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Abstract A noble approach of stochastic rainfall gener-

ation that can account for inter-annual variability of the

observed rainfall is proposed. Firstly, we show that the

monthly rainfall statistics that is typically used as the basis

of the calibration of the parameters of the Poisson cluster

rainfall generators has significant inter-annual variability

and that lumping them into a single value could be an

oversimplification. Then, we propose a noble approach that

incorporates the inter-annual variability to the traditional

approach of Poisson cluster rainfall modeling by adding the

process of simulating rainfall statistics of individual

months. Among 132 gage-months used for the model

verification, the proportion that the suggested approach

successfully reproduces the observed design rainfall values

within 20 % error varied between 0.67 and 0.83 while the

same value corresponding to the traditional approach var-

ied between 0.21 and 0.60. This result suggests that the

performance of the rainfall generation models can be lar-

gely improved not only by refining the model structure but

also by incorporating more information about the observed

rainfall, especially the inter-annual variability of the rain-

fall statistics.

1 Introduction

Stochastic rainfall generators are widely used in hydrologic

analysis because they can provide precipitation input to

models in situations where data are not available. In gen-

eral, stochastic rainfall generators are classified into the

three following categories: (1) the multi-scaling models,

which are based on the observation that rainfall patterns

have ‘‘self-similarity’’ at a given range of timescales

(Lovejoy and Schertzer 1990 among many), (2) the non-

parametric resampling models, which forms the new rain-

fall time series by borrowing the fragments from the

instrumental data with similar statistical properties (Lall

and Sharma 1996; Tarboton et al. 1998; Westra et al.

2012), (3) the Poisson cluster rainfall models, which is

being considered in this study. The Poisson cluster rainfall

models (Rodriguez-Iturbe et al. 1987, 1988), a type of

stochastic rainfall models, represent rainfall as a sequence

of storms composed of rain cell clusters (Kavvas and

Delleur 1975). According to Olsson and Burlando (2002),

‘‘the representation of storm occurrence as a point process

and the internal storm intensity structure as a cluster of

rectangular pulses mimicking rain cells has proven to be

(…) a physically realistic way to describe temporal rain-

fall’’. The applicability of the Poisson cluster rainfall

models has been validated over various geographic loca-

tions with different rainfall characteristics (Isham et al.

1990; Bo et al. 1994; Onof and Wheater 1994; Glasbey

et al. 1995; Khaliq and Cunnane 1996; Onof et al. 1996;

Cowpertwait et al. 1996; Verhoest et al. 1997) and these

models have been used in a wide range of studies dealing

with flooding (e.g. Wheater et al. 2005), drought (e.g. Yoo

et al. 2008), contaminant transport (e.g. Botter et al. 2006),

and ecosystem behavior (e.g. Laio et al. 2009), among

others. A more thorough explanation about the
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developments, applications, and limitations to overcome of

the Poisson cluster rainfall models can be found in Onof

et al. (2000).

In Poisson cluster models, model parameters are typically

calculated for each month of the year based on the multi-

annual rainfall statistics of the corresponding months to

account for the seasonal variability of rainfall (i.e., month-to-

month variability), resulting in twelve parameter sets instead

of one (Burton et al. 2008 among others). However, to our

knowledge, the inter-annual variability of the precipitation

statistics has not been incorporated in the estimation of the

model parameters, and its effect on stochastically generated

rainfall time series has not been studied.

In this study, it is hypothesized that overlooking the

inter-annual variability of the statistics when generating

stochastic rainfall causes errors and biases that might affect

the overall rainfall depth variability and frequency of

extreme values. To validate the proposed approach, a

rainfall generator that can account for inter-annual vari-

ability is developed. Then, the rainfall time series gener-

ated based on this model was compared to the observed

ones and also to the time series generated without

accounting for inter-annual variability.

Section 2 describes the modified Bartlett-Lewis rectan-

gular pulse (MBLRP) model, the stochastic rainfall model

used in this study. Section 3 describes inter-annual vari-

ability of precipitation in detail. Section 4 describes how

the new method of rainfall generation called ‘‘the hybrid

model’’ (THM) is developed. Section 5 presents its results

and discussion. Finally, Sect. 6 concludes this study.

