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Abstract Bayesian networks (BNs) have become a

standard in the field of Artificial Intelligence as a means of

dealing with uncertainty and risk modelling. In recent

years, there has been particular interest in the simultaneous

use of continuous and discrete domains, obviating the need

for discretization, using so-called hybrid BNs. In these

hybrid environments, Mixtures of Truncated Exponentials

(MTEs) provide a suitable solution for working without

any restriction. The objective of this study is the assess-

ment of groundwater quality through the design and

application of a probabilistic clustering, based on hybrid

Bayesian networks with MTEs. Firstly, the results obtained

allows the differentiation of three groups of sampling

points, indicating three different classes of groundwater

quality. Secondly, the probability that a sampling point

belongs to each cluster allows the uncertainty in the clus-

ters to be assessed, as well as the risks associated in terms

of water quality management. The methodology developed

could be applied to other fields in environmental sciences.

Keywords Hybrid Bayesian networks �
Mixtures of truncated exponentials � Probabilistic data

clustering � Groundwater quality

1 Introduction

Groundwater quality is very important for sustaining both

natural ecosystems and human activities (Lischeid 2009;

Papaioannou et al. 2010; Garcı́a-Dı́az 2011). With the aim

of assessing groundwater quality, multivariate procedures,

such as cluster analysis, have been applied to physico-

chemical information obtained from monitoring pro-

grammes (Liu et al. 2011; Evin and Favre 2012; Ghorban

2012; Vousoughi et al. 2012; Wang and Jin 2012). Cluster

analysis (Anderberg 1973; Jain et al. 1999) is a statistical

technique that groups observations (sampling points) into

clusters. Thus, sampling points with similar water quality

can be grouped to optimize monitoring programmes (Atlas

et al. 2011; Lu et al. 2011). However, when using these

groups as part of a decision-making process, the uncer-

tainty involved by including an observation into a group

can not be quantified. In this context, managers have an

increasing interest in the development of new operational

tools to assess uncertainty and risk, which can facilitate the

decision-making process (Refsgaard et al. 2007).

Bayesian networks (BNs) (Pearl 1988; Jensen and

Nielsen 2007) are considered to be one of the most pow-

erful tools for representing complex systems in which the

relationships between variables are subject to uncertainty.

Their main purpose is to provide a framework for efficient

reasoning about the system they represent, in terms of

updating information about unobserved variables, given

that some new information is incorporated to the system

(Jensen et al. 1990; Shenoy and Shafer 1990). Variables in
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BNs are modelled by means of probability distributions;

therefore risk and uncertainty can be estimated more

accurately than in other models (Uusitalo 2007; Liao et al.

2010; Liu et al. 2012). BNs graphical interpretation allows

stakeholders to easily understand the relationships between

variables and refine the learned model manually adding or

removing arcs (even variables) from the graph to better

represent reality (Voinov and Bousquet 2010). Most data

available in environmental sciences are continuous or

hybrid (discrete and continuous), and even though BNs can

manage them, the limitations are too restrictive in many

cases (Nyberg et al. 2006). The most widely-used solution

in environmental modelling is to discretise the variables,

accepting a loss of information (Bromley et al. 2005;

Uusitalo 2007). To date, several new solutions to this

problem have been proposed, such as the conditional

Gaussian (CG) model (Lauritzen 1992; Lauritzen and

Jensen 2001), the mixture of truncated exponentials model

(MTE) (Moral et al. 2001), the mixtures of polynomials

model (MoP) (Shenoy and West 2011) and the mixtures of

truncated basis functions (MoTBFs) model (Langseth et al.

2012).

Aguilera et al. (2011) reviewed the application of BNs

in environmental modelling. Hybrid BNs have scarcely

been applied in environmental modelling. There are few

papers published concerning BNs in groundwaters and

none of them use a solution based on hybrid BNs, but

discretisation is applied. They are related to management

and decision-making (Molina et al. (2009a, 2011);

Carmona et al. 2011; Henriksen and Barlebo 2008; Hen-

riksen et al. 2007; Santa Olalla et al. 2007; Santa Olalla

et al. 2005), participative modelling (Martı́nez-Santos

et al. 2010; Zorrilla et al. 2010) and prediction (Molina

et al. 2009b).

