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Abstract We applied a simple statistical downscaling

procedure for transforming daily global climate model

(GCM) rainfall to the scale of an agricultural experimental

station in Katumani, Kenya. The transformation made was

two-fold. First, we corrected the rainfall frequency bias of

the climate model by truncating its daily rainfall cumula-

tive distribution into the station’s distribution based on a

prescribed observed wet-day threshold. Then, we corrected

the climate model rainfall intensity bias by mapping its

truncated rainfall distribution into the station’s truncated

distribution. Further improvements were made to the bias

corrected GCM rainfall by linking it with a stochastic

disaggregation scheme to correct the time structure prob-

lem inherent with daily GCM rainfall. Results of the simple

and hybridized GCM downscaled precipitation variables

(total, probability of occurrence, intensity and dry spell

length) were linked with a crop model for a more objective

evaluation of their performance using a non-linear measure

based on mutual information based on entropy. This study

is useful for the identification of both suitable downscaling

technique as well as the effective precipitation variables for

forecasting crop yields using GCM’s outputs which can be

useful for addressing food security problems beforehand in

critical basins around the world.

Keywords Downscaling � GCM � Mutual information �
Crop model � Food security

1 Introduction

Vital to the role of crop yield models as early warning and

assessment tools for food security applications is the pre-

diction of seasonal climate (Hansen et al. 2010; Robertson

et al. 2007). Many studies have been conducted to explore

this linkage, and several approaches have been proposed to

reconcile the mismatch between the scale of climate data

and the requirements of crop models (Hansen and Indeje

2004). Crop models require daily weather inputs, while

climate forecasts come in seasonal formats not compatible

with what the crop models need. One of the promising

approaches is the use of GCM outputs to drive crop sim-

ulation models as they can predict climate in advance

before the growing season and they can provide daily

weather inputs. The GCM outputs have been used for water

resources planning as well as addressing other socio-eco-

nomic challenges (Sivakumar 2011). Several methods are

used to downscale GCM outputs at the river basin scale

which include multiple linear regression, robust regression,
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ridge regression, artificial neural networks, and Bayesian

neural networks to identify an appropriate transfer function

in statistical downscaling models (Mishra and Singh 2009;

Sivakumar 2011; Jeong et al. 2012).

Using raw daily GCM outputs directly as inputs to the

crop model, however, is not advisable due to the biases in

the GCM data (Baron et al. 2005). Before applying the

GCM outputs for required applications, the bias needs to be

removed for better results (Ines and Hansen 2006; Wood

et al. 2004; Maurer 2007; Mishra and Singh 2009; Kyoung

et al. 2010). Ines and Hansen (2006) applied a simple bias

correction method and successfully removed the biases in

rainfall frequency and intensity of daily GCM rainfall.

When linked with a crop model, the two-step bias correc-

tion procedure they used improved simulated yields,

although the yields were still under-predicted, which they

attributed to the inability of the bias correction method to

correct the time structure in daily GCM rainfall. Baigorria

et al. (2008) adapted the method in regional climate model

(RCM) outputs, including daily temperature and solar

radiation, and showed that the improvements made to the

RCM outputs corrected biases in the predicted yields as

compared to using raw RCM outputs directly. Recently,

Ines et al. (2011) showed that by linking bias corrected

GCM rainfall with a stochastic disaggregation method to

redistribute the corrected wet days properly in the time

series could somehow correct the time structure mismatch

in the bias corrected GCM rainfall, and further improve the

prediction of crop yields.

Lacking in the above studies is the in-depth analyses of

where these improvements in yields are coming from.

Although it is generally accepted that the improvements

made in the biases of the GCM rainfall frequency, intensity

and dry spell lengths resulted in the improvements of

predicted yields, nothing has been done to quantify the

causal relationships. Delineating this information is crucial

for the development of better crop yield prediction models,

as this will provide insights into which climate information

from the GCM is best to produce a more robust and reliable

crop yield prediction system. This paper aims to present a

hierarchy of crop prediction models based on dynamic

simulation of crop growth using a crop model and com-

binations of downscaling schemes of GCM rainfall, and to

extract information content from downscaled GCM rainfall

variables using information theory for identifying both the

downscaling technique as well as suitable precipitation

variables. Since it is not possible to present the entire crop

yield simulation results, our objective is only focused on

Maize yield. We conduct our study in Katumani, Macha-

kos, Kenya during the short October–December rainy

season, using maize (Zea mays)—a staple food in the

region, as a case study.

