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Abstract This paper describes an innovative procedure

that is able to simultaneously identify the release history

and the source location of a pollutant injection in a

groundwater aquifer (simultaneous release function and

source location identification, SRSI). The methodology

follows a geostatistical approach: it develops starting from

a data set and a reliable numerical flow and transport model

of the aquifer. Observations can be concentration data

detected at a given time in multiple locations or a time

series of concentration measurements collected at multiple

locations. The methodology requires a preliminary delin-

eation of a probably source area and results in the identi-

fication of both the sub-area where the pollutant injection

has most likely originated, and in the contaminant release

history. Some weak hypotheses have to be defined about

the statistical structure of the unknown release function

such as the probability density function and correlation

structure. Three case studies are discussed concerning two-

dimensional, confined aquifers with strongly non-uniform

flow fields. A transfer function approach has been adopted

for the numerical definition of the sensitivity matrix and the

recent step input function procedure has been successfully

applied.

Keywords Geostatistical approach � Transfer function �
Source detection � Non uniform flow � Groundwater

List of symbols

C(x,t) Concentration at point x and time t

t Time

s Time

x Position in the domain

x0 Source location

u Velocity tensor

D Dispersion tensor

r Nabla operator

F(t) Concentration of the water injected at the source

as function of time t

F0 Constant and known mass rate input function

f(x,t) Transfer function at position x and time t

m Number of observations

n Number of unknowns

z m 9 1 Observations

s n 9 1 Unknowns

s(t) Unknown release function

p Number of unknown coefficients

h(s) m 9 1 Vector that describes the transport process

v m 9 1 Measurement errors

R m 9 m Error covariance matrix

H m 9 n Sensitivity matrix

T Sampling time

X n 9 p Matrix, mean of the unknown process

b p 9 1 Unknown coefficients

Q(h) n 9 n Matrix, covariance of the unknown

process

h Structural parameters of the covariance

function

r2
s

Variance of the unknown release function s(t)

ks Correlation time length of the unknown release

function s(t)
R m 9 m Dummy matrix

N m 9 m Dummy matrix
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rR
2 Variance of the measurement error

ŝn 9 1 Vector of estimated release function

M p 9 n Multipliers

K n 9 m Kriging coefficients

V n 9 n Matrix, covariance of the estimate of the

errors

~s Transformed unknown function

a Positive number

hD Head level downstream

hU Head level upstream

aL Longitudinal dispersivity

aT Transversal dispersivity

Qin Injected flow rate

K Hydraulic conductivity

Y Logarithm of the hydraulic conductivity

rY
2 Variance of the log-conductivity field

Z Normalized log-conductivity

lY Mean of the log-conductivity field

1 Introduction

General interest in environmental issues has drawn atten-

tion to the quality of groundwater resources. Scientific

efforts in groundwater flow studies have primarily focused

on the flow and transport behavior and on the identification

of related parameters. During the final decades of the

twentieth century, increasing work has been focused on the

problem of source identification and recovering pollutant

release histories. The identification of a source location is of

paramount importance to identify responsible parties for

pollutant releases. The knowledge of the pollutant injection

function gives information about the future pollution spread

and allows a better planning of remediation actions (Liu and

Ball 1999; Snodgrass and Kitanidis 1997; Skaggs and

Kabala 1994; Butera and Tanda 2003). Moreover, from a

legal and regulatory point of view, it is important to

determine the release time, the duration, and the maximum

value of the released solute concentration. A reliable release

history can also be a useful tool for apportioning remedia-

tion costs of a polluted area among the responsible parties.

A geostatistical approach to recovering the release his-

tory of a pollutant in groundwater has been applied over the

past 30 years. Snodgrass and Kitanidis (1997) proposed

this procedure to recover the release history in one-

dimensional uniform flow. Several improvements and

applications of the geostatistical methodology were pro-

posed (Michalak and Kitanidis 2002, 2003, 2004a, b), also

by Butera and Tanda (2003) and Butera et al. (2006).

Due to the linearity of the governing differential equation

of the transport problem, Snodgrass and Kitanidis (1997)

developed a geostatistical approach using a transfer func-

tion (TF), or Kernel function, (Jury and Roth 1990) that

describes the effect in time, at a certain location of the

aquifer, of an impulse release of a pollutant at its source.

The knowledge of the TF plays an important role in the

solution of the direct and inverse transport problems. In the

geostatistical procedure, but also using Tikhonov regulari-

zation (Skaggs and Kabala 1994), non-regularized nonlin-

ear lest squares (Alapati and Kabala 2000) and minimum

relative entropy (Woodbury and Ulrych 1996, 1998), TFs

are used to concisely describe the response of the aquifer to

an impulse excitation. Luo et al. (2006) applied a TF

approach to the analysis of a tracer test. The authors showed

that the gamma distribution, in their study case, is an effi-

cient parametric model that can take into account a highly

non-uniform flow field. This parametric model, interpreted

as probability density function (pdf) of the travel times, can

be used as prediction of non-linear transport. Fienen et al.