BNs have been developed to resolve a wide variety of

problems in the field of artificial intelligence (Larrañaga

and Moral 2011). One of these is the so-called data clus-

tering problem (Anderberg 1973; Jain et al. 1999), which is

very useful in tasks such us pattern recognition or Mach

Learn. Data clustering is understood to be a partition of a

data set into groups in such a way that the individuals in

one group are similar to each other but as different as

possible from the individuals in other groups. BNs are valid

tools for solving probabilistic clustering problems which,

in contrast to traditional clustering, allow an individual to

belong to more than one cluster depending on a probability

distribution.

The aim of this article is to develop a probabilistic clus-

tering model based on hybrid BNs that can be applied in the

assessment of groundwater quality. To do this, inference is

applied to a probability distribution of a data set. The proba-

bility distributions of the BN are modelled using MTEs, which

means that there is no restriction on the model’s structure, i.e.,

any combination of discrete and/or continuous nodes with

discrete and/or continuous parents is allowed. In addition,

continuous and discrete data can be used simultaneously

without the need for any discretization.

The article is organized as follows: Sect. 2 introduces

the basic concepts about hybrid BNs and how they can be

used to solve a probabilistic data clustering problem.

Section 3 is dedicated to the application of the clustering

model to management of groundwater quality. Lastly,

Sect. 4 presents the most important conclusions drawn

from the study.

2 Probabilistic clustering based on hybrid Bayesian

networks

2.1 Bayesian networks

A Bayesian network (Jensen et al. 1990; Shenoy and

Shafer 1990) is a statistical multivariate model for a set of

variables X1, which is defined in terms of two components:

– A qualitative component, defined by means of a

directed acyclic graph (DAG), in which each vertex

represents one of the variables in the model, so that the

presence of an arc linking two variables indicates the

existence of statistical dependence between them. For

example, the graph depicted in Fig. 1(a) could be the

qualitative component of a BN for variables X1, X2 and

X3.

– A quantitative component, specified using a conditional

distribution p(xi| pa(xi)) for each variable Xi, i ¼ 1; . . .; n
given its parents in the graph, denoted as pa(Xi). Figure 1b

shows an example of the conditional distributions p(x1),

p(x2|x1) and p(x3|x1,x2) for the DAG in Fig. 1a.

The success of BNs stems from the fact that the DAG

structure gives us information about which variables are

relevant or irrelevant for some other variable of interest,

1 Uppercase letters denote random variables and boldfaced uppercase

letters denote random vectors, e.g. X ¼ fX1; . . .;Xng: The domain of

X is denote as XX By lowercase letters x (or x) we denote some

element of XX (or XX).

(a) (b)

Fig. 1 An example of a Bayesian network with three variables
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taking into account the d-separation concept (Jensen and

Nielsen 2007). This allows us to simplify, to a significant

extent, the joint probability distribution (JPD) of the vari-

ables necessary to specify the model. In other words, BNs

provide a compact representation of the JPD over all the

variables, defined as the product of the conditional distri-

butions attached to each node, so that

pðx1; . . .; xnÞ ¼
Yn

i¼1

p xijpaðxiÞð Þ: ð1Þ

For instance, the JPD associated to the network in

Fig. 1, p(x1, x2, x3), is simplified as the product pðx1Þ�
pðx2jx1Þ � pðx3jx1; x2Þ:

There are two approaches to training a BN: automatic

and manual (or a mixture of the two). The first approach

involves using algorithms which, starting with a set of

training data, calculate the optimum structure for these data

(Spirtes et al. 1993; Cooper and Herskovits 1992). From

here, the corresponding probability distributions are cal-

culated. In contrast, using manual approximation, expert

opinion is included as part of the process to indicate which

variables are related and how strongly. This second option

is often used when no training data are available or where

some data are missing.

A BN can carry out an efficient reasoning for a given

scenario under conditions of uncertainty. This is what is

known as probability propagation or probabilistic infer-

ence. Hence, the objective is to obtain information about a

set of variables of interest (unobserved variables) given

known values of other variables (observed or evidenced

variables). If we denote the set of evidence as E; and its

values as e; then we can calculate the posterior probability

distribution, pðxijeÞ; for each variable of interest Xi 62 E:

2.2 Hybrid Bayesian networks based on the MTE

model

BNs were originally proposed for handling discrete vari-

ables and nowadays, a broad and consolidated theory can

be found in the literature (see for instance Jensen and

Nielsen (2007)). However, in real problems, it is very

common to find continuous and discrete domains simulta-

neously in so-called hybrid BNs.