2 The modified Bartlett-Lewis rectangular pulse

(MBLRP) model

The MBLRP model, rainfall time series are represented as

sequences of storms comprised of cluster of rain cells (see

Fig. 1). In the model, X1 [T] is a random variable that

represents the storm arrival time, which is governed by a

Poisson process with parameter k [1/T]; X2[T] is a random

variable that represents the duration of storm activity (i.e.,

the time window after the beginning of the storm within

which rain cells can arrive), which varies according to an

exponential distribution with parameter c [1/T]; X3 [T] is a

random variable that represents the rain cell arrival time

within the duration of storm activity, which is governed by

a Poisson process with parameter b [1/T]; X4 [T] is a

random variable that represents the duration of the rain

cells, which varies according to an exponential distribution

with parameter g [1/T] that, in turn, has a gamma distri-

bution with parameters m [T] and a (dimensionless); and X5

[L/T] is a random variable that represents the rain cell

intensity, which varies according to an exponential

distribution with parameter 1/l [T/L]. From the physical

viewpoint, k is the expected number of storms that arrive in

a given period, 1/c is the expected duration of storm

activity, b is the expected number of rain cells that arrive

within the duration of storm activity, 1/g is the expected

duration of the rain cells, and l is the expected rain cell

intensity. Parameters m and a do not have a clear physical

meaning, but the expected value and variance of g can be

expressed as a/m and a/m2. Therefore, the model has six

parameters: k, c, b, m, a and l; however, it is customary to

use dimensionless ratios u = c/g and j = b/g as param-

eters instead of c and b. Based on these model assump-

tions, Rodriguez-Iturbe et al. (1988) derived the equations

for the statistics of the simulated rainfall time series at an

accumulation interval T as follow:
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where

k1 ¼ 2klcl
2 þ klcj/l2
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� �
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/
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where s is the lag time in number of accumulation inter-

vals, and Yt(T) is the rainfall time series at an accumulation

interval T.

Estimation of MBLRP model parameters is accom-

plished by minimizing the discrepancy between the statis-

tics of simulated and observed rainfall time series. Some

statistics commonly used are the mean, variance and lag-s

covariance of the precipitation depth, and the probability of

zero rainfall at various accumulation levels (Khaliq and

Cunnane 1996). Bo et al. (1994) suggested the following

equation as an objective function in calibration:

Xn

k¼1

wk 1� Fkðh~Þ
fk

" #2

ð8Þ

where h~ is a vector of the model parameters, n is the

number of rainfall statistics being matched at various

temporal accumulation level, Fk is the kth statistic of the

synthetic rainfall time series (Eqs. 1 to 4), fk is the kth

statistic of the observed rainfall time series, and wk is the

weight factor for the kth statistic (Kim and Olivera 2012).

3 Rainfall inter-annual variability

Figure 2 shows the seasonality and inter-annual variability

of the statistics of the rainfall time series observed in the

NCDC (2011) gage FL-9148 (star mark in Fig. 3). In the

figure, the hollow circles connected by solid lines represent

the statistics calculated for the entire period of record;

while the solid dots show the statistics of individual months

that vary with years (e.g. January of 1985, January of

1986). The wide range of the vertical distribution of the

solid dots in each plot suggest that the monthly statistics

vary significantly from year to year and that lumping them

into a single value could be an oversimplification. Here, it

is noteworthy that the conventional approaches of Poisson

cluster rainfall modeling (Burton et al. 2008 among others)

generates the rainfall time series based on this ‘‘lumped’’

rainfall statistics. This study proposes a noble approach that

can incorporate the inter-annual variability of rainfall sta-

tistics and shows how it enhances the properties of the

generated rainfall time series. We name this approach

THM and explain it in the following section.

4 The hybrid model (THM)

4.1 Overview

The model presented in this study incorporates the inter-

annual variability of rainfall statistics by simulating short-

term rainfall statistics (that is, rainfall statistics of individual

months) based on the correlation between observed rainfall

statistics. Then, the model generates rainfall time series

using the MBLRP model based on the simulated short-term

rainfall statistics. This model is named ‘‘THM’’ because it

combines the process of generating rainfall statistics and the

process of generating rainfall time series. The development

of the model is explained in detail using the precipitation

data observed at gage FL-9148 (star mark in Fig. 3). Finally,

the model is validated using the rainfall data observed at 11

Fig. 1 Schematic of the

MBLRP model. The white and

gray circles represent the arrival

time of storms and rain cells,

respectively. Each rain cell is

represented by a rectangle

whose width and height

represent its duration and

rainfall intensity, respectively
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Fig. 2 Monthly variations of

the rainfall statistics observed at

gage FL-9148. The statistics

referring to the month of the

entire length of rainfall time

series are shown as the hollow

circles along with the lines and

the ones referring to the month

of a specific year are shown as

the solid dots

Fig. 3 Gage FL-9148 (star)

and the 11 gages used for model

validation (circles)
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rain gages (total of 11 9 12 months = 132 gage-months)

located across the United States (Fig. 3).