(2006) applied a geostatistical TF procedure to identify TFs

in the interpretation of a tracer field test.

TFs can be analytically determined if the problem has a

simple flow field, but in many practical applications, the

characteristics of the groundwater flow field do not allow

an analytical formulation of the TFs. This is also the case in

non-uniform flows due to complicated boundary condi-

tions, the existence of pumping wells, or high levels of

aquifer heterogeneity. To manage these cases through

analytical formulas, the technician must resort to an over-

simplification of the real problem. As a consequence, a

rough approximation in the results can be expected. To

overcome this difficulty, a numerical procedure to compute

TFs was developed by Butera et al. (2004) and applied to

homogeneous and weakly heterogeneous aquifers (Butera

et al. 2006).

The previous studies, except for Michalak and Kitanidis

(2004b), consider the location of the pollutant source to be

known. In the present paper, an innovative procedure is

proposed to obtain the simultaneous identification of the

release history and the source identification in 2-D non-

uniform flow fields. The procedure requires a preliminary

delineation of an area where the pollutant source is most

likely to be present.

The manuscript is organized in three parts: first the state

of the practice is presented then the developments of the

geostatistical approach necessary to address our topics are

discussed. Finally, three case studies are presented as

examples of application of the proposed procedures.

2 State of the practice

In the last 30 years several methods have been developed

to identify the release time history of the pollutants and the
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location of the contaminant source. A detailed review of

these methodologies can be found in the work of Neupauer

et al. (2000), Morrison (2000), Atmadja and Bagtzoglou

(2001), Michalak and Kitanidis (2004b) and Dokou and

Pinder (2009).

The present paper develops a new application of the

geostatistical procedure proposed by Snodgrass and

Kitanidis (1997) to recover the release history of a pollu-

tant injection; such a procedure presents great capabilities

for application to real cases because it is statistically based

and useful for a large range of technical topics. Butera and

Tanda analyzed the performance of the procedure in 2-D

flow field including uncertainty in the observations and in

the model parameters (Butera and Tanda 2001, 2003), of

areal and multiple sources (Butera and Tanda 2002, 2003)

and of heterogeneous but uniform (in the average) flow

(Butera and Tanda 2004).

Michalak and Kitanidis (2002, 2004a) applied the geo-

statistical procedure to real 1-D cases and developed, again

in the geostatistical framework, a methodology able to

recover the antecedent conditions (position and concen-

tration) of a plume monitored at a certain time in both 2-D

homogeneous and heterogeneous case (Michalak and

Kitanidis 2004b). The paper shows a method able to also

detect the pollutant source location by going backward in

time, step-by-step. Michalak and Kitanidis (2004b) used

the adjoint state method (Neupauer and Wilson 2001) to

obtain the elements of the sensitivity matrix (TF) needed

for the inversion process. Milnes and Perrochet (2007),

exploiting the properties of the forward and backward

location pdf in the linear transport process, proposed a

procedure able to recover, backward in time, the plume

position and the timing of a pollutant release. The indicated

methodology requires the transport simulation on a reversed

flow field.

Butera et al. (2004) tackled the topic of numerical

identification of the TF in a heterogeneous aquifer; the

method derived for 1-D flow fields has been tested in

Butera et al. (2006) in homogeneous 2-D fields, comparing

the performance of the TFs obtained through the numerical

method with that of the TFs obtained analytically. The

technique exploits the linearity of the transport process and

the associated TF theory (Jury and Roth 1990) and does not

require the inversion of the flow field.

It is worthwhile to note that the identification of the TF

is useful not only for the application of the geostatistical

approach but also for the use of Tikhonov regularization

(Skaggs and Kabala 1994), non-regularized nonlinear least

squares (Alapati and Kabala 2000) and minimum relative

entropy (Woodbury and Ulrych 1996, 1998). The devel-

opment of efficient strategies to identify the elements of the

sensitivity matrix (or the TF in linear problems) remains a

matter of great importance.

3 Mathematical statements

3.1 Groundwater transport

The following Eq. (1) describes the transport process in an

aquifer with uniform porosity reacting to the injection of a

non-sorbing, non-reactive solute in a point source:

oC x; tð Þ
ot

¼ �r C x; tð Þ u x; tð Þ½ � þ r D xð Þ � rC x; tð Þ½ �
þ s tð Þ dðx� x0Þ: ð1Þ

where x is a vector describing the point location, u(x,t) is

the effective velocity, D(x) the dispersion tensor, C(x,t) the

concentration at location x and time t, r is the differential

operator Nabla and s(t) is the amount of conservative

pollutant per unit time injected into the aquifer through the

source located at x0.