In a hybrid framework, the simplest and the most

common solution is to discretise the continuous data and

treat them as if they were discrete. Thus, existing methods

for discrete variables can be easily applied. However,

discretisation of variables can lead to a loss in precision

and this is why other approaches have received so much

attention over the last few years.

So far, several approaches have been devised to repre-

sent probability distributions in hybrid BNs. In order of

their appearance they are: the CG model (Lauritzen 1992;

Lauritzen and Jensen 2001), the mixtures of truncated

exponentials (MTEs) model (Moral et al. 2001), the mix-

tures of polynomials (MOPs) model (Shenoy and West

2011) and the mixtures of truncated basis functions

(MoTBFs) model (Langseth et al. 2012).

Although the CG model is used extensively by

researchers and works well in many cases, it puts some

restrictions on the network. It is only useful in situations

where the joint distribution of the continuous variables, for

each configuration of the discrete ones, follows a multi-

variate Gaussian. Moreover, CG models are not valid in

frameworks where a discrete variable has continuous

parents.

Discretisation is equivalent to approximating a density

by a mixture of uniforms, meaning that each interval is

approximated by a constant function. Thus, the accuracy of

the final model could be increased if, instead of constants,

other functions with better fitting properties were used. A

good choice are exponential functions since they are closed

under restriction, marginalisation and combination. This is

the idea behind the so-called MTE model (Moral et al.

2001), explained next.

During the probability inference process, when the

posterior distributions of the variables are obtained given

some evidence, the intermediate probability functions are

not necessarily density functions. Therefore, a general

function called MTE potential needs to be defined as

follows:

Definition 1 (MTE potential) Let X be a mixed n-dimen-

sional random vector of variables. Let Z ¼ ðZ1; . . .;ZdÞT and

Y ¼ ðY1; . . .; YcÞT be the discrete and continuous parts of X;

respectively, with c ? d = n. We say that a function

f : XX 7!R
þ
0 is a mixture of truncated exponentials potential

(MTE potential) if one of the following conditions holds:

(i) Z ¼ ; and f can be written as

f ðxÞ ¼ f ðyÞ ¼ a0 þ
Xm

i¼1

aiexp bT
i y

� �
ð2Þ

for all y 2 XY; where ai 2 R and bi 2 R
c; i ¼ 1; . . .;m:

(ii) Z ¼ ; and there is a partition D1; . . .;Dk of XY into

hypercubes such that f is defined as

f ðxÞ ¼ f ðyÞ ¼ fiðyÞ if y 2 Di;

where each fi; i ¼ 1; . . .; k can be written in the form of

Eq. 2.

(iii) Z 6¼ ; and for each fixed value z 2 XZ; fzðyÞ ¼
f ðz; yÞ can be defined as in (ii).

For example, the function f defined as
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f ðy1;y2Þ¼

2þe3y1þy2þey1þy2 if 0� ;y1�1; 0� ;y2� ;2;
1þey1þy2 if 0� ;y1�1; 2�y2� ;3;
1
4
þe2y1þy2 if 1� ;y1� ;2; 0� ;y2� ;2;

1
2
þ5ey1þ2y2 if 1� ;y1� ;2; 2�y2� ;3:

8
>><

>>:

is an MTE potential since all of its parts are MTE

potentials.

Thus, in this hybrid framework an MTE potential f is an

MTE density if

X

z2XZ

Z

XY

f ðz; yÞdy ¼ 1:

A conditional MTE density can be specified by dividing

the domain of the conditioning variables and specifying an

MTE density for the conditioned variable for each

configuration of splits of the conditioning variables.

Consider the following example. Let X and Y be two

continuous variables. A possible conditional MTE density

for Y given X is:

Since MTEs are defined into hypercubes, they admit a

tree-structured representation in a natural way. Moral et al.

(2001) proposed a data structure to represent MTE poten-

tials, the so-called mixed probability trees or mixed trees

for short which are specially appropriate for this kind of

conditional densities.

In a similar way to the discretisation process, the more

intervals used to divide the domain of the continuous

variables, the better the MTE model accuracy, but also the

more complex it becomes. Furthermore, in the case of

MTEs, using more exponential terms within each interval

substantially improves the fit to the real model, but again

more complexity is assumed.