4.2 Generation of rainfall statistics

The first step of THM is to stochastically generate rainfall

statistics of individual months that is to be used for

parameter calibration of the MBLRP model. The model

generates the following monthly rainfall statistics based on

the correlation between them; mean at an hourly accumu-

lation level (MEAN1), variances at hourly, 3-, 12-, and 24-

hourly accumulation levels (VAR1, VAR3, VAR12, and

VAR24); probability of zero rainfall at hourly, 3-, 12-, and

24-hourly accumulation levels (PROB0-1, PROB0-3,

PROB0-12, and PROB0-24); lag-1 autocorrelation at

hourly, 3-, 12-, and 24-hourly accumulation levels (AC1,

AC3, AC12, and AC24).

Figure 4 shows the scatter plots of the STD1

(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR1
p

), PROB0-1 and AC1 versus MEAN1 of the

rainfall time series observed at gage FL-9148 for the month

of June. Each point in the plots represents the monthly

statistic of the rainfall time series (e.g. June 1981, June

1995, etc.). Consequently, there are 61 points in each plot

because the gage has 61 years of records. Linear regression

analysis was performed to identify the relationship between

the variables. Table 1 shows the regression coefficients

between the variables. VAR1 and PROB0-1 showed a clear

correlation with MEAN1 while AC1 did not. THM ran-

domly generates MEAN1 first, and then VAR1( = STD12)

and PROB0-1 based on the generated MEAN1 according to

the relationship identified through these regression analy-

ses. AC1 was generated independently since it did not

show a considerable correlation with the other statistics.

The histogram of MEAN1 for the month of June for

gage FL-9148 and its corresponding fitted gamma distri-

bution are shown in Fig. 5. The gamma distribution was

used to model MEAN1 as suggested by Ozturk (1981). The

two parameters of the distribution were estimated using the

method of maximum likelihood. Then, MEAN1 was ran-

domly drawn from the gamma distribution with the esti-

mated parameters. The histogram of AC1 observed at gage

FL-9148 during the month of June is also shown in Fig. 5.

Because of its near-symmetrical shape, a normal distribu-

tion was adopted to fit the distribution, from which AC1 is

randomly drawn.

Because STD1(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR1
p

) and PROB0-1 are highly

correlated with MEAN1 (Fig. 4), VAR1 and PROB0-1 are

generated based on MEAN1 using the result of the regres-

sion analysis in Table 1. For example, the following two

equations specifically address the relationships between

these variables for gage FL-9148 for the month of June:

STD1 ¼ 4:7203 Mean1 þ 0:04973þ e1 ð9Þ
PROB 0� 1 ¼ �0:9718 Mean1 þ 0:9583þ e2 ð10Þ

where e1 and e2 represent residual errors expected when

using the regression equation.

e1 and e2 in Eqs. (9) and (10) were randomly drawn from

a normal distribution with mean 0 and variance equal to the

error variance of the regression equation (Column ‘‘Var(-

Error)’’ in Table 1).

A strong linear correlation was identified between the

rainfall statistics at different temporal accumulation levels

with the correlation coefficient ranging between 0.41 and

0.99. The result of the linear regression analysis is summa-

rized in Table 1. The same methodology that was used for the

generation of VAR1 and PROB0-1 from MEAN1 was used

to generate the rainfall VAR, AC, and PROB0 at 3-, 12-, and

24-hourly accumulation levels: VAR1 is used for the gen-

eration of VAR3, which is, in turn, used for the generation of

VAR12. VAR12, then again, is used as the basis of the

generation of VAR24. The same principle was applied for the

generation of PROB0-3, PROB0-12, and PROB0-24 from

Fig. 4 Correlations between MEAN1 and STD1, MEAN1 and PROB0-1, and MEAN1 and AC1 at rainfall gage FL-9148 for the month of June
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PROB0-1; and AC3, AC6, AC12, and AC24 from AC1. The

generated statistics values were perturbed by the amount

specified by the variance of error according to the regression

analysis (Column ‘‘Var(Error)’’ in Table 1)

The described process is repeated for the number of months

for which rainfall time series is generated. For example, if the

model is to generate 50 years of rainfall time series, THM

generates rainfall statistics sets for the 600 months

(50 years 9 12 months/year). This is the key concept of

THM to integrate inter-annual variability of rainfall statistics,

and it contrasts to the traditional approach which uses 12 sets

(1 per each month regardless of the number of years being

simulated) of observed rainfall statistics.