Equation (1) is a linear differential equation whose

solution, when associated with the initial and boundary

conditions: C(x,0) = 0; C(?,t) = 0, is given by the fol-

lowing integral (Jury and Roth 1990):

C x; tð Þ ¼
Z t

0

s sð Þ f ðx; t � sÞds; ð2Þ

where f(x,t - s) is the TF, or Kernel function, that

describes the effects at x at time t by an impulse injection

occurring at x0 at time s.

3.2 Geostatistical approach

The quasilinear geostatistical methodology used as an

inverse procedure is briefly explained in the following. For

more details see Kitanidis (1995, 1996) and Snodgrass and

Kitanidis (1997).

It is assumed that a set z of concentration data is

available at the monitoring time T, originated from an

unknown release process s(t). The observed concentration

data can be expressed as function of the release process by

the following equation:

z ¼ h sð Þ þ v; ð3Þ

where z is a m 9 1 vector of observations, h(s) is the n 9 1

vector containing the time discretization of the unknown

release function s(t) and v is a m 9 1 vector of epistemic

errors with zero mean and known covariance matrix

R ¼ r2
R � I. Even if it can be estimated by the

geostatistical procedure (Fienen et al. 2009), in this work

it is assigned constant and we will tackle the topic in a

future paper. For the case of a conservative solute, the

relationship between the observed concentration and the

release is linear (see Eqs. (2) and (3)) can be simplified to

(Snodgrass and Kitanidis 1997):
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z ¼ H � sþ v: ð4Þ

Equation (4) represents the matrix form of Eq. (2),

where the matrix H contains the values of the TF (f),

computed at appropriate times and locations:

H ¼ Dt

f x1; T � Dtð Þ . . . f x1; T � nDtð Þ
f x2; T � Dtð Þ . . . f x2; T � nDtð Þ

. . . . . . . . .
f xm; T � Dtð Þ . . . f xm; T � nDtð Þ

2
664

3
775: ð5Þ

The transfer matrix H includes all the characteristics of

the flow and transport process and, due to the linearity of

the governing differential equation, is also the sensitivity

matrix, i.e. the element Hi,j represents how the observation

zi changes as the release value sj varies.

Taking into account the unavoidable uncertainties in the

processes controlling the pollutant release, s can be con-

sidered random with characteristics of autocorrelation, due

to all phenomena (leachate, infiltration, leakage from tanks,

etc.) that take place between the pollutant discharge and its

arrival into the groundwater system. For this reason, the

random vector s can be characterized by an unknown mean

and a covariance function. The mean can be described as

E[s] = Xb where E[] denotes the expected value, X is a

n 9 p matrix of known functions and b is a vector of size

p 9 1 that contains the unknown drift coefficients. In this

work, a constant but unknown mean is considered; thus X

is an n 9 1 vector filled by 1 and b is the scalar unknown

mean of the function. The covariance among the elements

of s is assumed to be a Gaussian function, represented by

the matrix Q(h) = E[(s - Xb)(s - Xb)T], where h are the

unknown structural parameters, i.e. the variance r2
s and the

correlation time length ks.

The estimation procedure proposed by Kitanidis (1995)

is divided into two parts: first the structural parameters h of

the selected covariance function are determined, then the

unknown release function is estimated by means of a

Kriging process.

The identification of the structural parameters follows a

restricted maximum likelihood approach. The probability

that the random process with parameter h reproduces the

observation z can be estimated through the following:

pðzjhÞ / Rj j�1=2 XT HTR�1HX
�� ���1=2

exp � 1

2
zTN�1z

� �
;

ð6Þ

where R ¼ HQHT þ R and N ¼ R�1 � R�1HX

XT HTR�1HX
� ��1

XTHTR�1.

A good estimation of h is the one that maximizes the

probability pðzjhÞ: maximizing Eq. (6) is equivalent to

minimizing the negative logarithm of pðzjhÞ, resulting in

the objective function L(h):

L hð Þ ¼ 1

2
ln Rj j þ 1

2
ln XT HTR�1HX
�� ��þ 1

2
zTN�1z: ð7Þ

The minimization of L(h) is achieved by setting the

derivatives of L(h) with respect to h to zero.