The MTE model has been the main focus of research for

several years by the Laboratory of Probabilistic Graphical

Models group2 and it forms the basis of the clustering

presented in Sect. 2.3. For more details about learning and

inference tasks in these models, see Moral et al. (2001,

2002, 2003), Rumı́ et al. (2006), Rumı́ and Salmerón

(2007), Romero et al. (2006), Cobb and Shenoy (2006),

Cobb et al. (2007), Morales et al. (2007), Fernández

et al. (2010), Langseth et al. (2009), Langseth et al. (2010),

Aguilera et al. (2010) and Fernández et al. (2012).

The last two approaches, dealing with hybrid BNs

(MOPs and MoTBFs) are very recent. The idea behind the

MOPs (Shenoy and West 2011) model is to replace the

basis function of the MTE (exponential) by a polynomial,

yielding several advantages. The MoTBFs (Langseth et al.

2012) imply a generalisation of the MTEs and MOPs in the

sense that any function can be used as a basis to represent

the potentials. We do not use any of these approaches since

they are still the subject of research and so there is not yet

any software available.

2.3 Bayesian networks for clustering

In the context of Mach Learn, there are two types of

classification algorithms: supervised and unsupervised.

Let D ¼ fd1; . . .; dkg be a set of instances where

di ¼ fxi1; . . .; xin; cig are the values for the ith-individual

with features X1; . . .;Xn and target variable C. Supervised

classification involves inferring a function, f, such that

f ðx1; . . .; xnÞ gives us information about the best class state

c for an individual x1; . . .; xn: On the other hand, if data

about C are missing, we start from a collection of unla-

belled data and the classification problem becomes

unsupervised.

Clustering (Anderberg 1973; Jain et al. 1999), or unsu-

pervised classification, is understood to be the partition of a

data set into groups in such a way that individuals in one

group are similar to each other but as different as possible

from individuals in other groups. Different types of clus-

tering algorithms can be found in the literature depending

on the approach they follow. On one hand, there is a hard

clustering, in which clusters are exclusive, i.e., an indi-

vidual belongs to a cluster in a deterministic way. The

second approach is soft clustering or probabilistic cluster-

ing, meaning that an individual can belong to more than

one cluster depending on a probability distribution. BNs

can solve a probabilistic clustering problem by performing

inference on the model, as explained next.

f ðyjxÞ ¼
1:26� 1:15e0:006y if 0:4� x� ; 5; 0� y� ; 13;
1:18� 1:16e0:0002y if 0:4� x� ; 5; 13� y� ; 43;
0:07� 0:03e�0:4y þ 0:0001e0:0004y if 5� x� ; 19; 0� y� ; 5;
�0:99þ 1:03e0:001y if 5� x� ; 19; 5� y� ; 43:

8
>><

>>:

2 http://elvira.ual.es/programo
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Since unsupervised classification (or clustering) is mainly

based on supervised classification, let us first explain how to

carry out supervised classification based on hybrid BNs.

A BN can be used for supervised classification if it

contains a class variable C, and a set of feature variables

X1; . . .;Xn where an individual with observed features

x1; . . .; xn will be classified as belonging to class c*

obtained as follows:

c� ¼ arg maxc2XC
f ðcjx1; . . .; xnÞ; ð3Þ

where XC denotes the set of possible values of C.

Note that f ðcjx1; . . .; xnÞ is proportional to f ðcÞ �
f ðx1; . . .; xnjcÞ; and therefore, solving the classification prob-

lem would require a distribution to be specified over the n fea-

ture variables for each value of the class. The associated

computational cost can be very high. However, using the fac-

torisation determined by the network, the cost is reduced.

Although the ideal would be to build a network without

restrictions on the structure, usually this is not possible due to

the limited data available. Therefore, networks with fixed and

simpler structures and specifically designed for classification

are used.

The extreme case is the so-called naı̈ve Bayes (NB)

structure (Duda et al. 2001; Friedman et al. 1997). It con-

sists of a BN with a single root node and a set of attributes

having only one parent (the root node). The NB model

structure is shown in Fig. 2.

Its name comes from the naı̈ve assumption that the

feature variables X1; . . .;Xn are considered independent

given C. This strong independence assumption is somehow

compensated by the reduction in the number of parameters

to be estimated from data, since in this case, it holds that

f ðcjx1; . . .; xnÞ / f ðcÞ
Yn

i¼1

f ðxijcÞ; ð4Þ

which means that, instead of one n-dimensional conditional

distribution, n one-dimensional conditional distributions are

estimated. Despite this extreme independence assumption, the

results are amazing in many cases, and for this reason it has

become the most widely used Bayesian classifier in the

literature.