2 Methodology

2.1 Bias correction (BC), stochastic disaggregation

(DisAg) and combination (BC-DisAg)

We follow the procedure of Ines and Hansen (2006) and

Ines et al. (2011) for the bias correction of daily GCM

rainfall. Basically, the GCM bias correction is done by:

(a) The number of wet days in the GCM for month I is

corrected by fitting a GCM threshold (xI;GCM) derived

from the observed historical rainfall distribution:

xI;GCM ¼ F�1
I;GCM FI;obsðxI;obsÞ

� �
ð1Þ

where xI;obs is the threshold for a wet day from

observations, and FI;GCM and FI;obs are empirical

cumulative distributions of GCM and observed rain-

fall, respectively.

(b) Rainfall intensity of GCM is corrected by fitting the

truncated rainfall distribution of the climate model

into a two-parameter gamma (GI;GCM) and then

mapping it with the truncated, gamma-fitted observed

rainfall distribution (GI; obs). Correcting rainfall (xi)

for a day is done as

x0i ¼
G�1

I;obs GI;GCMðxiÞ
� �

xi [ xI;GCM

0

�
ð2Þ

where x0i is the corrected GCM rainfall for that day.

Shape and scale parameters of GCM and observed

rainfall gamma distributions are calculated using the

maximum likelihood method.

The method outlined above is called BC1 in this paper.

The general notion of daily GCM rainfall is that it

always over-predicts rainfall frequency, but this is not the

case always. An update of BC1 called BC2 was designed to

handle cases when GCM rainfall frequency is less than or

more than the observed. When GCM rainfall frequency is

less than the observed, we append a number of wet-day

events with minimum rainfall amounts (i.e., x1;obsþ
0:1 mm) in the GCM rainfall CDF to match the observed

rainfall frequency. The number of appended wet-days

depends on the discrepancy between the number of wet-

days in the GCM rainfall CDF above the calibrated

threshold and observations. These wet days are added and

distributed evenly (stochastically) in the GCM rainfall

daily time series. BC2 also handles if the left-side of the

empirical distribution of the GCM rainfall contains more

values equivalent to x1;GCM above the truncation point (Ines

et al. 2011) by preserving those values instead of elimi-

nating them ensuring that rainfall frequency is preserved.

Linking the bias corrected GCM information with sto-

chastic disaggregation (DisAg), i.e., through a conditional
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stochastic weather generator (Hansen and Ines 2005), is

done as follows:

We used monthly rainfall frequencies of the bias-corrected

daily GCM rainfall to adjust the first- and second-order tran-

sition probabilities of a high-breed Markov chain rainfall

occurrence model to correct the time distribution of wet and

dry days. Formalism for adjusting the transition probabilities

of a high-breed Markov chain rainfall occurrence model

within the stochastic disaggregation can be found elsewhere

(e.g., Katz and Parlange (1998) and Hansen and Ines (2005))

and is summarized below (see Ines et al. 2011).

The rainfall occurrence model of the stochastic weather

generator used in the stochastic disaggregation is a two-state,

hybrid second-order Markov chain able to simulate rainfall

occurrence with a first-order chain if the previous day was

wet, or a second-order chain if the previous day was dry

(Hansen and Ines 2005). If the Markov model simulates the

occurrence of rainfall on a given day, the rainfall amount is

sampled from a mixture of two exponential distributions.

Hansen and Mavromatis (2001) described details of the

temperature and solar radiation sub-models.

The rainfall frequency of bias-corrected daily GCM rain-

fall was used to adjust the first- and second-order transition

probabilities of the rainfall occurrence model to simulate time

series of wet and dry days. Transition probabilities (i.e., first-

order probabilities, e.g., wet day following a dry day (p01), wet

to wet (p11), and second-order probabilities, p101 and p001) to

match a target rainfall frequency (e.g., from bias-corrected

GCM rainfall) are related directly to the unconditional rainfall

occurrence probability, p (Eq. 3) and persistence of dry days,

q1 (Eq. 4) (Katz and Parlange 1998):