Once the structural parameters are computed, the esti-

mation ŝ of the release function s(t) is obtained through

Kriging:

ŝ ¼ K � z; ð8Þ

where the matrix K (n 9 m) of the Kriging weights is

calculated by solving the following system obtained from

the un-biasedness and minimum variance conditions:

R HX
HXð ÞT 0

� �
KT

M

� �
¼ HQ

XT

� �
: ð9Þ

In Eq. (9), M (p 9 m) is a matrix of Lagrange

multipliers. The covariance matrix of the estimation error

is:

V ¼ �XMþQ�QHTKT : ð10Þ

This methodology is functional and efficient but does

not enforce non-negativity of the estimated concentration

(unconstrained case). Box and Cox (1964), with the aim at

avoiding this problem, suggest the use of a power

transformation of the unknown variable s. Following

Kitanidis and Shen (1996) and Snodgrass and Kitanidis

(1997) the new unknown function becomes:

~s ¼ a s1=a � 1
� �

; ð11Þ

where a is a positive number and it is chosen as small as

possible while ensuring ~s [ � a. For ~s\� a imaginary

results from Eq. (11) are possible. This transformation is

general: it includes the unmodified s (a = 1), the square

root of s (a = 2), and in the limit, for large value of a, it

reduces to a logarithm transformation. Small values of a
cause minor transformations, which helps the method to

converge quickly. Alternative methods to enforce the

non-negativity of concentration values are presented in

Michalak and Kitanidis (2003, 2004c).

When the values of s are constrained to be positive

(constrained case) and they are physically compatible, Eq.

(4) becomes:

z ¼ H � sþ v ¼ H � ~sþ a
a

	 
a

þv ¼ h ~sð Þ þ v: ð12Þ

In this case, hð~sÞ is not linear with respect to the new

unknown ~s and the solution is reached iteratively (for

details see Kitanidis 1995, 1996).

The quality of the recovering process depends on the

number (n) of the time interval chosen to discretize s(t), as

well as on the number, location and sampling times of the

m measurements (z). Without information on the release
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history it is impossible to select the best data set of measured

concentrations and the optimal discretization of s that make a

good compromise between computational effort and the

accuracy of the release recovery. If, for example, the si data are

too close to each other, some rows of the H matrix are almost

identical, H and the R matrix become ill conditioned, and the

inversion of R could be more difficult. Similarly, if two con-

centration data zi are too close (in space or in time), the

information they provide is almost the same and the two

corresponding rows of the H matrix become roughly identical.

The quality of the zi observations influences the esti-

mation error covariance V, which should be as small as

possible for the recovered release history to be considered

reliable. Analysis of Eq. (10) shows that V depends on the

covariance of the process s(t) and the relationship between

zi and sj. An Hij element value of zero can be an important

piece of information because it states that there is no link

between zi and sj. In other words, the release at time tj does

not have effect on zi. On the other hand, if zi is zero but Hij

is positive, it follows that sj should be zero.

It is also possible to apply the procedure starting from

the data monitored at a few positions but at different times

(Butera and Tanda 2004). This is a much more common

situation in real cases since periodic monitoring actions at

specific locations are usually carried out by public agencies

and private companies. It is then possible to also use his-

torical data increasing the observation database and, as a

consequence, the reliability of the numerical process.

3.3 Numerical TF computation

In very simple flow conditions TFs can be determined

analytically, but in a non-uniform flow field it is necessary

to employ numerical strategies.

The stepwise input function (SIF) procedure methodol-

ogy developed by Butera et al. (2004) is a numerical

strategy for TF calculation.

Through a simple variable transformation it is possible

to rewrite Eq. (2) as:

C x; tð Þ ¼
Z t

0

s t � sð Þ � f x; tð Þds: ð13Þ

If we assume a stepwise input function s ¼ F0 � H tð Þ,
where H(t) is the Heaviside function, the integral (13)

becomes:

C x; tð Þ ¼
Z t

0

F0 � H t � sð Þ � f x; tð Þds ¼ F0

Z t

0

f x; tð Þds:

ð14Þ

Taking the time derivative of Eq. (14), it results in

f x; tð Þ ¼ 1

F0

oC x; tð Þ
ot

: ð15Þ

Equation (15) shows that it is possible to compute the

TFs at a certain location by processing the concentration

history (breakthrough curve) at this location resulting from

a stepwise tracer injection.

The application of Eq. (15) in field conditions is rarely

possible: in fact, the response of an aquifer due to an

infinite step injection at a certain point can develop in a

very long time. Nevertheless, a numerical model of flow

and transport in the aquifer of interest is often available

because it is suitable for the prediction of pollutant fate or

the planning of remediation. If a numerical code is avail-

able it can be used as a surrogate for a field test. A stepwise

injection of solute at known concentration C0 can be

modeled at the source location and at each node of the

computation mesh the concentration time series (break-

through curve) is determined. The normalized time deriv-

ative of the breakthrough curve is the TF for that mesh

point and the modeled source location.