Unsupervised classification or data clustering is per-

formed in a similar way as for supervised classification.

The only difference stems from the fact that, since there is

no information about the target variable C, certain

considerations have to be taken into account when training

the model. The key idea is to consider a hidden variable

H as part of the dataset, that is, a variable whose values are

missing in all the records. Thus, using an iterative process

based on data augmentation (Tanner and Wong 1987), a

model is built for a specific number of clusters. The iter-

ative process includes two essential steps that are repeated

until the probability of the model no longer improves:

1. For each ith-individual xi1; . . .; xin in the data set, a

value is simulated for hi from the posterior distribution

f ðhjxi1; . . .; xinÞ:
2. The probability distributions of the BN are re-learnt

using the newly-generated database.

Figure 3 shows the model for carrying out a probabi-

listic clustering based on the hybrid naı̈ve Bayes structure.

Note that both continuous and discrete features are allowed

in the model. The variable H must be discrete where its

states represent the clusters obtained. The specific steps for

building this model are detailed in Sect. 3.1.3.

3 Application in the assessment of groundwater quality

3.1 Methodology

3.1.1 Study area

The Campo de Dalı́as is located in the far southeastern end of

Andalusia (Spain), covering around 330 km2 (Fig. 4). It is

bounded to the north by the Sierra de Gádor and to the south by

the Mediterranean Sea. Its climate, together with technolog-

ical innovations, have allowed the development of intensive

agriculture in plastic-covered greenhouses. The cultivated

area is approximately 20,000 hectares, which represents the

largest cultivated area under greenhouse cover in Europe.

Water for crop irrigation and for human consumption comes

mostly from groundwater abstractions.

The study area can be differentiated into three hydro-

geological units (Pulido-Bosch et al. 1991; Molina 1998):

Balerma-Las Marinas, Balanegra and Aguadulce. The Ba-

lanegra unit occupies the western part, while the Aguadulce

unit is to the east. Both these basically consist of carbonate

deposits that form part of the Gádor nappe. The Balerma-
Fig. 2 Structure of a hybrid naı̈ve Bayes classifier where X2 is a

continuous variables and the remaining ones are discrete

Fig. 3 Hybrid naı̈ve Bayes classifier for probabilistic data clustering,

where Y and Z are the set of discrete and continuous variables,

respectively, and H the hidden variable useful for the clustering
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Las Marinas unit is the largest and occupies the central-

southern portion of the area. It is basically made up of

Pliocene calcarenites that can exceed 100 m in thickness,

though there are local Quaternary deposits as well.

The largest abstractions are made from the carbonate

deposits of the Balanegra and Aguadulce units, given their

calcium-magnesium bicarbonate water type. Accordingly,

piezometric levels currently lie between -31 and -17 m a.s.l.

In the Balerma-Marinas unit, the water facies is sodium-

chloride and so abstractions are much lower. Since many wells

have been abandoned as a result, the piezometric level over the

entire unit is positive (10 and 40 m a.s.l). Although under a

natural regime the hydraulic relationships between these three

units would have been close, their subsequent exploitation

means that they are now quite well individualized.

3.1.2 Monitoring and water analysis

A total of 125 wells (sampling points) were chosen, their

distribution being representative of the three Campo de Dalı́as

hydrogeological units. Water samples were taken according to

the criteria given by the Enviromental Protection Agency

(EPA 1991) and analysed for electrical conductivity, nitrate,

Cu, Fe and pesticides. Conductivity was measured in situ

using a WTW MultiLine P4 digital pH-conductivity meter.

Nitrate was determined using ion chromatography, Cu and Fe,

using atomic absorption spectroscopy, while pesticides were

analysed using gas chromatography.

3.1.3 Data clustering methodology

This section describes the methodology for constructing a

probabilistic clustering model based on a groundwater data set,

and the strategy devised to find the optimal number of clusters.

Algorithm 1 (Gámez et al. 2006; Fernández et al. 2011)

shows the steps for carrying out a probabilistic data clus-

tering based on hybrid BNs using groundwater samples.

Algorithms 2, 3 and 4 are subroutines of Algorithm 1 and

they are shown in boldface. The algorithms were imple-

mented in Elvira software (Elvira-Consortium 2002).

