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Abstract Matrix-valued radially symmetric covariance

functions (also called radial basis functions in the numer-

ical analysis literature) are crucial for the analysis, infer-

ence and prediction of Gaussian vector-valued random

fields. This paper provides different methodologies for the

construction of matrix-valued mappings that are positive

definite and compactly supported over the sphere of a d-

dimensional space, of a given radius. In particular, we offer

a representation based on scaled mixtures of Askey func-

tions; we also suggest a method of construction based on

B-splines. Finally, we show that the very appealing con-

volution arguments are indeed effective when working in

one dimension, prohibitive in two and feasible, but sub-

stantially useless, when working in three dimensions. We

exhibit the statistical performance of the proposed models

through simulation study and then discuss the computa-

tional gains that come from our constructions when the

parameters are estimated via maximum likelihood. We

finally apply our constructions to a North American Pacific

Northwest temperatures dataset.

Keywords Askey function � Buhmann class �
Convolution � Sphere � Splines

1 Introduction

Radial basis functions have a dual use and interpretation as

confirmed by the literature of both approximation theory

and statistics. In the spatial statistics field, the construction

of cross-covariance models has become an important goal

for the analysis and study of multi-variate random fields

(RFs). The analysis of spatial and space–time data requires

not only the specification of some dependence structure

within the phenomenon of interest, but also the dependence

between phenomena defined on the same spatial domain.

For instance, it is common knowledge that environmental

processes have reciprocal influences over space and time.

Literature has been focused on this problem for decades

and relevant applications can be found, e.g. in meteorology

(Banerjee et al. 2004; Berrocal et al. 2008) and atmo-

spheric contamination (Schmidt and Gelfand 2003),

amongst others. Relevant methodologies can be found, e.g.

in Banerjee and Gelfand (2003) for the mathematical

properties of such processes; more recent work in the

context of tapering has been done in Furrer et al. (2006),

Kaufman et al. (2008) and Du et al. (2009). We refer to Li

et al. (2008) concerning the possible simplification of the

structure of such multivariate processes. Finally, excellent

classic textbook accounts include Chiles and Delfiner

(1999), Christakos (2000), Christakos and Hristopoulos

(1998), Cressie (1993) and Goovaerts (1997).

Methodological approaches vary considerably, reflect-

ing the diverse routes open to studying the problem.In this

paper we focus on approaches that are based on the so-

called geostatistical framework: the essence of this lies in

the specification of the second-order properties of the

process of interest, which translates into covariances and

variograms (Cressie 1993). Another approach using radial

basis functions is given in Beatson et al. (2009).
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Building valid cross-covariance models is a nontrivial

matter. The literature on this problem can be traced back to

Cramer’s (1940) seminal paper. There are very few con-

tributions available and these are sketched below:

1. Separable covariances These are obtained by factor-

izing a positive definite function with a positive

definite matrix of coefficients. The construction is

easy to implement but not very interesting in terms of

interpretability and flexibility, because it assumes that

all components of the multivariate RF have the same

covariance function.

2. Linear model with co-regionalization (Wackernagel

2003) Representing every component of the m-dimen-

sional RF as a linear combination of r\m mutually

uncorrelated latent variables, leads to a simple model.

Constructive criticism in Gneiting et al. (2010) and

Wackernagel (2003) suggests that inmany situations

this model may be inadequate because every compo-

nent ofthe random vector is represented as a linear

combination of latent, independentunivariate spatial

processes. The model is not very flexible, nor does

itallow us to recover the smoothness of the latent

processes, since the smoothnessof the components is

dominated by the roughest of the latent components-

representing them.

3. Kernel and covariance convolution method These are

proposed in Ver Hoef and Barry (1998) and in Gaspari

and Cohn (1999), where details and several examples

are offered.

4. Kernels for vector-valued RFs via div and curl Such

kernels have been proposed in the context of numerical

analysis with the purpose to adapt the covariance

function to the physical characteristics of the associ-

ated RF, which could be, for instance, a velocity vector

obeying some physical properties. Such properties are

called, Narcowich et al. 2007, divergence- and curl-

free (see also Benbourhim and Bouhamidi 2005).

5. Multivariate Matern covariance structure Gneiting

et al.’s (2010) construction belongs to this class. The

Matern class of correlation functions is well known in

the geostatistical literature (e.g. p.31 of Stein 1999).