The choice of using a SIF and then numerically deriving

the breakthrough curve rather than directly computing the

aquifer response due to an impulse injection, can be jus-

tified by the need to reduce numerical errors caused by the

discrete time representation of the process. Such errors are

unavoidable in numerical computations. In fact, the

numerical description of an impulse necessarily has to

develop over a small but finite time period and the resulting

TFs are incorrect because they are based on a finite

injection rather than an impulse. The responses of areas far

from the source and less exposed to the contamination can

also be underestimated. The study of the transport of a step

input of infinite time length is more accurate and not

affected by such errors.

At a given measurement point, the breakthrough curve is

an output of the numerical model and consists of a series of

concentration values recorded in time: the shorter the

temporal interval between two computations, the more

accurate the computation of the TF by numerical derivative

of the breakthrough curve is. By definition, the derivative

can be calculated as the rate DC/Dt, with Dt ? 0. Finally,

the TF at each observation point is obtained after pro-

cessing the results obtained through just one run of the

forward transport model for each source location.

If there are errors in the processed concentrations

(resulting from the numerical model or eventually from the

field test), the TF could be poorly determined. Great care

should be devoted to numerical model implementation,

otherwise the TF can be improved by resorting to para-

metric functions as Luo et al. (2006) showed.

In the geostatistical approach the TF is needed for the

computation of the element of the sensitivity matrix H. The
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elements of H can be calculated with a perturbation method

or using an adjoint state method (Michalak and Kitanidis

2004b). In the perturbation method, it is necessary to run the

forward transport model at least as many times as the

number of the parameters (elements of the vector s) plus one

(n ? 1 times). Using the adjoint method, it is necessary to

run the transport model on a reversed flow field as many

times as there are observations (m times). The SIF proce-

dure presented in Butera et al. (2004) is advantageous, in the

case of a source with known location, since it allows the

computation of the sensitivity matrix after one run of the

forward transport numerical model. The SIF method can be

considered as a limiting case of a perturbation approach

enabled by the linearity of the transport process: the con-

centration field due to the Heaviside SIF is a perturbation of

the initial zero concentration field.

3.4 Identification of the pollutant source

and the release history

Butera and Tanda (2003) showed that the geostatistical

approach proposed by Snodgrass and Kitanidis (1997) can

be used to identify the true location between two possible

source positions. In the present work, we extend this pro-

cedure to identify the most probable source location within

a suspect area (in short SA). We consider the case that

m concentration data in an aquifer are available, but neither

the source location nor the release that creates them are

known. Hence, the aim of the procedure is twofold: to

identify the source location and recover the release history.

In the following we will refer to the new technique as the

SRSI procedure (SRSI—simultaneous release function and

source location identification).

The procedure starts from a hypothesis of the possible

source location. An SA for the source location can often be

identified from analysis of available information. The SA

must be discretized in a finite number (J) of sub-areas, each

of which is considered as originating an unknown pollutant

release, independent from the others within the SA. The

pollutant injection is assumed given by a point source

located in the centroid of each sub-area.

Due to the linearity of the advection–dispersion equa-

tion, the concentration values in the aquifer can be com-

puted using the superposition method with the following

expression:

C x; tð Þ ¼
XJ

j¼1

Z t

0

sj sð Þ � fj x; t � sð Þds; ð16Þ

where j is one of J generic sub-areas inside the SA.

The geostatistical procedure can be now applied since

Eq. (4) is still valid. The vector s of the unknown release

function in (4) is made up by the collection of J sub-vectors

sj, each with dimensions ni 9 1, where ni is the number of

time values used to discretize the release history. The total

dimension of s is: (n1 ? n2 ? ��� ? nJ) 9 1:

s ¼

s1

s2

. . .
sJ

2
664

3
775: ð17Þ

The transfer matrix H is a block matrix

H ¼ H1 H2. . . HJ½ � ð18Þ

whose dimensions are m 9 (n1 ? n2 ? ��� ? n). The gen-

eric matrix Hj describes the effects of the pollutant release

in the sub-area j on the measured concentration data in the

m monitoring point.

The covariance matrix Q of the s process, due to the lack

of correlation among the release histories, is a block matrix

with non-zero elements only in the diagonal blocks:

Q ¼

Q1 0 0 0

0 Q2 0 0

0 0 . . . 0

0 0 0 QJ

2
664

3
775: ð19Þ

The results of the geostatistical procedure described in

Sect. 3 provide the pollutant history in the J hypothetical

source locations. The release function in the real source

will be substantial, while in the other suspect locations the

time histories will be negligible.