4.3 Generation of rainfall time series using the MBLRP

model

Once the rainfall statistics is generated as described in Sect.

4.2, the next step is to obtain the 6 parameters ( h
!

) of the

MBLRP model, which were calibrated using ISPSO (Cho

et al. 2011) based on the rainfall statistics generated for the

individual months using Eq. 8 as objective function. This

procedure is repeated for the number of individual months

to be used for simulation. For example, if 50 years of

rainfall time series is to be simulated, the parameter cali-

bration is repeated for 600 (=50 9 12) times, which yields

600 model parameter set. Once the parameters are

obtained, THM generates synthetic rainfall time series of

each individual month using the MBLRP model based on

the estimated parameter sets.

Because the generated rainfall time series for each of the

months has the length of only one month, the statistics of it

does not usually match the targeting rainfall statistics. To

reduce these residuals in statistics, the process of rainfall

generation is repeated for 20 times using a given parameter

set, which yields 20 rainfall time series with the length of

one month. Then, the rainfall time series with the lowest

statistics residual is chosen as the finalist. The difference

between the statistics of the simulated rainfall time series

of the jth month and the target statistics is calculated as

follow:

Rj ¼
Xn

i¼1

ðZsimul
i � Z

target
i Þ2

h i
ð11Þ

,where Zsimul
i is the Z-score (departure of a given statistics

from its global mean normalized by global standard devi-

ation) of the ith statistics of the simulated rainfall time

series and Z
target
i is the Z-score of the ith target statistics. Z-

score was calculated based on the mean and standard

deviation of the rainfall statistics that were estimated using

the rainfall time series observed at 1,099 rain gages across

the United States (Table 1 in Kim and Olivera 2011). This

Table 1 Results of the regression analysis between the rainfall statistics of the month of June at gage NCDC-FL9148

Independent variable (x) Dependent (y) a b Var (error) R2

MEAN1 STD1(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR1
p

) 4.7203 0.04973 0.003095 0.8222

MEAN1 PROB0-1 -0.9718 0.9583 0.0013 0.3236

MEAN1 AC1 -0.2059 0.2422 0.0142 0.0019

VAR1 VAR3 3.4488 0.0287 0.0017 0.9799

VAR3 VAR12 5.8397 0.0011 0.2463 0.9202

VAR12 VAR24 1.9743 0.0664 0.5789 0.9541

PROB0-1 PROB0-3 1.3929 -0.4056 0.0002 0.9592

PROB0-3 PROB0-12 1.6505 -0.7018 0.0013 0.8896

PROB0-12 PROB0-24 1.4899 -0.5256 0.0017 0.9368

AC1 AC3 0.4605 0.0748 0.0149 0.1692

AC3 AC12 0.5399 -0.0547 0.0255 0.17

AC12 AC24 0.5698 0.1757 0.0405 0.1975

The linear regression equation y ¼ axþ b was assumed. Var(Error) represents the variance of the residuals or

P
ðyobserved�yregressed Þ2

n�1

� �
:

Fig. 5 Histogram of MEAN1 and AC1. The fitted curve of a gamma

distribution for MEAN1 is shown along with the histogram (left side)
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study used MEAN1, VAR1, AC1, and PROB0-1 to cal-

culate Rj (n = 4). Then, the synthetic rainfall time series

for the jth month with the lowest value of Rj is chosen as

the finalist among the 20 months of generated rainfall time

series.

4.4 Model validation

The performance of THM was tested based on its ability to

reproduce the distribution of the monthly maximum rainfall

depths and extreme precipitation depth. A total of

132 months of precipitation data observed at 11 NCDC

precipitation gages (12 months per one gage) across the

coterminous United States (Fig. 3) were used for this vali-

dation procedure. All chosen gages have at least 50 years of

records. For each of the 132 gage-months, 100 months of

synthetic rainfall time series were generated using both

THM and the conventional MBLRP modeling approach.