We define it here by

Matðx;a;mÞ¼
�
21�m=CðmÞ

�
ðakxkÞmKmðakxkÞ; kxk�0;

ð1Þ

x 2 R
d and jj � jj denoting the Euclidean norm, where a and

m are positive parameters and Kmð�Þ is the MacDonald or

modified Bessel function of order m (see e.g. p. 373 of

Whittaker and Watson 1927); a determines the scale of

dependence and m controls the smoothness and Hausdorff

dimension of the associated Gaussian RF. Gneiting et al.’s

(2010) propose a model for matrix-valued covariances

where each element of the matrix is a Matérn function as in

Eq. (1), but with possibly different values of the scale and

smoothing parameters.

6. Multivariate model through latent dimension. Apan-

asovich and Genton (2009) extend Gneiting’s

(2002a) class of space-time covariance functions to

higher dimensional spaces (such a construction is a

special case of the class presented by Porcu et al.

2006).

7. Vector-valued permissibility criteria This refers to

criteria such as those offered in Porcu and Zastavnyi

(2011), where several sufficient conditions are given

for candidate matrix-valued mappings to represent the

covariance matrix function of a vector-valued RF.

8. Spartan vector-valued RFs These were proposed

recently in Hristopoulos and Porcu (2012). They are

multivariate analogues of scalar-valued constructions

proposed.

The multivariate Matérn model may be not so attractive

to practitioners dealing with massive spatial datasets

because calculation of the simple kriging predictor then

involves the inversion of huge matrices. For univariate

RFs, this problem has been comprehensively addressed

by Gneiting’s (2002a) suggestions of several methods for

the straightforward construction of compactly supported

correlation functions, that is, functions vanishing outside

a finite range, typically the unit sphere S
d�1 of R

d:

This paper contains original contributions for the con-

struction of matrix-valued radial basis mappings having

compact support. We use two main arguments: on the one

hand, scale mixture arguments offer nice closed forms

when working with splines and either Askey or Buhmann

functions. On the other hand, we show that convolution

arguments can be very effective in one dimension, pro-

hibitive in R
2; and feasible but pointless in three or more

(odd) dimensions.

Here then is an outline of the rest of the paper: Sect. 2

contains basic facts and notation for covariance functions

associated to vector valued RFs, and a small review on

compactly supported radial basis functions for scalar-

valued RFs, which can be very useful for Sect. 3, which is

split into two parts: in the former, scale mixtures are

applied to the radial basis functions introduced in Sect.

2.1; in the latter, we illustrate a bridge between scale

mixtures and splines. Section 4 is dedicated to convolu-

tions, and Sect. 5 offers a simulation study. Section 6

analyzes a dataset from North American Pacific North-

west temperatures dataset. More technical arguments, the

proofs of the results, and routine algebra are deferred to

the Appendix.
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2 Notation, literature and discussion

Throughout this paper we use notation from the theory of

RFs. Our nomenclature may thus be more familiar to

statisticians than numerical analysts or students of

approximation theory. Specifically, we consider a zero

mean Gaussian vector-valued m-dimensional RF with

index set in some domain D � R
d; i.e.

ZðnÞ ¼
�
Z1ðnÞ; . . .; ZmðnÞ

�
; n 2 D:

The assumption of Gaussianity implies that Z is completely

characterized by its cross-covariance structure C defined as

the mapping from D� D into matrices Mm 2 R
m�m for

which

Cðn1; n2Þ ¼ Cijðn1; n2Þ
� �m

i;j¼1
¼ Cov

�
Ziðn1Þ; Zjðn2Þ

�� �m
i;j¼1

;

ð2Þ

for nk 2 D; k ¼ 1; 2: The mapping C must be positive

definite, i.e. for any finite collection of points n1; . . .; nn 2
D and any m-dimensional complex vectors c1; . . .; cn for

which ci has entries ðcikÞmk¼1; i ¼ 1; . . .; n; the inequality

Xn

i;j¼1

Xm

k;l¼1

cikCklðni; njÞcjl [ 0 ð3Þ

holds. Under the assumption of stationarity we have

Cijðn1; n2Þ ¼: CijðxÞ; with x :¼ n1 � n2 termed the lag, and

Cramér’s (1940) theorem gives a complete characterization

of C : it is the Fourier-Stieltjes transform of some Borel

measure F with values in R
m�m such that the matrix�

FijðAÞ
�m

i;j¼1
is positive definite for every Borel set A of Rd:

We start by fixing our notation. Let Mm denote the set of

all complex m� m matrices, with entries in C:The matrix

A 2 Mm is positive definite if the inequality z0A�z� 0 holds

for every z 2 C
m; here z is any m-vector with C-valued

elements and z0 the transpose of the conjugate elements of

z. It is easily shown that A 2 Mm is positive definite if and

only if it permits a Cholesky factorization A ¼ C0C for some

matrix C 2 Mm: Throughout the paper, we consider the

class Um
d of mappings u :¼ uijð�Þ

� �m
i;j¼1

: ½0;1Þ ! Mm;with

uijð0Þ\1; and each uijð�Þ continuous, i; j ¼ 1; . . .;m; such

that there exists an m-variate Gaussian RF Z defined on R
d

such that the associated covariance C in Eq. (2) is equal to

Cðn1; n2Þ ¼ uðkn2 � n1kÞ ¼ uijðkn2 � n1kÞ
� �m

i;j¼1
;

n1; n2 2 R
d:

ð4Þ

For m = 1, write Ud :¼ U1
d for the set of all continuous

functions f : ½0;1Þ7!R with f ð0Þ\1 such that f ðk � kÞ is

positive definite on a d-dimensional Euclidean space.

Finally, Um :¼ Um
0 denotes the class of positive-definite

matrices.

2.1 Compactly supported radial basis functions

for scalar-valued RFs

The Wendland class of correlation functions has been

repeatedly used in applications involving the so-called

tapered likelihood (Furrer et al. 2006; Kaufman et al.

2008; Du et al. 2009). We recall here Wendland’s (1995)

construction (it is rephrased in Gneiting 2002b). Let

wm;0;bðtÞ :¼ 1� t

b

� �m

þ
;

t 2 ½0;1Þ; m 2 Rþ and b [ 0; ð5Þ

be the truncated power function, also known as the Askey

function (1973) when m 2 N; although in the remainder of

the paper we shall call wm;0;b an Askey function for any

positive m for the sake of simplicity; this function belongs

to the class Ud when m� dþ1
2
; which means that there exists

a Gaussian RF ZðnÞ; n 2 D; such that

Cov Zðn1Þ; Zðn2Þð Þ ¼ wm;0;bðkn2 � n1kÞ; n1; n2 2 D:

This fact explains why the radial part of the Askey function

is compactly supported over a sphere S
d�1 contained in R

d

and with radius b[ 0: Many applications refer to the

exponent m 2 N; while the real part of the exponent is a

basic characteristic of the associated Sobolev space that

determines the regularity properties of a Gaussian RF with

such covariance structure. For pertinent results on this topic

see Wendland (2005, Chap. 8) and, for the cases not treated

there, Schaback’s (2009) complementary contribution.

For x 2 R
d; clearly we have that wm;0;bðkxkÞ is not dif-

ferentiable at zero. Such inconvenience is overcome

through the Wendland–Gneiting construction. For any g 2
UðRdÞ for which

R
Rþ

ugðuÞdu\1; Mathéron’s Montée

operator I is defined by

IgðtÞ ¼
R1

t ugðuÞdu
R1

0
ugðuÞdu

ðt [ 0Þ:

Wendland (1994) defines wm;k;b :¼ Ikwm;0;b via k-fold iter-

ated application of the Montée operator on the Askey

function wm;0;bðxÞ defined at (5). Wendland proves that

wm;0;b 2 Ud for wm;k;b 2 Ud�2k: The implications in terms of

differentiability of wm;k;b are well summarized by Gneiting

(2002b), and Wendland (1995) shows that the degree of the

piecewise polynomials is minimal for the given smooth-

ness and dimension for which the radial basis function

should be positive definite.

Buhmann (2001) proposed a generalization of the

Wendland–Gneiting class, and in the literature on numer-

ical analysis and radial basis function interpolation it is

sometimes called the Buhmann class (Zastavnyi 2004).

