballons: PM10 and

NOX, Area C, Senato and Verziere, Città studi, Pascal (including also

PM2.5). (Color figure online)

Table 1 Estimates and standard errors (se) of ARX model and

reduction for PM2.5

Parameter Estimate se

a 0.095 0.031

PM2.5 in Bergamo 0.775 0.027

Average wind speed—summer -0.295 0.049

Max wind speed—summer 0.044 0.025

Solar radiation—summer -0.00065 0.0002

Average wind speed—winter -0.312 0.063

Max wind speed—winter 0.062 0.033

g 0.212 0.021

d 0.121 0.040

m� 162

R2 0.80

Fig. 3 Residuals of PM2.5 at Pascal station
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p = 85 % is given by m�m� ¼ 162 as shown in Table 1,

which is consistent with the above results.

3.2 Particulate matters

For the PM10, we have three sites, two are traffic stations

located inside ‘‘Area C’’, namely Verziere and Senato

stations, and the third is Pascal, which is a ground station

located in Città studi which is a semi-peripheral area with

pattern similar to the city center.

Table 2 shows the fitted model for PM10. We see that

the persistence coefficients g are small and very close to

one another, denoting the same weak autocorrelation after

adjusting for the Po valley concentration proxy given by

Bergamo measurement and local meteorological covari-

ates. Both average and maximum wind speed have an

effect on PM10 with a clear seasonal behaviour. The last

column shows that fitting is quite satisfactory. We note

that, after introducing the Bergamo proxy, only local

conditions given by wind speed enter as additional

covariates.

As in the previous section, a moderate residual non

normality indicated by kurtosis larger than three for all

components does not jeopardize the results of Table 2.

Moreover, Fig. 4 shows that the residuals can be assumed

to be a white noise and the importance of the multivariate

approach is appreciated by the marked residual correlation

shown in Table 3.

Note that the global three-year average for these stations

before intervention is about 45 lg/m3, so the average

reduction of d = 0.137 in log scale, with se = 0.053,

corresponds approximately to 6 lg/m3 for the yearly

average. According to the data, this impact is stronger in

Area C.

STEM approach In the light of the preliminary analysis,

we go further with the approach of Sect. 2, obtaining the

fitted model of Table 4. To avoid initial values dependence,

the EM algorithm has been replicated 100 times applying

beta distributed random perturbations1 to the initial esti-

mates which have been computed using the method of

moments. Generally speaking the standard errors are small,

with the exception of the spatial correlation parameter

q, which has a quite large uncertainty. This is not surprising

since with only three stations, it is not easy to estimate

spatial correlation. The reduction parameter a is positive,

denoting a significant permanent reduction of particulate

concentrations of 0.085 in log scale for the city center with

one sided p value smaller than 1 %.

Moreover, the likelihood ratio test for the hypothesis of

no effect, namely H0:a = 0, gives a test statistic

2log(LR) = 13.2 with a p value smaller than 0.1 %.

Finally, the number of days for detection of formula (7),

with nominal significance level p = 5 %, a permanent

reduction of size a� ¼ 0:10 and power p = 85 % results to

be m� ¼ 154 which is consistent with above results.

According to ARX model, Area C has a little larger

PM10 reduction, but the difference in a coefficients of

Table 2 is far from significant. Using STEM model, the

corresponding analysis is based on the a posteriori local

effects of Sect. 2.3, that is �x sð Þ ¼ 1
m

Pn
t¼t� x̂ s; tð Þ which are

smaller than 1 % and have non significant p values for

Pascal, Senato and Verziere. Hence we can conclude the

reduction in PM10 is approximately constant around the

city center but we have no information on peripheral areas.

Nitrogen oxides As mentioned above, NOX are monitored

in Milan city more extensively than particulate matters. In

fact, in addition to the previous three stations, we have four

traffic stations near the internal bypass and one ground

station in the green area of Parco Lambro, near the eastern

circular highway and exposed to Linate airport emissions.

Table 2 Estimates and standard errors (se) of vector ARX model and reduction for PM10, single stations and city average

Station a PM10 in Bergamo Max WS winter Average WS g d R2

Summer Winter

Pascal 0.045 0.718 0.169 -0.360 -0.576 0.193 0.068 0.80

se 0.024 0.023 0.065 0.049 0.094 0.020 0.030

Senato 0.059 0.675 0.150 -0.290 -0.428 0.210 0.075 0.80

se 0.022 0.021 0.061 0.046 0.088 0.020 0.030

Verziere 0.069 0.625 0.237 -0.182 -0.504 0.224 0.089 0.85

se 0.018 0.017 0.049 0.037 0.070 0.018 0.023

Milan 0.061 0.077 0.82

se 0.018 0.024

WS stands for Wind speed

1 At each replication, the initial values have been rescaled between 0

and three times their value by multiplication with random numbers 3B

where B0s have been drawn from the Beta distribution with

parameters 4 and 8, so that E(3B) = 1.
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Using this relatively larger network, we will address the

spatial variability of the congestion charge impact around

the city. We first observe that NOX are given as hourly

data. In order to have high quality daily data, and consid-

ering that STEM approach is resistant to missing data, we

defined as missing those daily averages based on less then

20 validated observations. An additional meteorological

covariate enters at this stage which was not significant with

particulate matters. This is the prevalence of South western

wind (SW-PWD) defined as the number of hours per day

when the prevailing wind is from SW.