p ¼ p01

1þ p01 � p11

ð3Þ

q1 ¼ p11 � p01 ð4Þ

With the assumption that persistence of dry days remains

constant when a target rainfall occurrence probability changes

(e.g., from bias corrected GCM rainfall), p0, the first-order

adjusted transition probabilities (with apostrophes) are

determined by solving Eqs. (3) and (4) simultaneously, thus,

p001 ¼ p0 1� q1ð Þ ð5Þ

p011 ¼ q1 þ p001 ð6Þ

Equations (5) and (6) are used to determine a wet day if the

previous day was wet. If the previous day was dry, the second-

order Markov chain is used to determine if the current day will

be wet or dry through the adjusted second-order transition

probabilities. The transition probabilities for the hybrid

second-order Markov chain rainfall occurrence model can

be adjusted for a given rainfall frequency by keeping the first-

and second-order persistence of dry days (q1 (Eq. 4) and q2

(Eq. 7)) constant:

q2 ¼ p101 � p001 ð7Þ

The adjusted transition probabilities are given as follows

(Eqs. 8–10) (Hansen and Mavromatis 2001; Katz and

Parlange 1998):

p011 ¼ p0 1� q1ð Þ þ q1 ð8Þ

p0001 ¼ p0
1� q1ð Þ 1� p0ð Þ � q2 1� p011

� �

1� p0
ð9Þ

p0101 ¼ p0001 þ q2 ð10Þ

If rainfall frequency and total are used at the same time to

condition the stochastic weather generator, (i) transition prob-

abilities (first- and second-order) of the rainfall occurrence

model are adjusted based on bias-corrected monthly GCM

rainfall frequency, (ii) daily rainfall realizations are generated

iteratively until generated monthly rainfall total matches 95 %

of the target value (e.g., bias-corrected monthly GCM

rainfall), and (iii) generated daily values are re-scaled by a

ratio of monthly target (Rm) and generated rainfall totals ( �Rm)

(i.e., Rm
�Rm

) such that the monthly rainfall total generated matches

the target value. These steps are repeated for each calendar

month in a year for all the considered years (Hansen and Ines

2005). Based on BC1, BC2, combination of BC and DisAg

(BC-DisAg), different downscaling methods were used in the

study using different sources of rainfall information (Table 1).

2.2 Maize simulations

We used CERES-Maize (Ritchie et al. 1998) to evaluate the

performance of the bias-corrected, and bias-corrected—

disaggregated GCM rainfall in predicting maize yields. Data

on soil properties (sandy clay loam), crop cultivar and man-

agement practices were based on a previous study at the study

site (Keating et al. 1992). Every year, the water balance was

re-initialized on 17 October with soil water at 20 % of the soil

capacity. The date of sowing was decided when the soil water

content exceeded 40 % of the soil capacity over the top 15 cm

depth, or forced on 1 November, otherwise. The plant density

was set at 4.4 plants m-2 and 20 kg N ha-1 as ammonium

nitrate was applied at planting (low inputs system) (Ines and

Hansen 2006). First, the crop model was run with observed

daily rainfall, then with the rainfall outputs from the cases

enumerated in Table 1. In the crop modeling, daily minimum

(Tmin) and maximum temperature (Tmax) and solar radiation

(SRAD) were all generated from monthly mean values con-

ditioned on the occurrence or non-occurrence of rainfall.

2.3 Mutual information using nonparametric method

The relationship between rainfall variables and crop yield

do not share a linear relationship as studied in many

previous articles due the fact that rainfall variables
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(i.e., amount, intensity and frequency) are highly stochastic

in nature. Therefore it is important to measure the infor-

mation content between precipitation variables and crop

yield, and entropy seems to be quite useful for measuring

the information between two variables. The mutual infor-

mation (MI) using entropy is used as a measure of statis-

tical dependence among random variables which captures

the full dependence structure, both linear and nonlinear and

several applications made in the last decades (Moon et al.

1995; Sharma 2000; Mishra and Coulibaly 2010).

A high value of MI score would indicate a strong

dependence between two variables. The mutual informa-

tion between two random variables S and Q is defined as

(Fraser and Swinney 1986):

MIðS;QÞ ¼
Z

Psqðs; qÞ log Psqðs;qÞ
�

PsðsÞPqðqÞ
� �

dsdq

ð11Þ

where PsðsÞ and PqðqÞ are the marginal probability density

functions (pdf’s) of S and Q respectively, and Psqðs; qÞ is

the joint pdf of S and Q. In our study, S denotes maize

yield, whereas Q represents individual precipitation vari-

ables (i.e., amount, intensity and frequency).