His construction is based on arguments using scale
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mixtures. Given Wendland–Gneiting functions wmþ2k;k;b 2
Ud for m� ½1

2
d� � 2k þ 1; with d� 2k þ 1 and a class of

functions gðb; a; k; cÞ ¼ bað1� bkÞcþ compactly supported

on [0, 1], Buhmann’s problem corresponds to finding the

ranges of the parameters a; k; c for which the function

wm;k;a;k;cðkxk
2Þ :¼

Z1

0

wm;k;bðkxk
2Þgðb; a; k; cÞdb; ð6Þ

which is compactly supported in the unit sphere S
d�1 of

R
d; is positive definite on R

d: Misiewicz’s (1989) argu-

ment shows that the range of a; k and c depends on the

dimension of the associated Euclidean space. Buhmann

(2001) finds the solution for d = 1, 2, 3 and higher (this is

indeed useful for geostatistical applications), and gives

closed form solutions for some characterizations of the

parameters involved in the scale mixture at (6) above.

Further results in Zastavnyi (2004) determine the exact

order of smoothness for any member of the Buhmann class.

According to Williamson (1956), t 7!wmþ2k;k;a;k;cð
ffiffi
t
p
Þ;

t [ 0; is mþ 1 times monotone, showing that this function

belongs to the Pólya-Gneiting class (Gneiting 2001) of

positive-definite functions, under the restrictions on the

parameters a; k; c in Misiewicz (1989) (see (6) above).

Moreover, wmþ2k;k;a;k;cð�Þ is ð1þ ½2a�Þtimes-differentiable in

all Rd (this can be checked by inspection of the differen-

tiability at 0 and 1, since within the interval (0,1) this

function is infinitely differentiable).

3 Some constructions for multivariate models

with compact support

This section presents the main theoretical results. All the

proofs are deferred to the Appendix for the sake of a neater

exposition.

3.1 Multivariate covariances based on Askey

and Buhmann functions

The aim of this section is to use members of either the Askey

or the Buhmann classes in such a way that, starting from

members of the type wm;0;b and using straightforward con-

structions, one easily obtains mappings C whose members

are compactly supported and positive definite on R
d:

Theorem A below is given here in a form that is useful

in giving a neater exposition of our results.

Theorem A (Porcu and Zastavnyi 2011) (A): Let

ðX;F ; lÞ be a measure space and D ¼ ½0;1Þ: Assume that

the family of matrix-valued functions Aðt;xÞ ¼ ½Aijðt;xÞ� :
D� X! Mm satisfies the conditions (I) for every i; j ¼

1; . . .;m and t [ D, the functions Aijðt; �Þ belong to

L1ðX;F ; lÞ; and (II) Að�;xÞ 2 Um
d for l-almost every

x 2 X:Let

CðtÞ :¼
Z

X

Aðt;xÞlðdxÞ ¼
Z

X

Aijðt;xÞlðdxÞ

2

4

3

5; t 2 D:

ð7Þ

Then C 2 Um
d :

(B): Conditions (I) and (II) are satisfied when Aðt;xÞ ¼
f ðt;xÞFðt;xÞ; where the maps f ðt;xÞ : D� X! C and

Fðt;xÞ ¼ Fijðt;xÞ
� �

: D� X! Mm satisfy the conditions

(i) for every i; j ¼ 1; . . .;m and t [ D, the function

f ðt; �ÞFijðt; �Þ belongs to L1ðX;F ; lÞ;
(ii) f ð�;xÞ 2 Ud for l-almost every x 2 X; and

(iii) Fð�;xÞ 2 Um
d for l-almost every x 2 X; or Fð�;xÞ ¼

FðxÞ 2 Um for l-almost every x 2 X:

Here is a direct application of Theorem A. Let the

function uð�; bÞ : ½0;1Þ2 7!R belong to the class Ud for

any positive b: Let GðbÞ 2 Mm be a positive definite matrix

of coefficients for any fixed value of b: Then the mapping

C : Rd 7!Mm; defined by

CðtÞ :¼
Z1

0

uðt; bÞGðdbÞ ¼
Z1

0

uðt; bÞGijðdbÞ

2

4

3

5

m

i;j¼1

; ð8Þ

is a member of the class Um
d :

The result presented in Theorem 1 below entails a

multivariate correlation structure obtained using linear

mixtures, over b; of the Askey function wm;0;bð�Þ at Eq. (5).