At the beginning of Algorithm 1, we have data only for the

five physico-chemical variables but no information about the

hidden variable H is available (i.e. the number of clusters and

the associated probability distribution are still unknown).

Therefore, the first task was to construct a preliminary model

according to Algorithm 2, where the conditional MTE distri-

butions for the variables are approximated by the marginal

MTE distribution learnt directly from data (see Rumı́ et al.

2006 for more details). On the other hand, the initial number of

clusters in H are fixed to two and their probabilities are equi-

tatively initialised to 0.5. The results may depend on the initial

model selected as this algorithm ensures finding a local maxi-

mum, but not the global one. Anyway, the clusters obtained are

consistent with the expected results from an environmental

point of view. An attempt to solve this issue would be to run the

algorithm several times using different initializations, although

this solution does not guarantee the global maximum either.

Once created, the initial model is refined using the data

augmentation method (Tanner and Wong 1987) (see Algo-

rithm 3). This method returns the most likely model with two

clusters. In order to run this method, the missing data corre-

sponding to the hidden variable H is initialised using zeros

(step 4 in Algorithm 1). In a similar way, in step 6 we impute

values for the hidden variable simulating them from the pos-

terior distribution of H after propagating the values for the

physico-chemical variables in the model, i.e., from f ðhjdiÞ
(this imputation is needed for the following steps).

From this point, the idea is to create a new model by adding

a cluster (see Algorithm 4). In this task the last state, hn, of H is

split to create a new one, hn?1, and the new distributions

generated are approximated from the current ones. The results

may be slightly influenced by the choice of the state to be split,

but we can not have this information a priori. The optimal

solution would be to check all the states to find the optimal

solution, but we did not consider this option because it adds

complexity to the procedure that is disproportionate to the

benefits in terms of accuracy.

After adding a cluster, the data augmentation method is

run again to refine the new model iteratively using n ? 1

clusters. Then, using the probability measure described

below, we checked if the new model is an improvement

over the earlier one. Assuming a data set of n independent

and identically distributed observations for testing the

model T ¼ fXð1Þ; . . .;XðnÞg; then the log-likelihood3 of a

model M according to this test set is defined as:

LðMjT Þ ¼
Xn

i¼1

Xm

j¼1

logPMðXðiÞj jpaðXjÞðiÞÞ; ð5Þ

where i and j index over the instances and nodes in the

model respectively, Xj
(i) is the value for the j-variable in the

i-instance and pa(Xj)
(i) are the values for Xj’s parents in the

i-instance.

Fig. 4 Study area

3 For math convenience the logarithm of the likelihood is computed

instead.
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The process is repeated until the log-likelihood of the

model for n ? 1 clusters does not improve the earlier

model containing n clusters, so that n, the optimal number

of clusters, is finally determined.

Once the training stage has finished, the model in Fig. 5

is reported. It is then applied to perform the data clustering.

Thus, an individual ðx1; . . .; xnÞ will belong to the cluster c*

according to Eq. 3. In this way, an individual can belong to

more than one cluster depending on the probability distri-

bution. This feature of fuzzy problems is particularly

interesting in the environmental sciences, in particular, in

the assessment of groundwater quality.

3.2 Results

3.2.1 Data clustering

The results obtained from applying Algorithm 1 allow the

sampling points to be grouped into three clusters (Fig. 6).

Table 1 shows the log-likelihood values for the different

number of clusters (from 2 to 6) according to Eq. 5. The

entry in boldface indicates the optimal log-likelihood value

which is reached with three clusters. Despite the fact that

the algorithm stops when this measure does not improve

with respect to the previous iteration, we forced the algo-

rithm to run up to six clusters just to investigate the

behaviour of the algorithm beyond. As shown, the log-

likelihood decreases as the number of clusters increases,

meaning that the inclusion of new clusters yields less

accurate models in this case.