The vector ARX model for these eight stations is

reported in Table 5. We keep this as a preliminary analysis

model even if, with such a number of spatial locations, a

vector approach begins showing its limitations and the

need for a unified approach such as STEM is now

becoming evident. The proxy from Bergamo and the

seasonal effect on wind are again decisive for the good

model fitting, reported in the last column of Table 5. As

mentioned above, the wind direction from South West is

significant for various stations. Despite the number of

monitoring stations, the impact of the congestion charge on

NOX is far from constant around the city.

In Pascal station, we have the maximum reduction, more

than 0.28 in log scale and p value close to zero.

Surprisingly this value is much larger than inside the

traffic restricted Area C, where the permanent effect

estimated by the ARX model is positive but very small

especially in Verziere. Moreover, in peripheral areas, at

Liguria and Lambro stations, we have statistically signif-

icant increases in NOX concentrations. Note that this fact is

not a model artifact but reflects the local behaviour as

shown in Table 7. These points will be partially overcome

in the final STEM model.

The residuals of this model are satisfactorily Gaussian,

white noise and homoskedastic according to standard tests.

Note that the estimated permanent reduction for Pascal is

quite large, d̂ ¼ 0:44 with a standard error se = 0.05, and

will be discussed further in the next section.

STEM approach In order to deepen the urban variability

and seek for a unified conclusion about the congestion

charge impact on nitrogen oxides concentrations, we con-

sider a STEM model with spatially varying impact. In the

light of the limited spatial information contained in Milan

eight station network, we use the following simple impact

model for t� t�:

a sð Þ ¼ a1 s 2 City center

a2 s 62 City center

	
ð10Þ

where, for the purpose of this paper, the city center is

defined by Area C plus Città studi, as discussed in the

previous section. The estimated model, reported in Table 6,

clearly shows the difference between the impact in the city

center, where a permanent reduction of about 0.22 in log

scale is estimated, and the peripheral area where NOX

concentrations show an increase of 0.07, although not

statistically significant. To have a confirmation about the

non-increase in the peripheral area, we tested the

hypothesis a2 = 0 using the Likelihood ratio test. This

approach gives a restricted Log-likelihood of 6515.0 and a

non significant LR statistic with p value = 15.7 %.

Interestingly the spatial correlation parameter q is very

close to the PM10 case but, as expected, the standard

deviation is smaller reflecting the major spatial information

of nitrogen oxides network. Moreover, the number of days

for detection of formula (7), with nominal significance

Fig. 4 Residual autocorrelations of PM10 vector ARX model. a is for

Pascal, b for Senato and c for Verziere

Table 3 ARX model residual

correlations for PM10
Città

studi

1 0.65 0.58

Senato 1 0.69

Verziere 1

Table 4 Estimates and standard errors (se) of STEM model for PM10

Parameter Estimate se

a—city center impact 0.085 0.035

PM10 in Bergamo 0.790 0.014

Summer—average Wind speed -0.242 0.033

Winter—average Wind speed -0.536 0.062

Winter—Max Wind speed 0.286 0.046

c 0.378 0.10

rg
2 0.032 0.011

q 12.4 10.1

rx 0.131 0.038

r2
e 0.028 0.002

Log-likelihood 3073.6

m� 154
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level p = 5 %, a permanent reduction of size a� ¼ 0:20

and power p = 85 % results to be m� ¼ 39; showing that,

with this kind of spatial information, one month is

sufficient to understand the permanent effect about 20 %

in size.

The local effects �xðsÞ of Sect. 2.3 are reported in

Table 7. Note that, considering for example Pascal, if we

sum up a1 from Table 6 and ��xðsÞ from Table 7 we get a

total reduction of 0.402 which is quite close to the estimate

d̂ of the ARX model. Note that these results reflect the

change in the unadjusted seasonal average concentration.

For example in the last two columns of Table 7, we have the

comparison of the average concentrations in the period

January 16–July 20 before and after the congestion

charge introduction, in the years 2009–2011 and 2012

respectively.