For any given bivariate sample, the MI score in Eq. (11)

can be estimated as:

MIðS;QÞ ¼ 1

n

Xn

i¼1

loge Psqðsi; qiÞ=PsðsiÞPqðqiÞ
� �

ð12Þ

where si and qi are the ith bivariate sample data pair in a

bivariate sample of size n.

The multivariate kernel density estimator (Scott 1992;

Wand and Jones 1995) using a Gaussian kernel function for

estimating joint and marginal pdfs can be defined as:

f̂XðxÞ ¼
1

n

Xn

i¼1

1

ð2pÞd=2kd detðScÞ1=2

� exp �ðx� xiÞT Sc�1ðx� xiÞ
2k2

 !

ð13Þ

where the mutivariate kernel density estimate is denoted by

f̂XðxÞ, the sample covariance of the variable set X is

denoted bySc; and k is known as the bandwidth of the

kernel density estimate. In this study k is chosen as the

optimal Gaussian bandwidth for a normal kernel given as

(Scott 1992; Silverman 1986):

k ¼ 4

d þ 2

� 	1=ðdþ4Þ
nð�1=ðdþ4ÞÞ ð14Þ

where n and d refer to the sample size and dimension of the

multivariate variable set, respectively.

3 Data and study area

The analyses are based on data from the Katumani Dryland

Research Center (1�350S, 37�140E, 1601 a.m.s.l) in the

Machakos District of Eastern Kenya, a main maize grow-

ing region. Rainfall is bimodal in distribution and the cli-

mate is marginal for maize in both seasons. Because of

strong food preferences, maize is the staple crop. The

October–December short rainy season is an important

maize growing season, and is fairly predictable at a sea-

sonal lead-time using statistical (Indeje et al. 2000) and

dynamic (Hansen and Indeje 2004) forecast models, mak-

ing it interesting to test the utility of daily GCM rainfall

from crop yield prediction.

Table 1 Downscaling schemes conducted in the study

Serial

no.

Methodology Description of methods

1 Uncorrected No bias correction

2 BC 1 Corrects under-prediction of rainfall frequency by truncating GCM rainfall distribution given a

threshold. Corrects rainfall intensity using gamma–gamma transformation (Ines and Hansen 2006)

3 BC 2 Corrects rainfall frequency (under-/over-prediction) by truncating the GCM rainfall distribution

given a threshold, corrects ‘‘nugget effect’’ truncating empirical. Corrects rainfall intensity using

gamma–gamma transformation

4 BC 1-DisAg 2-Freqn Stochastic disaggregation of BC1 corrected GCM rainfall frequency (averaged across 24 members)

5 BC 1-DisAg 2-Freqn-Total Stochastic disaggregation of BC1 corrected GCM rainfall frequency (averaged across 24

members) ? totals (averaged across 24 members)

6 BC 1-DisAg 2-Total Stochastic disaggregation of BC1 corrected GCM rainfall totals (averaged across 24 members)

7 BC 2-DisAg 2-Freqn Stochastic disaggregation of BC2 corrected GCM rainfall frequency (averaged across 24 members)

8 BC 2-DisAg 2-Freqn-Total Stochastic disaggregation of BC2 corrected GCM rainfall frequency (averaged across 24

members) ? totals (averaged across 24 members)

9 BC 2-DisAg 2-Total Stochastic disaggregation of BC2 corrected GCM rainfall totals (averaged across 24 members)
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For analysis, we used ECHAM4.5 daily rainfall outputs

(Roeckner et al. 1996) forced by observed sea surface

temperature (SST) (http://iridl.ldeo.columbia.edu). The

climate model grid cell encompassing the Katumani Dry-

land Research Center in the Machakos district of eastern

Kenya was selected. Daily rainfall outputs (1970–1995)

from all 24 ensemble members in this grid cell were

extracted. Figure 1 shows how skillful (R) is the uncor-

rected GCM rainfall in the study area. Daily rainfall

observations from the research center were used for the

GCM rainfall bias correction. Other input data needed for

the quantitative evaluation (crop modeling) of the bias-

corrected GCM daily rainfall were all collected from the

research station (Hansen and Indeje 2004).

All 24 members were bias-corrected using the thresh-

old, [0 mm, delineating a wet day. The bias corrections

were conducted using the simple bias correction of Ines

and Hansen (2006) (BC1) and that of Ines et al. (2011)

(BC2) that accounts for both under and over predictions of

rainfall frequency, and corrects the ‘‘nugget effect’’ in

truncating empirical distributions. Monthly rainfall statis-

tics for 26 years (1970–1995) were then extracted and used

in the stochastic disaggregation (rainfall frequency, rainfall

frequency ? totals, totals).