Summarizing the above considerations, the source

identification procedure, here proposed, can be described

with the consecutive steps:

• collect a set of concentration measurements at the same

time in multiple locations;

• delineate the SA and discretize it into J sub-areas

assuming the origin of the possible sources in the

centroid of any sub-area;

• compute (analytically or numerically) the TFs at the

monitoring points for each possible source (J runs of

the numerical transport model, when the analytical TFs

are not available, are needed using the SIF method);

• recover the release histories performing the geostatis-

tical procedure that simultaneously considers all the

possible point sources;

• identify the source location as the location from which

the highest amount of released pollutant is estimated.

Some heuristic considerations can be used to reduce the

number of possible point sources. For instance, it is not

advisable to consider, a priori, a source location for which

the TFs have very low values: it is unlikely that it is the

actual source. From a numerical point of view it can lead to

an ill-conditioned H matrix, resulting in a large number of
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iterations and non-convergence problems in the recovery

procedure.

4 Applications

4.1 Case 1: Identification of the release history

with known source location

Preliminary results of the method presented in Sect. 3 are

described in Butera et al. (2006) for uniform or weakly

non-uniform flow cases. In this work, the numerical pro-

cedure, tested here for two-dimensional strongly non-uni-

form flow, is presented for a comparison with the results of

the Cases 2 and 3.

A numerical model of a 2-D, 1-layer confined aquifer

with rectangular shape (400 m long, 100 m wide, 10 m

thickness) has been built (Fig. 1) using the MODFLOW

code (Harbaugh et al. 2000). The domain is discretized into

2 m 9 2 m cells. The heterogeneous conductivity field is

assumed known and characterized by a lognormal distri-

bution with a mean value equal to 3.2 9 10-4 m/s, a

standard deviation of 4.2 9 10-4 m/s and a correlation

length equal to 20 m. Figure 1 shows the normalized log

conductivity field Z = (Y - lY)/rY where Y = log K with

mean lY and standard deviation rY. The log conductivity

field variance is r2
Y ¼ 1:32. The assumption of a known

hydraulic conductivity field is somewhat unrealistic; in

fact, in field conditions is not very easy to get detailed

information on hydraulic parameters and for this reason

there is a huge collection of literature on estimating

hydraulic conductivity variability (for example see Fienen

et al. 2009 and Zanini and Kitanidis 2009). This paper has

the goal of testing the proposed approach, assuming that

the hydraulic conductivity field and the transport parame-

ters are known. The covariance of the measurements errors

R is also assumed known with an assigned value of

rR = 1 9 10-3 mg/l.

The boundary conditions are no flow boundaries in the

north and south boundaries, constant head in the upstream

(west) side hU = 24 m and in the downstream (est) side

hD = 20 m; the resulting flow through the aquifer is about

1.2 9 10-3 m3/s.

As usual, for the simulation of pollution events with

uncoupled flow and transport processes, the flow field has

been solved and the results have been transferred to the

transport package.

On the synthetic field, a transport event has been sim-

ulated with the MT3D software (Zheng and Wang 1999).

The longitudinal and transversal dispersivity are assumed

constant (aL = 1 m and aT = 0.1 m, respectively) and a

pollutant source has been located at x = 49 m and

y = 49 m (Fig. 1). The pollutant release is simulated as an

injection with a constant water discharge and variable

tracer concentration over time. The amount of the conser-

vative pollutant per unit time injected into the aquifer at the

source (s(t) of Eq. (2)) is given by:

s tð Þ ¼ Qin � F tð Þ; ð20Þ

where Qin is the constant water discharge and F(t) is the

concentration history, variable in time, of the injected

solution. A unit value was adopted for Qin. Then, following

Skaggs and Kabala (1994) and Snodgrass and Kitanidis

(1997), we have considered a concentration history with

the expression:

F tð Þ ¼ exp
� t

Dt � 130
� �2

50

 !
þ 0:3 � exp

� t
Dt � 150
� �2

200

 !

þ 0:5 � exp
� t

Dt � 190
� �2

98

 !
:

ð21Þ

Since Qin is of unit value, the identification of the

release history s(t) is equivalent to the identification of the

concentration history F(t).

The reporting time step Dt is 2 days. The concentration

data have been monitored at the time t = 300Dt at the 20

nodes of the regular grid shown in Fig. 1.

The SIF method was applied in order to determine the TFs

in all the monitoring point locations. Then the geostatistical

procedure was applied and the unknown release history

s(t) was determined. The results, reported as dimensionless,

Fig. 1 Normalized log-

conductivity field ðr2
Y ¼ 1:32Þ.