Subsequently, each of the gage-months has three different

types of rainfall time series including observed one. Then,

monthly maximum rainfall depths with the duration of 1, 3,

and 6 h were calculated. As a result, each gage-month is

associated with 300 simulated monthly maximum rainfall

depths accounting for statistic variability (i.e., 3 rainfall

durations 9 100 years of simulation) (P1
THM; P3

THM; P6
THM),

300 simulated monthly maximum rainfall depths not

accounting for statistic variability (i.e., 3 rainfall dura-

tions 9 100 years of simulation) (P1
Trad; P3

Trad; P6
Trad); and a

number of monthly maximum observed rainfall depths (i.e.,

3 rainfall durations 9 years of record) (P1
Obs; P3

Obs; P6
Obs).

The two-sample Kolmogorov–Smirnov test (K–S test)

was used to compare the distributions of the variables

calculated from the observed rainfall time series and those

calculated from the synthetic rainfall time series. The test

statistic of the two-sample Kolmogorov–Smirnov test,

which compares the distributions of data sets x1 and x2, is

as follows:

max F1ðxÞ � F2ðxÞj j ð12Þ

where F1ðx) is the proportion of data set x1 less than or

equal to x. The null hypothesis of the test is that data sets x1

and x2 are from the same continuous distribution. There-

fore, if the result of the test indicates that the null

hypothesis is not rejected, one can say that data sets x1 and

x2 are from the same continuous distribution with a given

significance level that is specified in the test. In this study, a

significance level of 5 % was used.

A set of two tests should be performed to tell if THM

outperforms the traditional approach. For example, if a test

comparing P1
Obs and P1

THM indicates that both variables are

from the same continuous distributions and another test com-

paring P1
Obs and P1

Tradindicates that they are from different

distributions, the advantage of using THM over the traditional

approach to predict the maximum precipitation depth at an

hourly duration is justified. This set of tests was repeated for

the three testing variables (P1; P3; P6) to see how the perfor-

mance of THM compares to that of the traditional approach.

In addition to this rather qualitative approach to com-

pare the models’ performance, each model’s performance

to reproduce the extreme rainfall depth was quantitatively

estimated. Frequency analysis was performed on P1; P3,

and P6 to estimate extreme rainfall depth with 100-, 50-,

and 30-months of recurrence interval. Here, it is notewor-

thy that the extreme rainfall depth has the frequency unit of

month instead of year. For example, 100-month rainfall

represents the rainfall depth that has the exceedance

probability of 1 % of a given month. Another approach of

estimating the rainfall depth with the frequency unit of year

was considered, but such approach was not adopted

because it disturbs the direct comparison between the

variables by filtering out the maximum rainfall depths of

the remaining 11 months.

Generalized logistic distribution (Asquith 1998) was

used to model the distribution of the monthly maximum

rainfall, and the method of L-moment (Hosking 1990) was

used to estimate the parameters of the distribution. Then,

the normalized residual of each model’s design precipita-

tion estimate was calculated as follow:

RPRI
trad ¼

DPRI
trad � DPRI

obs

DPRI
obs

ð13Þ

RPRI
THM ¼

DPRI
THM � DPRI

obs

DPRI
obs

ð14Þ

,where RP represents the normalized residual of the

extreme precipitation; DP represents the depth of the

extreme precipitation; and superscript and subscript rep-

resent recurrence interval and the type of time series on

which the calculation is based, respectively. If the distri-

bution of these residuals is concentrated to 0, the advantage

of using one model over the other can be justified.

5 Results and discussion

5.1 Reproduction of monthly maximum rainfall depth

Table 2 shows the performance of each model in repro-

ducing the distribution of the observed monthly maximum

rainfall depths. THM outperformed in reproducing the

distributions of 3- and 6-hour duration monthly maximum

precipitations while the traditional approach outperformed

THM in reproducing the one with 1-hour duration. The

success ratio of both approaches ranged between 45 and

81 %. Even though the values presented in Table 2 do not
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explicitly prove the superiority of THM over the traditional

modeling approach, they provide a general idea on the

performance of both models in reproducing the distribution

of the maximum rainfall depth. It also has to be noted that

the result of the K–S test tends to be more sensitive near

the center of the distribution than it is at the tails. This

result suggests that considering inter-annual variability

does not necessarily enhance the rainfall model’s perfor-

mance to reproduce the overall distribution of the maxi-

mum rainfall depth.