4 Results and discussion

4.1 Precipitation downscaling

The advantages of bias correction and the linkage of bias

corrected rainfall information with stochastic disaggregation

to the improvements of downscaled GCM rainfall is shown

in Table 2 based on different goodness-of-fit criteria: cor-

relation coefficient, denoted by R (Pearson product-moment

correlation coefficient); root mean square error denoted by

RMSE; and mean bias error denoted by MBE. Considering

all three goodness-of-fit criteria, it can be said that for the

month of October the BC2-DisAG2-Freqn (see Table 1 for

definitions of methods) methodology performed better for

total monthly precipitation. When the downscaled precipi-

tation was not considered for bias correction, higher RMSE,

MBE and lower R were observed. Interestingly, when the

probability of occurrence was observed, the BC1-DisAg2-

Freqn-Total methodology performed better. However, the

performance of rainfall intensity for the month of October

was not properly captured in most of the methodology except

for the BC2-DisAG2-Freqn method which showed an

improvement based on R, even though the relative perfor-

mance of RMSE and MBE did not improve.

Based on the all three goodness-of-fit measures, the

downscaled capability for the November total rainfall was

found to be better for the BC2, BC2-DisAg2-Freqn-Total

and BC2-DisAg2-Total methodologies. The performance

of uncorrected downscaled rainfall could not be interpreted

well using R, however based on RMSE and MBE its per-

formance worsened. Therefore, it is important to consider

all three performance measures in the selection of meth-

odology to be considered. A similar observation was also

made for uncorrected rainfall intensity for the November

rainfall. For the month of December the total rainfall as

well as the probability of occurrence, the overall BC2-

DisAg2-Freqn methodology was found to be performing

better for two statistical performance criteria, even though

MBE was the lowest for other methodologies. However,

the methodologies could not improve rainfall intensity in

comparison to the total rainfall and probability of occur-

rence. Except for dry spell lengths, a majority of the biases

in rainfall frequency, intensity and totals in the GCM

rainfall were corrected by the deterministic transformation

of the GCM rainfall. The corrections of under/over-pre-

diction of rainfall frequency and the ‘‘nugget effect’’ of

truncating empirical distributions (BC2) improved the

corrections of rainfall frequency in the month of Novem-

ber, where rainfall occurrence was under-predicted by the

GCM (not shown). Only when we linked the bias corrected

GCM rainfall information (BC1 and BC2) with a stochastic

weather generator that the majority of the dry spell length

biases were reduced.

Fig. 1 Correlation of uncorrected ECHAM4.5 rainfall for October–

November–December (OND) season (1970–1995) against University

of East Anglia’s gridded rainfall data. Star mark shows the location of

Katumani Dryland Research Center
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4.2 Mutual information (MI) between downscaled

precipitation variables and crop yield

Crop yield depends on multiple precipitation variables

which include amount, probability of occurrence, intensity

and dry spells. These variables may be on a seasonal time

scale as well as for individual months. Different down-

scaling methods performed differently for the evaluation of

variables calculated using downscaled precipitation and

exploring their relationship with crop yield prediction.

Therefore, it is important to identify suitable downscaling

techniques as well as important precipitation variables,

which can be useful for seasonal crop yield prediction

based on the GCM output.