Black dots indicate the

measurement points of Cases 1

and 2, P1 and P2 are the

measurements points of Case 3

and black squares denote the

possible sources in the SA. The

black diamond is the actual

source location. Distances in

meters
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are shown in Fig. 2. The times have been divided by the time

interval Dt and the concentrations have been divided by the

injected concentration C0, used to compute numerically the

TF. The true solution, the best estimate (given by Eq. 8), and

the 5–95 % confidence interval are depicted in Fig. 2. The

release is reproduced reasonably and the interquantile range

is acceptable. The curves do not match exactly, and the

smaller peak has not been reproduced, but the times of the

major peaks and the highest concentration have been deter-

mined with fair precision.

The results are not as accurate as others presented in

Butera et al. (2006) because here, more realistically, the

monitoring network is not optimized: only 20 monitoring

points have been considered and several of these provide a

poor information as one can infer from Fig. 3.

In order to test how closely the recovered release history

can reproduce the observation at the monitoring points, the

transport model was run with the estimated injection

function as the source term. In Fig. 3 the original

observations and the estimated ones are reported. The

values match closely, validating the solution. Solutions of

the inverse problem, as the one discussed in this paper, are

always affected by non-uniqueness: different release

functions, even far from the true one, can satisfactorily fit

the observations. In this case (Fig. 3) the good match is a

confirmation of the non-uniqueness of the solution.

4.2 Applications of the SRSI procedure

The SRSI methodology for source identification, outlined

in Sect. 3, was applied to two illustrative cases simulating a

two dimensional aquifer.

The conditions (aquifer characteristics, source position,

pollutant release history (20) and (21)) of the numerical

experiments are the same as those used for the Case 1, in

order to save the observations (concentration values) in the

20 monitoring points.

4.3 Case 2: Analysis with concentration data collected

at 20 locations at the same time

The SA has been assumed upgradient from the measure-

ment points in the region 0 B x B 20 m and 0 B y B 20 m

and it is subdivided into nine sub areas as shown in Fig. 1.

The centroid of each area represents a possible source

location. Then, the TFs relevant to the 20 monitoring points

and the nine possible sources have been computed by means

of the application of the SIF procedure, requiring nine runs

of the forward transport model.

Finally, the SRSI procedure was carried out and the

release function for each of the nine possible sources was

obtained. The dimensionless results are depicted in Fig. 4.

In all the locations, except in x = 49 m y = 49 m the

release history is null. This result suggests that the source is

located in the sub-area with those centroid coordinates (just

the ones of the actual source).

A detail of the Fig. 4 is reported (vertical scale exag-

gerated) in Fig. 5: the recovered release history for the

source location x = 49 m, y = 49 m shows a good

reconstruction of the peak times but an underestimation of

the peak values.

Comparing Figs. 5 and 2 one can easily see that the

recovered release history obtained in the case of a known

source position is, as expected, more accurate. Neverthe-

less, in our opinion, the result of the SRSI is valuable, even

if less precise, because in addition to resulting in a reliable

release history, it can detect the most probable source

location.

A great number of tests, not shown here for brevity,

have been carried out to investigate the sensitivity of the

SRSI methodology to the discretization degree of the SA.

Fig. 2 Case 1: The true solution (solid blue line), best estimate

(dashed thick line), and 5–95 % confidence interval (dotted lines).

(Color figure online)

Fig. 3 Case 1: Observed and estimated concentrations
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The conclusions of the tests are that, in case of very dense

discretization, the recovered release results can be shared

among close subareas, and the source area is identified with

fair approximation.

Another interesting topic, which we will analyze in a

future paper, is the case of the true source not overlapping

the candidate locations. Moreover, the analysis of multiple

sources showed in Butera and Tanda (2003) can be gen-

eralized to multiple unknown sources.

4.4 Case 3: Analysis with concentration data collected

at two locations at different times

The aim of this application is to investigate whether the

processing of the time–concentration history monitored at

few spatial locations can give reliable information about

the source location. This case is very realistic, as it is

common to have only a few monitoring points and several

sampled concentration values for each point at different

times. This Case 3 was developed on the same aquifer as

the previous Cases 1 and 2, the same boundary conditions,

release and SA extent. Only two monitoring points (P1 and

P2, see Fig. 1) are considered and 25 concentration values

are considered available in 600 days, with a time step equal

to 12Dt (Fig. 6). The concentrations values monitored at

point P1 are lower than those measured at point P2 even

though P1 is closer to the source location. This is due to the

Fig. 5 The recovered release history at the source location of Case 2:

the true solution (solid blue line), best estimate (dashed thick line) and

5–95 % confidence interval (dotted lines). (Color figure online)

Fig. 4 The recovered release history at the hypothesized source locations of Case 2: the true solution (solid blue line), best estimate (dashed
thick line) and 5–95 % confidence interval (dotted lines). (Color figure online)
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heterogeneity of the conductivity field: a zone of low

conductivity, where P1 is located, deflects the plume so

low concentration values are sampled there.