5.2 Reproduction of extreme rainfall depth

The result of the analysis on extreme precipitation depth

reproduction enlightens the perspective of THM that could

not be caught by the K–S test. Figure 6 shows the histo-

grams of the normalized residual (Eqs 13 and 14) of 1-hour

duration design precipitation with 100-, 50-, and 30-month

recurrence interval for THM (upper row) and traditional

MBLRP model (lower row). In the plots of Fig. 6, sharper

shape of the distribution means higher model’s consis-

tency. Also, model’s unbiasedness increases as the center

of the distribution gets closer to 0. In general, it is observed

that the distributions of RPTrad for all three recurrence

intervals are systematically biased to the left side of 0. This

means that the traditional MBLRP approach systematically

and significantly underestimates the extreme rainfall of the

observed data. On the contrary, the level of biasedness of

the distribution of RPTHM is significantly less than that of

RPTrad. The consistency of the model’s performance was

similar for both of the approaches showing similar

peakedness of the distribution. For some cases, THM had

slightly less performance consistency compared to the

traditional approach. However, the fact that the traditional

approach has lower standard deviation than the suggested

approach does not mean that it outperforms THM because

it means the traditional approach underestimates the

extreme rainfall values more consistently compared to

THM. Another way to compare the model’s performance is

to see the proportion that the estimated extreme rainfall

depth (RP) falls within a given percentage (20 %) of the

observed counterpart, which is shown in the 4th, 7th, and

Table 2 Performance of THM and the traditional MBLRP approach

in reproducing the distribution of extreme rainfall depths

Rainfall duration 1 h 3 h 6 h

Both approaches succeeded 47 70 70

Only THM succeeded 12 21 37

Only traditional approach succeeded 29 19 17

Both failed 44 22 8

Overall THM success ratio 44.7 % 68.9 % 81.1 %

Overall traditional approach success

ratio

57.6 % 67.4 % 65.9 %

Fig. 6 Histograms of the normalized residual of the extreme precipitation depths reproduced by THM and the traditional approach of MBLRP

rainfall modeling. From top to bottom, then left to right are shown the histograms of RP100
THM, RP50

THM, RP30
THM RP100

Trad, RP50
Trad, and RP30

Trad
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10th row of Table 3. These values are significantly greater

for THM. Table 3 also summarizes the mean, standard

deviation of the distribution of RP. Similar result was

obtained for all other comparison cases (extreme rainfall

depth with 3 h and 6 h duration). The mean of RPTHM is

notably closer to 0 compared to RPTrad while the standard

deviation is slightly greater for THM (again, this does not

leads to the conclusion that the traditional approach out-

performs THM). Also, the probability that the estimated

RP values falls within ±20 % of the observed counterpart

was significantly greater for RPTHM.

In Fig. 6, the histograms of RPTHM have stronger positive

skew than those corresponding to RPTrad, which also causes

the greater variability of the RPTHM values. This means that

the extreme precipitation simulated by THM is more likely

to be greater than the observed one compared to the one

estimated using the traditional method. The most probable

cause of this problem is that the Gamma distribution adopted

to model the mean rainfall for all gages and months. The

distribution of the mean rainfall can follow other distribu-

tions especially because the gages used for the model vali-

dation are physically distant thus can have different climatic

properties. Considering that mean monthly rainfall is used as

the basis of the generation of the other statistics and the

MBLRP model parameter calibration, choosing the right

distribution type of the mean rainfall can greatly affect the

accuracy of the model. This problem may be resolved if the

correct type of distribution is customized for each of the

gage-months based on the result of the statistical tests such

as Kolmogorov–Smirnov test.

It also has to be noted that some recent developments in

non-parametric stochastic rainfall generation has been

successful in reproducing the extreme rainfall depths more

closely (e.g., Westra et al. 2012). In this broader context of

the stochastic rainfall generation, the contribution of this

study in improving the ability of stochastic rainfall gener-

ation model in reproducing extreme rainfall values should

be considered limited.

6 Conclusions

We proposed a novel approach of stochastic rainfall gener-

ation based on MBLRP model that can account for the inter-

annual variability of rainfall statistics. While the newly pro-

posed approach did not show apparent advantage over the

traditional approach in reproducing the distribution of the

maximum rainfall depth, it clearly outperformed the con-

ventional one in reproducing extreme precipitation depths by

reducing the systematic bias. This result indicates that the

inter-annual variability of rainfall contains the important

information about extreme values of precipitations that the

lumped long-term monthly statistics could easily miss.