Specifically, we propose a multivariate structure for which

uijðtÞ :¼ cijwmþlij
ðtÞ

CðmÞCð1þ lijÞ
Cð1þ mþ lijÞ

t 2 ½0;1Þ; ð9Þ

where i; j ¼ 1; . . .;m; the cij are real coefficients, and lij 2
R: Theorem 1 gives sufficient conditions for C :¼
�
uijðkxkÞ

�
to be the matrix-valued covariance of an m-

variate Gaussian RF.

Theorem 1 Let the matrix-valued mapping C : Rd 7!Mm

have elements CijðxÞ ¼ uijðkxkÞ; for uijð�Þ as defined in

Eq. (9) with m� 1
2

d þ 2; and suppose that lii� lij ¼ lji for

i; j ¼ 1; . . .;m: If cii�
P

j 6¼i jcijj and cij ¼ cji; then

uijð�Þ
� �m

i;j¼1
2 Um

d : Thus, C is the matrix-valued covariance

of an m-variate Gaussian RF on R
d:

The same approach can yield more general structures.

For instance, the next result exhibits a multivariate struc-

ture CðxÞ ¼ ½CijðxÞ�mi;j¼1 of the Buhmann type in which the

elements have the form
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CijðxÞ ¼ cijwmþ2k;k;aij;1;cij
ðkxkÞ; x 2 R

d; i; j ¼ 1; . . .;m;

ð10Þ

where wm; k; a; k; c is the Buhmann scale mixture defined in

Eq. (6). We give sufficient conditions below for such CðxÞ
to be the matrix-valued covariance of an m-variate

Gaussian RF. The proof uses the same arguments that

establish Theorem 1 and is left to the reader.

Theorem 2 Suppose that aii� aij ¼ aji and cii� cij ¼ cji

for i; j ¼ 1; . . .;m: If cii�
P

j6¼i jcijj; then the multivariate

structure C defined by (10) is the matrix-valued covariance

of an m-variate Gaussian RF.

By way of example, a change of variable and compu-

tation shows that the choice gð�; a; 1; cÞ gives the class

Cð1þ aÞCð1þ cÞ
Cð2þ aþ cÞ 2F1ð�1� a� c;�m;�a; kxkÞ

þ kxk1þa Cð�1� aÞCð1þ mÞ
Cð�aþ mÞ 2

F1ð�c; 1þ a� m; 2þ a; kxkÞ;

where 2F1ð�; �; �; �Þ is the Gauss hypergeometric function

(Eq. (15.1.1) of Abramowitz and Stegun 1964). The special

case a ¼ c gives
ffiffiffi
p
p

Cð1þ aÞ
21þ2aCð3

2
þ aÞ 2F1ð�1� 2a;�m;�a; kxkÞ

þ kxk1þa Cð�1� aÞCð1þ mÞ
Cð�aþ mÞ 2

F1ð�a; 1þ a� m; 2þ a; kxkÞ

The result of Theorem 2 is applicable to both expressions

above. A relevant comment is that the structures are not in

general smooth at the origin whereas Buhmann functions

are. This difference arises from the mixture integral which

in (15) has argument kxk which Buhmann can (but we

cannot) replace by kxk2:

3.1.1 Bivariate cases, parsimonious versions

and convenient parametrizations

This section discusses a bivariate Gaussian RF that is used

throughout the data analysis and simulation study in Sect. 5

From now on we write wm to denote the particular Askey

function wm;0;1; this function is compactly supported on the

interval [0,1].

Proposition 3 Let ri [ 0 for i = 1,2. A sufficient condi-

tion for the covariance function

r2
1wmþl11

xk kð Þ q12r1r2wmþl12
xk kð Þ

q12r1r2wmþl12
xk kð Þ r2

2wmþl22
xk kð Þ

� �
ð11Þ

to be the matrix-valued covariance of a bivariate Gaussian

RF on R
d when l12� 1

2
ðl11 þ l22Þ and m�b1

2
dc þ 2; is

that

jq12j �
Cð1þ l12Þ

Cð1þ mþ l12Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1þ mþ l11ÞCð1þ mþ l22Þ

Cð1þ l11ÞCð1þ l22Þ

s

:

ð12Þ

For the sake of clarity, we call the model in Proposition

3 a full bivariate Askey model, in order to distinguish it

from the parsimonious Askey model which is obtained by

setting l12 ¼ 1
2

l11 þ l22ð Þ:

As a second example consider a bivariate RF; we shall

obtain sharper conditions from the same representation. It

is sufficient that the matrix

c11b
a11ð1� bÞc11 c12b

a12ð1� bÞc12

c12b
a12ð1� bÞc12 c22b

a22ð1� bÞc22

� �

be positive definite for all b 2 ð0; 1Þ: This condition is

satisfied when

2 log c12 � logðc11c22Þ� inf
0\b\1

ðh1 log bþ h2 logð1� bÞÞ;

where h1 ¼ a11 þ a22 � 2a12 and h2 ¼ c11 þ c22 � 2c12;

provided that both h1 and h2\0; the sufficient condition

for positive definiteness is that c2
12=ðc11c22Þ� jh1jh1 jh2jh2=

jh1 þ h2jh1þh2 ; This yields a new sufficient condition

for a bivariate model to be positive definite on

R
dtextwhenmþ 2k� 1

2
d þ 1:

3.2 Scale mixtures of one-dimensional splines

or B-splines

Further parameter-dependent covariance functions can be

created by using univariate splines (de Boor 1981). These

are piecewise polynomial functions of degree k - 1

(therefore of order k), say, that is, for a given sequence of

so-called knots, the functions are polynomials of that

degree between each pair of adjacent knots, and they are

also required to be continuously differentiable, of one order

less, here k - 2. Suitable bases of these linear spaces are,

for instance, truncated power functions or the celebrated

B-splines which enjoy the advantage of minimal compact

support. This is especially interesting in our present con-

text. Moreover, they can be made b-dependent by choosing

the knots of the B-splines to be multiples of b; where b is

the parameter over which mixing takes place.

Our idea is based on the fact that univariate B-splines

give rise to totally positive interpolation matrices if the

interpolation points are suitably chosen. Notice here that

these interpolation points are not necessarily the same as
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the knots which define the splines and the B-splines. We

make both of them depend on b:
For this purpose, let B = B0 be a univariate, piecewise

polynomial B-spline with knots 0; b; 2b; . . .; kb and which

has piecewise degree k - 1 and support in ½0; kb�: Shifts of

these B-splines are to be used to construct the functions

which are to be mixed.

First, we need a representation for the B-splines. To

this end, using truncated power functions, as is common

for specifying piecewise polynomial splines, B0 can be

written as

B0ðxÞ ¼
Xk

‘¼0

d‘ðx� ‘bÞk�1
þ ;

where the coefficients d‘ are given by

d‘ ¼
Yk

i¼0
i 6¼‘

1

ði� ‘Þb ¼
ð�1Þ‘b�k

‘!ðk � ‘Þ! :

Alternatively, we may express B-splines as divided

differences of truncated powers:

½0; b; 2b; . . .; kb�ð� � xÞk�1
þ :

An interpolation process based on these B-splines using

interpolation points xj; j ¼ 0; 1; 2; . . .; k þ K � 1; gives rise

to a totally positive interpolation matrix as soon as each of

the interpolation points is inside the support of one of the

corresponding B-splines (this is the celebrated Schoenberg-

Whitney interpolation theorem: see e.g. p. 272 of Powell

1981).

The integer K comes from the dimension of the spline-

space spanned by the B-splines

B�kþ1;B�kþ2; . . .;B0;B1; . . .;BK ;

that are restricted to the interval ½0; ðK þ 1Þb�; the

dimension of the spline space is k ? K. To this end, we

let Bj :¼ B0ð� � jbÞ: It is then notationally convenient to let

the interpolation knots just described be strictly ascending

with respect to the index and to lie in the interval ½0; ðK þ
1Þb�; and let xi be in the support

�
ði� k þ 1Þb; ðiþ 1Þb

�
of

Bi�kþ1 intersected with the interval ½0; ðK þ 1Þb�: Then, for

instance, suitable knots can be x0 ¼ 0; x1 ¼ b; . . .;

xkþK�1 ¼ ðk þ K � 1Þb; or x0 ¼ 0; x1 ¼ 1
2
b; . . .; xkþK�1 ¼

1
2
ðk þ K � 1Þb; so long as k þ K � 1� 2K: The resulting

ðk þ KÞ � ðk þ KÞ interpolating matrix is

A ¼
h
BmðxjÞ

i
0� j\kþK
�k\m�K

:

Note that this matrix has elements which depend on b: To

ensure that it is a symmetric and positive-definite matrix,

consider RðbÞ :¼ A0A which is certainly symmetric, and

then positive definite because A is totally positive.