Table 5 Vector ARX model for NOX

Station a Summer Winter NOX in g R2

Ave WS Max WS SW-PWD Ave WS Max WS Bergamo

Pascal 0.295 -1.004 0.401 -0.0017 -1.20 0.487 0.539 -0.328 0.85

se 0.03 0.12 0.09 0.003 0.13 0.10 0.03 0.02

Senato 0.046 -0.303 0.107 -0.0077 -0.618 0.335 0.396 -0.420 0.87

se 0.025 0.094 0.072 0.0026 0.11 0.084 0.024 0.025

Verziere -0.0064 -0.669 0.323 -0.0095 -0.839 0.376 0.489 -0.260 0.83

se 0.025 0.097 0.074 0.003 0.11 0.087 0.025 0.025

Liguria -0.136 -0.760 0.390 -0.022 -0.779 0.345 0.307 -0.360 0.79

se 0.02 0.091 0.069 0.003 0.10 0.081 0.02 0.02

Marche 0.018 -0.75 0.228 -0.023 -0.96 0.33 0.340 -0.256 0.83

se 0.02 0.09 0.06 0.002 0.10 0.08 0.02 0.02

Abbiategrasso -0.054 -0.807 0.288 -0.0011 -1.18 0.630 0.400 -0.368 0.85

se 0.03 0.11 0.08 0.003 0.12 0.097 0.027 0.025

Lambro -0.115 -0.736 0.288 -0.0054 -1.17 0.552 0.374 -0.365 0.81

se 0.03 0.10 0.08 0.0029 0.12 0.093 0.026 0.025

Zavattari -0.013 -0.701 0.214 0.017 -0.98 0.470 0.454 -0.239 0.83

se 0.03 0.087 0.07 0.002 0.099 0.078 0.023 0.024

WS stands for wind speed, SW-PWD for south western prevailing wind direction

Table 6 Estimates and

standard errors (se) of STEM

model for NOX. WS stands for

Wind speed

Parameter Estimate se

Central impact—a1 0.218 0.048

Peripheral impact—a2 -0.077 0.047

Summer

Average WS -0.706 0.054

Max WS 0.267 0.042

South West -0.0073 0.0014

Winter

Average WS -1.021 0.061

Max WS 0.552 0.050

BG.NOX 0.604 0.016

c 0.599 0.048

rg
2 0.033 0.0047

q 12.7 3.7

rx 0.153 0.013

r2
e 0.054 0.002

Log-likelihood 6516.0

m� 39
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4 Discussion and conclusions

In order to answer the three scientific questions on air

quality impact raised in Sect. 1, we introduced a general

approach, based on STEM model, for spatiotemporal

impact assessment of air quality policies allowing both

estimation and testing.

The first question on the presence of a ‘‘permanent

impact’’ is positive. In particular, we showed that the

congestion charge operating in Milan center since January

16, 2012, has a significant permanent impact on air quality

in terms of particulate matters and nitrogen oxides con-

centrations at least in the city center. The air quality impact

has been estimated after adjusting for meteorological fac-

tors and other common forcing factors, such as the eco-

nomic crisis. Interestingly, the reduction on PM2.5, PM10

and NOX concentrations estimated using both a preliminary

vector autoregressive model and STEM approach, is not

confined inside the traffic restricted area.

The second question, on the spatial distribution of the air

quality change has an articulated answer. We observed

that, despite the reduced number of monitoring stations in

the city, the impact has a noticeable spatial variability

which is different for PM10 and NOX. In particular, after

the traffic intervention, a significant reduction of both

particulate matters and nitrogen oxides has been estimated

in the city center. The reduction of particulate matters,

which is about 8 %, or 3.6 lg/m3, in city center, is slightly

higher in the intervention area, but the spatial variations

around the city center either inside or outside the Area C

can be neglected. Moreover, consistently with being mostly

primary pollutants, nitrogen oxides show a larger reduc-

tion, namely 22 %, or 13 ppb, in the city center. Surpris-

ingly, the reduction is higher in Città studi, outside the

intervention area, while in Verziere, which is inside Area

C, the reduction is barely significant. As expected, in the

peripheral areas of the city, we observe only non significant

changes of nitrogen oxides.

Considering the third question on spatiotemporal infor-

mation, we observe that the Milan data give a substantially

clear picture of air quality impact for all three contaminants

considered, since they satisfy the required number of days

for detection m� for each of the three contaminants. In

particular the 20 % permanent reduction of nitrogen oxides

could be detected after approximately 40 days with high

probability. From the spatial point of view, we observe that

Milan data are sufficient for discriminating among city

center and peripheral areas. Nonetheless, their spatial

information content is not enough for estimating a detailed

city map either for pollutant concentrations or human

exposure as could be done by applying the dynamical

kriging capabilities of the STEM approach proposed in this

paper to a more informative monitoring network.
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