The mutual information values were calculated between

seasonal precipitation amounts along with constituent

months obtained from different downscaling methods with

respect to crop yield, as shown in Fig. 2a. The MI was

calculated between maize yield and downscaled precipi-

tation variables. A high value of MI score would indicate a

strong dependence between two variables. It was observed

that the downscaled seasonal precipitation amount obtained

from BC2-DisAg2 frequency shared more information with

the crop yield. Based on overall observation, seasonal

Table 2 Seasonal rainfall statistics from different downscaling schemes

Individual

months

Precipitation variables Goodness of

fit

Methodologya

1 2 3 4 5 6 7 8 9

October Total R 0.33 0.37 0.38 0.42b 0.37 0.37 0.47b 0.38 0.38

RMSE 1.41 1.28 1.28 1.26 1.28 1.28 1.23 1.28 1.28

MBE -0.54 -0.06 -0.02 -0.08 -0.06 -0.06 -0.04 -0.02 -0.02

Probability of

occurrences

R 0.26 0.34 0.32 0.34 0.51b 0.41b 0.34 0.47b 0.38

RMSE 0.41 0.13 0.13 0.13 0.12 0.12 0.13 0.12 0.13

MBE 0.39 -0.01 0.00 -0.01 0.01 0.00 -0.01 0.02 0.01

Intensity R 0.24 0.02 0.05 0.32 0.22 0.22 0.45* -0.10 0.21

RMSE 6.98 5.26 5.20 4.96 5.14 5.14 4.88 5.43 5.20

MBE -4.90 -0.14 -0.15 1.15 1.48 1.48 1.29 1.26 1.45

November Total R 0.74b 0.75b 0.75b 0.66b 0.75b 0.75b 0.63b 0.75b 0.75b

RMSE 3.94 1.76 1.69 2.15 1.76 1.76 2.08 1.69 1.69

MBE -3.34 -0.56 0.07 -0.51 -0.56 -0.56 -0.18 0.07 0.07

Probability of

occurrences

R 0.56b 0.53b 0.55b 0.59b 0.51b 0.52b 0.43b 0.50b 0.56b

RMSE 0.14 0.14 0.12 0.13 0.15 0.13 0.14 0.14 0.12

MBE 0.06 -0.07 -0.01 -0.06 -0.05 -0.03 -0.02 0.00 0.00

Intensity R 0.63b 0.61b 0.62b -0.30 0.58b 0.58b 0.29 0.58b 0.55b

RMSE 7.56 2.95 2.83 3.74 2.97 2.97 3.35 2.94 2.92

MBE -6.90 -1.07 -0.74 0.27 0.25 0.25 0.18 0.37 0.28

December Total R 0.42b 0.43b 0.43b 0.39b 0.43b 0.43b 0.47b 0.43b 0.43b

RMSE 2.05 1.66 1.69 1.43 1.65 1.65 1.38 1.68 1.68

MBE -1.48 -0.18 0.00 -0.11 -0.15 -0.15 0.19 0.05 0.04

Probability of

occurrences

R 0.53b 0.53b 0.52b 0.46b 0.50b 0.52b 0.55b 0.47b 0.47b

RMSE 0.25 0.13 0.13 0.13 0.15 0.13 0.13 0.16 0.13

MBE 0.22 -0.02 0.02 -0.01 -0.01 -0.01 0.02 0.02 0.00

Intensity R 0.18 0.17 0.18 0.25 0.15 0.15 0.25 0.21 0.19

RMSE 5.74 3.23 3.30 2.51 2.66 2.66 2.53 2.61 3.01

MBE -5.14 -1.40 -1.54 0.18 0.34 0.34 0.40 0.16 0.33

Dry spell length R 0.71b 0.69b 0.69b 0.68b 0.71b 0.70b 0.58b 0.75b 0.66b

RMSE 7.55 4.26 4.26 4.63 4.51 4.42 4.81 3.89 4.47

MBE 6.34 0.02 0.02 1.58 1.72 1.43 0.55 0.18 0.75

a The serial number of methodology used is based on Table 1
b Indicates the ‘R’ values which are statistically significant at 95 % two-tailed significance levels
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precipitation amount shared more information, whereas the

October precipitation amount shared the least information.

However, the November and December month precipita-

tion provided nearly similar type of information with crop

yield. This is logical, because the month of October com-

prises most of the vegetative stage of the crop, and

November and December are when flowering and milking

stage occur, which are very sensitive to the water avail-

ability. Timing and severity of water stress during this

period would drastically decrease crop yields. However, it

can be said that increase in seasonal precipitation as well as

the November and December month rainfall increases crop

yields (Fig. 2). The next downscaling method which shared

maximum information is BC1-DisAg2 frequency, which is

again based on the correction of frequency but with the

daily GCM rainfall corrected by the older BC (Table 1).

The mutual information between precipitation variables

and crop yield based on the probability of occurrence dif-

fered from the precipitation amount on the seasonal scale

(Fig. 2b). However, the downscaled probability of occur-

rence using BC2-DisAg2 frequency for the month of

December shared maximum information with crop yield.
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Fig. 2 The mutual information content between seasonal and individual month’s a rainfall amount, b probability of occurrences, c rainfall

intensity, and d dry spell for different models with the crop yield
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Overall December and November month’s probability of

occurrence provided higher information in comparison to

the seasonal and October time scales, suggesting that

rainfall frequency information from seasonal time scale, as

well as those from the less-sensitive period of crop growth,

were not better predictors of crop yields in the study

location as compared to the November and December

rainfall frequencies. This is a critical insight, because in

current climate prediction system, it is the seasonal values

that are predicted. If a climate model is skillful to provide

rainfall frequency information during the expected critical

periods of crop growth, one may be able to predict better

crop yields before the end of the growing season.