The average values of the physico-chemical variables

for each of the clusters are presented in Table 2.
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Group 1 comprises 50 sampling points. The average

probability of these points belonging to this group is 0.92,

with a standard deviation of 0.13 (Table 3). The sampling

points are situated over Pliocene calcarenites and Quater-

nary detritic deposits that form the uppermost part of the

aquifer. The surface wells have a depth of between 20 and

150 m. Dissolution of deposits that overlie the sampling

points mean that samples have a high conductivity. In turn,

elevated nitrates, Cu and Fe are the result of the proximity

of the phreatic level to the ground surface, which facilitates

entry of these agricultural pollutants into the groundwater

(Molina 1998). In this cluster, 18 % of the samples contain
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Fig. 5 Probabilistic data clustering model with the marginal MTE

probability distributions for the variables. Note that the features are

continuous, whilst the cluster variable is discrete. The marginal

probability for the cluster variable represents the frequency (in terms

of probability) of samples assigned to each cluster after running the

algorithm (the marginal for the physico-chemical variables has

similar interpretation). The number of states of the cluster variable

corresponds to the optimum number of clusters found by Algorithm 1

Fig. 6 Assignment of sampling

points to its most probable

cluster. (Color figure online)
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pesticides. The elevated contaminant concentrations are the

reason that these waters are used neither for human con-

sumption nor agricultural irrigation.

Group 2 consists of just two sampling points, with

probabilities of belonging of 0.97 and 0.75. These bore-

holes are located in Plioquaternary deposits at depths of 30

and 80 m. The deeper sampling site gave a conductivity of

2,180 lmhos/cm, nitrate content of 124 mg/l, Fe of

182 lg/l, Cu of 16 lg/l, and a high pesticide content

(1.63 lg/l). This sampling point is positioned between the

calcarenites and the limestones in an abandoned borehole.

The other, shallower sampling point gave a conductivity of

4,070 lmhos/cm, nitrate of 415 mg/l, Fe of 337 lg/l, Cu of

22 lg/l with presence of pesticides as well (0.28 lg/l). This

sampling point is located over calcarenites at the eastern

end of the study area and has been polluted due to the

intensive agricultural activities in the vicinity; for this

reason it has been abandoned for some time.

Group 3 is formed by 73 sampling points. The average

probability of belonging to this group is 0.95, with standard

deviation 0.09 (Table 3). This group is characterized by the

fact that all the boreholes abstract water from the lime-

stones and dolomites of the Balanegra and Aguadulce units

that lie along the southern edge of the Sierra de Gádor. The

depth of the boreholes along the edge of the Sierra is

between 200 and 300 m. The aquifer gets steadily deeper

as a result of a number of fractures, towards the centre of

the area, reaching a depth of up to 900 m. The marked

depth of these boreholes favours abstraction of better

quality water, except at the eastern and western flanks

where marine intrusion intervenes (Pérez-Parra et al.

2007). In this group only two sampling points indicate the

presence of pesticides, for which reason neither of them are

exploited.

3.2.2 Uncertainty, risk and probabilistic clustering

In addition to the data clustering, Algorithm 1 provides

information about the probability that a certain sampling

point belongs to a particular cluster (Fig. 7). This infor-

mation allows the uncertainty and risk in the groundwater

quality management to be assessed.

Thus, in group 1 (Fig. 8a), 36 of the sampling points

have a probability greater than 0.95 of belonging to this

group. Eight of the observations have a probability of

belonging to the group of between 0.70 and 0.95, while six

sampling points give a value lower than 0.70.

In group 3 (Fig. 8b), 57 sampling points have a proba-

bility greater than 0.95 of belonging to the group, 14 points

have a probability of between 0.70 and 0.95, while two

points have a probability lower than 0.70.

These data suggest that 72 and 78.1 %, respectively, of the

sampling points in these two groups show a high degree of

certainty of belonging to its group (probability C0.95), i.e.,

there is a lower risk that the water quality of a well belongs to a

different group than the one assigned using the BN clustering.

As a consequence, these sampling points could be used as

reference observations during classification of groundwater

quality or during groundwater monitoring programmes.

Moreover, for another series of sampling points

(Table 4; Fig. 9), there is greater uncertainty (probability

\0.70) that the points belong to the assigned groups. These

points share physico-chemical and hydrogeological char-

acteristics from both groups 1 and 3.