The TFs for the two observation points have been

obtained from the previous computations, after nine runs of

the forward transport model. Then the SRSI procedure was

applied to recover the release history at the nine possible

sources.

In Fig. 7 the recovered releases histories are presented.

Again, the actual source location was detected and the

recovered release history is very close to the real one. A

comparison of the Figs. 5 and 7 again shows that the obser-

vations recorded at few monitoring locations (two in Case 3)

but at different times can lead to a good reconstruction of the

release event. The reliability of the results is comparable with

those (Fig. 5) obtained using the more expensive monitoring

campaign necessary to obtain the concentration observations

at many points (20 points in Case 2).

The accuracy of the Case 3 results (Fig. 7) seems

comparable also with the accuracy of the Case 1 results

(Fig. 2) obtained with 20 monitoring points and a known

source position.

A final test was conducted running the transport model

with the source term obtained from the SRSI. The con-

centration time series was determined in the P1 and P2

monitoring points and in Fig. 6 the values, occurring at the

same monitoring times, have been plotted (estimated val-

ues) together with the observations. The differences

between the actual and the calculated values are very

small: again the good match is a confirmation of the non-

uniqueness of the solution.

Fig. 6 The sampled time–concentration data for Case 3

Fig. 7 The recovered release history at the hypothesized source locations of Case 3: the true solution (solid blue line), best estimate (dashed
thick line) and 5–95 % confidence interval (dotted lines). (Color figure online)
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5 Discussion and conclusions

A new procedure (SRSI) useful for the simultaneous

identification of the release function and the source loca-

tion has been presented in this manuscript. It is based on

the geostatistical approach introduced by Snodgrass and

Kitanidis (1997) and can be applied in groundwater aqui-

fers with non-uniform flow field (due to heterogeneous

media, presence of wells, natural boundaries) after the

identification of the sensitivity matrix required by the

numerical procedure. In the present paper the sensitivity

has been defined using a TF, i.e. the function that describes

the effect in time, at a certain location in the aquifer, of an

impulse release of pollutant at the source. The TFs were

computed with the innovative SIF procedure (Butera et al.

2004, 2006) with good results. The SIF procedure requires

only one run of the transport model of the actual flow field

per investigated source location: it presents efficient per-

formance in comparison with other numerical methods as

the perturbation (finite difference) or adjoint state. In fact,

given m observations and n unknowns, the perturbation

method needs (n ? 1) runs of the transport model and the

adjoint state approach requires m runs on an inverted flow

field with modified boundary and source conditions. Then,

for the problem of recovering the release history, with

known source location, the SIF procedure seems the most

advantageous in terms of computation time. Moreover, the

SIF procedure is simple to apply and the results of the tests

here reported are satisfactory and encourage the application

to real cases.

The SRSI procedure here proposed is able to simulta-

neously recover the release function and identify the source

location. The procedure follows these steps: (i) delineate

the suspect area, SA, and discretize it in sub-areas

assuming the origin of the possible sources in the centroid

of the sub-areas; (ii) compute the TFs (SIF procedure) at

the monitoring points for each possible source; (iii) recover

the release histories performing the geostatistical procedure

that considers simultaneously all the possible point sour-

ces; (iv) identify the source location as the location where

the highest amount of released pollutant is estimated.

The numerical tests here reported considered concen-

tration data distributed in space (Case 2) and in time (Case

3). The results show that the SRSI procedure is able to

identify the source location and to recover the release in all

the considered cases and the accuracy of the results is

comparable to those obtained with known source location

(Case 1).

The number of preliminary runs of the forward transport

model necessary to obtain the numerical TFs is equal to the

number of the suspect source locations, resulting in a low

computation burden.

We though this paper as the first with the explanation of

the methodology and the applications to simple study

cases. In our future research we will analyze the perfor-

mance of SRSI procedure considering more severe condi-

tions such as the presence of measurements errors of

unknown variance, the case of multiple sources and situ-

ations in which none of the candidate locations overlaps

with the true source.

A crucial response about the reliability of the recovery

process outlined in this manuscript can be obtained from an

experimental activity to be carried out in controlled field

tests or in medium scale laboratory tests. In these condi-

tions it can be possible to recognize the role of the different

factors involved in the inversion procedure and the

research can be addressed to improve the most meaningful

steps.
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