Similarly, the information content between precipitation

intensity and crop yield differed from that of probability of

occurrence as well as precipitation amount (Fig. 2c).

Higher information content was observed between precip-

itation intensity of December downscaled based on the

BC2-DisAg2-Total and interestingly it was least for

December based on the BC2-DisAg2 frequency. Seasonal

as well as the October precipitation intensity did not share

much information with crop yield in comparison with

months of December and November. The reason for rain-

fall intensities generated by stochastic disaggregation of

rainfall frequency not giving better information could be

due to the rainfall intensity model parameters not being

constrained/adjusted on those months of interest. In other

words, the rainfall intensities generated did not conform to

the target rainfall intensities, but were likely representative

of climatology (Hansen and Ines 2005). On the other hand,

when we combined monthly rainfall total with rainfall

frequency or using it alone in the stochastic disaggregation,

we generated more appropriate rainfall intensities repre-

senting those months of interest, as shown by the increased

MI in the months of November and December (Fig. 2c). It

should be noted however that we did not use rainfall

intensity as a predictor in the stochastic disaggregation.

Usually, rainfall intensity was less (or not) predictable

compared with other rainfall variables (Moron et al. 2007).

Ines et al. (2011) found that the GCM model had lesser

skill for predicting the October–November–December

rainfall intensity (R = 0.37) than rainfall frequency and

totals (R & 0.70) in the study area.

Dry spell lengths during the anthesis stage (November

15–December 31), on the other hand, were found to give

the highest information with respect to the predictability of

crop yields (Fig. 2d). For all the downscaling schemes

tested, mutual information was greater than 0.30, except for

BC1 (see Table 1) when a threshold (continuous [3 days

no rain) was imposed to define a dry spell. Even for the

case of no bias correction, MI measured a strong rela-

tionship between yield variability and dry spell during this

period. It should be noted however that the bias in the

predicted yield was not measured by entropy. The yield

bias diminished as we applied the hierarchy of downscaling

schemes especially when we stochastically corrected the

timing of wet/dry days within the time series.

5 Conclusions

The mutual information content between precipitation

variables and crop yield plays an important role for sea-

sonal crop prediction using the GCM output. This study

derives a set of downscaling techniques to explore the

mutual information between precipitation variables with

crop yield. The following conclusions are drawn from this

study:

(i) The bias correction and stochastic disaggregation and

their combination help improve the performance of

downscaled GCM rainfall. It is worth noting that the

performance of rainfall intensity could not be

improved significantly; however the bias is greatly

improved in comparison to the uncorrected precipita-

tion. The performance of different methodologies

varies among precipitation variables. Even though the

performance measure based on the coefficient of

correlation does not change much for the uncorrected

rainfall, however, significant changes are observed in

removing the bias.

(ii) The total seasonal rainfall amount obtained from the

BC2-DisAg2-Freqn methodology plays an important

role for crop yield in comparison to the October

rainfall.

(iii) The probability of occurrence of rainfall during

November and December have more importance

than the October and seasonal time period in the

study area. Overall the probability of occurrence

obtained in December after stochastic disaggregation

of BC2 corrected GCM rainfall frequency performs

better.

(iv) The rainfall intensity observed during the month of

December has more contribution to the better crop

yield prediction than other monthly and seasonal

time periods. Based on all the methodology, the

BC2-DisAg2-Total performs better for rainfall inten-

sity of the December month.

(v) The performance of mutual information based on the

dry spell shows a larger variation among different

models as well as based on threshold and no threshold

conditions. Overall the BC 2 method performs better

with no threshold conditions. When all rainfall

variables are compared it can be observed that the

performance of a dry spell is an important contrib-

uting factor for crop yield as higher information is
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shared based on the mutual information. Therefore,

the challenge is to predict the dry spells on a seasonal

lead time for better crop yield simulation.

Acknowledgments The authors wish to thank the Associate Editor

and the Reviewers for their useful comments and suggestions that

helped to improve the quality of the manuscript. AKM and VPS

acknowledge the support from USGS Grant 2009TX334G. AVMI and

JWH acknowledge the support from NOAA Grant No.