Table 2 Average values of the physico-chemical parameters measured at the sampling points grouped in clusters 1, 2 and 3. Conductivity is

expressed in lmhos/cm, nitrate in mg/l and Cu, Fe and pesticides in lg/l

# Sampling points Conductivity Nitrate Cu Fe Pesticides

Cluster 1 50 2,833 106.53 22.65 447.17 0.087

Cluster 2 2 3,125 269.4 19.15 260 0.955

Cluster 3 73 927 12.25 10.11 148.82 0.024

Table 3 Minimum, average and maximum probability, and standard

deviation for the sampling points in clusters 1 and 3. The values for

cluster 2 are not shown since, given only two sampling points, their

statistical significance is meaningless

# Sampling

points

Minimum Maximum Average SD

Cluster 1 50 0.55 0.99 0.92 0.13

Cluster 3 73 0.54 0.99 0.95 0.09

Table 1 Accuracy in terms of log-likelihood for different clustering

models depending on the number of clusters assigned. The entry in

boldface indicates the optimal number of clusters

# Clusters Log-likelihood

2 -888.6936

3 2857.4265

4 -861.5178

5 -864.0865

6 -873.5870
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– Point 65 shares the high nitrate and iron contamination

of group 1, and the low conductivity of group 3. It lies

in the Pliocene calcarenites at a depth of 100 m.

– Point 394 shares the elevated concentrations of nitrate,

iron and copper with group 1, and the low conductivity

with group 3; it lies at a depth of 40 m in the Pliocene

calcarenites.

– Point 839 has the high Fe of group 1 and the low

conductivity of group 3, tapping limestones/dolomites

at a depth of 600 m.

– Point 1189 shares the elevated Fe and Cu of group 1

and the low conductivity of group 3, it lies at 400 m

depth in the Gádor limestones and dolomites.

Fig. 7 Probability of a

sampling point belonging to

each of the clusters. For each

sampling point, three concentric

circles are shown on the map

(using a different colour for

each cluster), whose area is

proportional to the probability

of belonging to the

corresponding cluster. (Color

figure online)
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Fig. 8 Frequency histogram of the sampling points belonging to

clusters 1 and 3 for various probability intervals. The higher the

probability, the lower the uncertainty regarding assigning a sampling

point to a particular cluster, and so the lower the risk of making a

wrong decision about groundwater quality as part of the management

process

Table 4 Sampling points with lower probabilities of belonging to

groups 1 and 3

Sampling points Cluster Probability of

belonging to cluster 1

Probability of

belonging to

cluster 3

65 1 0.60 0.40

394 1 0.69 0.31

839 1 0.60 0.40

1189 1 0.60 0.40

1201 1 0.65 0.45

1202 1 0.55 0.45

766 3 0.45 0.55

821 3 0.40 0.60
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– Point 1201 shares the high Fe with group 1 and the low

conductivity with group 3, again tapping the limestone/

dolomite at a depth of 400 m.

– Point 1202 shares the Fe and Cu contamination with

group 1 but has the low conductivity of group 3. It lies

in the Sierra de Gádor limestones and dolomites at a

depth of 900 m.

– Point 766 has high nitrates, Fe and Cu, as well as

pesticides in common with group 1, with the low

conductivity of group 3. It lies at a depth of 30 m in

Quaternary deposits.

– Point 821 has elevated nitrates, Fe and Cu as in group

1, together with the low conductivity characteristic of

group 3. It exploits the Pliocene calcarenites and lies at

200 m depth.

In traditional multivariate statistics, a cluster would

normally allow the detection of sampling points with

similar water qualities, i.e., groups of sampling points

tapping groundwater with a homogeneous water quality.

However, using these groups as part of a decision-making

process does not take into account the uncertainty involved

nor the risk of making the wrong decision in terms of water

quality management.

In contrast, probabilistic clustering demonstrates that if

all the sampling points assigned to each group are taken (as

the traditional clustering methods do), we are committing

the error of including sampling points that are not fully

representative of a particular water quality.

The model developed here allows the uncertainty asso-

ciated to be known and to determine, probabilistically,

which sampling points should be chosen for groundwater

monitoring programmes and conversely, which sampling

points should be excluded on the basis of being less rep-

resentative of a particular water quality.

4 Conclusions

This paper presents a novel technique for resolving the

problem of probabilistic data clustering in the field of

groundwater management. The probabilistic model based

on MTEs allows simultaneous treatment of continuous and

discrete variables without the need to discretise the data,

thus increasing the precision of the modelling. Moreover,

the grouping of sampling points using BNs allows opti-

mization of the number of sampling points required for

making an assessment of groundwater quality. It reduces

the risk of wrong decisions being taken in the decision-

making process by considering only those points that show

higher probabilities of belonging to a particular group

during the water quality monitoring programme. The

technique of clustering presented in this article can be

applied to any other field within the environmental sciences

for risk assessment using probabilities, and thus contributes

greater diversity to a field in which hybrid BNs were not

previously applied.
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