Numerous previous studies regarding Poisson cluster

rainfall models have tried to enhance the model’s ability to

capture extreme rainfall. Cowpertwait (1998) modified the

model such that it can explicitly count for the 3rd order

moment of the observed rainfall time series. Evin and Favre

(2012) refined the model structure by introducing the con-

cept of transient storm arrival rate. These studies tried to

refine the model structure to enhance the performance. In

this context, the result of this study suggests that the per-

formance of the rainfall generation model can be improved

not only by altering or refining model structure but also by

incorporating more information about the observed rainfall

time series, especially its internal variability. We expect the

same principle be applicable in other types of stochastic

rainfall generators to enhance the performance.

Acknowledgments This work was supported by the Hongik Uni-

versity new faculty research support fund.

References

Asquith WH (1998) Depth-duration frequency of precipitation for

Texas. US Geological Survey, Water-Resources Investigations

Report 98-4044 (http://pubs.usgs.gov/wri/wri98-4044)

Table 3 Performance comparison between THM and the traditional approach on reproduction of design rainfall values

Recurrence interval Type of statistics THM Traditional Approach

1 h 3 h 6 h 1 h 3 h 6 h

100 year Mean 0.0963 0.0439 -0.0183 -0.1663 -0.1729 -0.1928

Standard deviation 0.3350 0.2530 0.2064 0.2567 0.2337 0.1982

Within ± 20 % 0.6667 0.7424 0.7273 0.4091 0.4167 0.3939

50 year Mean 0.1417 0.0730 0.0019 -0.1322 -0.1509 -0.1714

Standard deviation 0.2992 0.2274 0.1905 0.2129 0.1931 0.1681

Within ± 20 % 0.6894 0.7500 0.7955 0.5076 0.5076 0.4394

30 year Mean 0.1765 0.0945 0.0165 -0.1022 -0.1309 -0.1526

Standard deviation 0.2841 0.2169 0.1860 0.1916 0.1710 0.1520

Within ± 20 % 0.6742 0.7576 0.8333 0.5985 0.5985 0.5227

Stoch Environ Res Risk Assess (2013) 27:1601–1610 1609

123

http://pubs.usgs.gov/wri/wri98-4044


Bo Z, Islam S, Eltahir EAB (1994) Aggregation-disaggregation

properties of a stochastic rainfall model. Water Resour Res

30(12):3423–3435

Botter G, Settin T, Marani M, Rinaldo A (2006) A stochastic model of

nitrate transport and cycling at basin scale. Water Resour Res

42(4):1–5

Burton A, Kilsby CG, Fowler HJ, Cowpertwait PSP, O’Connell PE

(2008) RainSim: a spatial-temporal stochastic rainfall modeling

system. Environ Model Softw 23:1356–1369

Cho H, Kim D, Olivera F, Guikema SD (2011) Enhanced speciation

in particle swarm optimization for multi-modal problems. Eur J

Oper Res 213(1):15–23

Cowpertwait PSP (1998) A Poisson-cluster model of rainfall: high-

order moments and extreme values. Proc R Soc Lond Ser A

454:885–898. doi:10.1098/rspa.19980191

Cowpertwait PSP, O’Connell PE, Metclafe AV, Mawdsley JA (1996)

Stochastic point process modelling of rainfall. I Single-site

fitting and validation. J Hydrol 175(1–4):17–46

Evin G, Favre AC (2012) Further developments of transient Poisson-

cluster model for rainfall. Stoch Environ Res Risk Assess

2012:8. doi:10.1007/s00477-012-0612-y

Glasbey CA, Cooper G, McGehan MB (1995) Disaggregation of daily

rainfall by conditional simulation from a point-process model.

J Hydrol 165:1–9

Hosking JRM (1990) L-moments: analysis and estimation of distri-

butions using linear combinations of order statistics. J R Stat Soc

Ser B52:105–124 JSTOR 2345653

Isham S, Entekhabi D, Bras RL (1990) Parameter estimation and

sensitivity analysis for the modified Bartlett-Lewis rectangular

pulses model of rainfall. J Geophys Res 95(D3):2093–2100

Kavvas ML and Delleur JW (1975) The stochastic and chronologic

structure of rainfall sequences—application to Indiana, Techni-

cal Report 57. Water Resources Research Center, Purdue

University, West Lafayette

Khaliq M, Cunnane C (1996) Modelling point rainfall occurrences

with the modified Bartlett-Lewis rectangular pulses model.