#NA05OAR4311004. The model outputs from IRI have been funded

by a computing grant from the multi-agency Climate Simulation

Laboratory (CSL) program.

References

Baigorria GA, Jones JW, O’Brien JJ (2008) Potential predictability of

crop yield using an ensemble climate forecast by a regional

circulation model. Agric For Meteorol 148:1353–1361

Baron C, Sultan B, Balme M, Sarr B, Traore S, Lebel T, Janicot S,

Dingkuhn M (2005) From GCM grid cell to agricultural plot:

scale issues affecting modelling of climate impact. Philos Trans

R Soc B 360:2095–2108

Fraser AM, Swinney HL (1986) Independent coordinates for strange

attractors from mutual information. Phys Rev A 33(2):

1134–1140

Hansen JW, Indeje M (2004) Linking dynamic seasonal climate

forecasts with crop simulation for maize yield prediction in

semi-arid Kenya. Agric For Meteorol 125:143–157

Hansen JW, Ines AVM (2005) Stochastic disaggregation of monthly

rainfall data for crop simulation studies. Agric For Meteorol

131:233–246

Hansen JW, Mavromatis T (2001) Correcting low-frequency vari-

ability bias in stochastic weather generators. Agric For Meteorol

109:297–310

Hansen JW, Tippett M, Bell M, Ines AVM (2010) Linking seasonal

forecasts into riskview to enhance food security contingency

planning. TR10-12. IRI Technical Report, New York

Indeje M, Semazzi FHM, Ogallo LJ (2000) ENSO signals in East

African rainfall and their prediction potentials. Int J Climatol

20:19–46

Ines AVM, Hansen JW (2006) Bias correction of daily GCM rainfall

for crop simulation studies. Agric For Meteorol 138:44–53

Ines AVM, Hansen JW, Robertson AW (2011) Enhancing the utility

of daily GCM rainfall for crop yield prediction. Int J Climatol

31:2168–2182

Jeong DI, St-Hilaire A, Ouarda TBMJ, Gachon P (2012) Comparison

of transfer functions in statistical downscaling models for daily

temperature and precipitation over Canada. Stoch Environ Res

Risk Assess 26:633–653

Katz RW, Parlange MB (1998) Overdispersion phenomenon in

stochastic modeling of precipitation. J Clim 11:591–601

Keating BA, Wafula BM, Watiki JM (1992) Exploring strategies for

increased productivity—the case for maize in semi-arid Eastern

Kenya. In: A search for strategies for sustainable dryland

cropping in Semi-arid Eastern Kenya, ACIAR proceedings, no.

41. Australian Centre for International Agricultural Research,

Canberra, pp 90–101

Kyoung MS, Kim HS, Sivakumar B, Singh VP, Ahn KS (2010)

Dynamic characteristics of monthly rainfall in the Korean

Peninsula under climate change. Stoch Environ Res Risk Assess

25:613–625

Maurer EP (2007) Uncertainty in hydrologic impacts of climate

change in the Sierra Nevada, California under two emissions

scenarios. Clim Chang 82(3–4):309–325

Mishra AK, Coulibaly P (2010) Hydrometric network evaluation for

Canadian watersheds. J Hydrol 380(2010):420–437

Mishra AK, Singh VP (2009) Analysis of drought severity–area–

frequency curves using a general circulation model and scenario

uncertainty. J Geophys Res 114:D06120. doi:10.1029/2008JD0

10986

Moon Y, Rajagopalan B, Lall U (1995) Estimation of mutual

information using kernel density estimators. Phys Rev E

52(3):2318–2321

Moron V, Robertson AW, Ward MN, Camberlin P (2007) Spatial

coherence of tropical rainfall at the regional scale. J Clim 20:

5244–5263

Ritchie JT, Singh U, Godwin DC, Bowen WT (1998) Cereal growth,

development and yield. In: Tsuji GY, Hoogenboom G, Thornton

PK (eds) Understanding options for agricultural production.

Kluwer Academic Publishers, Dordrecht, pp 79–98

Robertson AW, Ines AVM, Hansen JW (2007) Downscaling of

seasonal precipitation for crop simulation. J Appl Meteorol

Climatol 46:677–693

Roeckner E, Arpe K, Bengtsson L, Claussen CM, Dümenil L, Esch
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