J Hydrol 180:109–138

Kim D, Olivera F (2012) On the relative importance of the different

rainfall statistics in the calibration of stochastic rainfall gener-

ation models. J Hydrol Eng 17:368

Laio F, Tamea S, Ridolfi L, D’Odorico P, Rodriguez-Iturbe I (2009)

Ecohydrology of groundwater-dependent ecosystems: 1. Sto-

chastic water table dynamics. Water Resour Res 45:W05419.

doi:10.1029/2008WR007292

Lall U, Sharma A (1996) A nearest neighbor bootstrap for resampling

hydrological time series. Water Resour Res 32:679–693

Lovejoy S, Schertzer D (1990) Multifractals, universality classes, and

satellite and radar measurements of cloud and rain fields.

J Geophys Res 95:2021–2031

NCDC (2011) Precipitation Data, National Climatic Data Center

(NCDC)—National Oceanic and Atmospheric Administration

(NOAA). Available at http://gis.ncdc.noaa.gov/map/precip/as

August 19, 2011

Olsson J, Burlando P (2002) Reproduction of temporal scaling by a

rectangular pulses rainfall model. Hydrol Process 16:611–630

Onof C, Wheater HS (1994) Improvements to the modeling of British

rainfall using a modified random parameter Bartlett-Lewis

rectangular pulse model. J Hydrol 157(1–4):177–195

Onof C, Northrop P, Wheater HS, Isham V (1996) Spatiotemporal

storm structure and scaling property analysis for modeling.

J Geophys Res Atmospheres 101:26415–26425

Onof C, Chandler RE, Kakou A, Northrop P, Wheater HS, Isham V

(2000) Rainfall modelling using Poisson-cluster processes: a

review of developments. Stoch EnvironRes Risk Assess 14(6):

384–411

Ozturk A (1981) On the study of a probability–distribution for

precipitation totals. J Appl Meteorol 20(12):1499–1505

Rodriguez-Iturbe I, Cox DR, Isham V (1987) Some models for

rainfall based on stochastic point processes. Proc R Soc Lond Ser

A 410(1839):269–288

Rodriguez-Iturbe I, Cox DR, Isham V (1988) A point process model

for rainfall: further developments. Proc R Soc Lond Ser A

417(1853):283–298

Tarboton DG, Sharma A, Lall A (1998) Disaggregation procedures

for stochastic hydrology based on nonparametric density

estimation. Water Resour Res 34(1):107–119

Verhoest N, Troch PA, De Troch FP (1997) On the applicability of

Bartlett-Lewis rectangular pulses models in the modeling of

design storms at a point. J Hydrol 202(1–4):108–120

Westra SP, Mehrotra R, Sharma A, Srikanthan R (2012) Continuous

rainfall simulation: 1. A regionalized subdaily disaggregation

approach. Water Resour Res 48:W01535-1-W01535-16

Wheater HS et al (2005) Spatial-temporal rainfall modeling for flood

risk estimation. Stoch Environ Res Risk Assess 19(6):403–416

Yoo C, Kim D, Kim TW, Hwang KN (2008) Quantification of

drought using a rectangular pulses Poisson process model.

J Hydrol 355(1–4):34–48

1610 Stoch Environ Res Risk Assess (2013) 27:1601–1610

123

http://dx.doi.org/10.1098/rspa.19980191
http://dx.doi.org/10.1007/s00477-012-0612-y
http://dx.doi.org/10.1029/2008WR007292
http://gis.ncdc.noaa.gov/map/precip/as

	Effect of the inter-annual variability of rainfall statistics on stochastically generated rainfall time series: part 1. Impact on peak and extreme rainfall values
	Abstract
	Introduction
	The modified Bartlett-Lewis rectangular pulse (MBLRP) model
	Rainfall inter-annual variability
	The hybrid model (THM)
	Overview
	Generation of rainfall statistics
	Generation of rainfall time series using the MBLRP model
	Model validation

	Results and discussion
	Reproduction of monthly maximum rainfall depth
	Reproduction of extreme rainfall depth

	Conclusions
	Acknowledgments
	References