For example, when the knots are as in the first of the two

cases just mentioned, the matrix A has elements

amn ¼
Xk

‘¼0

ðmb� nb� ‘bÞk�1
þ
Yk

i¼0
i 6¼‘

1

ði� ‘Þb

¼
Xk

‘¼0

ð�1Þ‘ðm� n� ‘Þk�1
þ

‘!ðk � ‘Þ!b ;

0�m\k þ K; �k\n�K: Symmetrization of such

A yields for substitution into Eq. (7) the functions GijðbÞ ¼P
m amiamj; namely

GijðbÞ

¼ 1

b2

XkþK�1

m¼0

Xk

‘¼0

Xk

‘0¼0

ð�1Þ‘þ‘
0
ðm� i� ‘Þk�1

þ ðm� j� ‘0Þk�1
þ

‘!ðk � ‘Þ!‘0!ðk � ‘0Þ! ;

i; j ¼ �k þ 1; . . .;K; where for given i and j the inner

summations occur over non-zero elements only for

0� ‘� minðk;m� i� 1Þ and 0� ‘0 � minðk;m� j� 1Þ:
Of course, more complicated formulae may be taken for

the choice of the interpolation coefficients. These will give

rise to different sets of covariance functions C.

4 Convolved functions for multivariate data

More general functions can be used via constructions

based on convolutions of Askey functions. The key idea

is contained in the Convolution Theorem below. It para-

phrases statements in Gneiting et al. (2010) as a variant of

other reformulations quoted there, namely, that the cor-

responding multivariate Gaussian RF allows a represen-

tation as a process convolution, with distinct kernel

functions C1; . . .;Cm relative to a common white noise

process.

Theorem 4 [Convolution Theorem] Let C1; . . .;Cm :

R
d 7!L1ðRdÞ \ L2ðRdÞ; and set

CðxÞ :¼
h
CijðxÞ :¼ Ci 	 CjðxÞ

im

i;j¼1
:

Then C is the matrix-valued covariance of an m-variate

Gaussian RF.

We start by offering a result in the one-dimensional case

(d = 1), for which somewhat simpler expressions are

available though of lesser interest for geostatistical

applications.

Proposition 5 For d = 1, integer-valued mi and i ¼
1; . . .;m; x 2 R; let CiðxÞ :¼ wmi

ðjxjÞ be covariance func-

tions of the Askey type. Define CijðxÞ :¼ Ci 	 CjðxÞ so CijðxÞ
equals
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mi!mj!

ðmi þ mj þ 1Þ! ð2� jxjÞ
miþmjþ1; for 1� jxj � 2; ð13Þ

mi!mj!ð�1Þmiþ1jxjmjþmiþ1

ðmj þ mi þ 1Þ! þ 2
X

1
2
mi½ �

k¼0

mi!mj!ð1� jxjÞmi�2k

ðmi � 2kÞ!ðmj þ 1þ 2kÞ!

�2
X

1
2
ðmi�1Þ½ �

k¼0

mi!mj!ð1� jxjÞmjþ2þ2k

ðmi � 1� 2kÞ!ðmj þ 2þ 2kÞ!; for jxj � 1:

ð14Þ

Then for minifmig� 2;CðxÞ :¼ CijðxÞ
� �

i;j¼1;...;m
is the

covariance of an m-variate Gaussian process on R:

The derivation of (13) and (14) is given in the Appendix.

The constraint involving minifmig comes from the condi-

tion on Askey functions below (5) for the case d = 1.

In the second part of the Appendix we exhibit what is

possible concerning explicit calculation of convolutions in

R
3 in the isotropic case. These computations are barely

tractable, and seem somewhat pointless; Table 2 shows

some special cases of the expressions we obtain.

5 Simulation study

We report here results from a simulation study we made

with the goal of exploring the performance of the proposed

model from the point of view of both statistical and com-

putational efficiency.

Within a quasi-standard setting of increasing domain

asymptotics we simulated 1,000 realizations of a Gaussian

RF with the parsimonious bivariate covariance coming

from the Askey model. We considered three possible sce-

narios of 50D location sites uniformly distributed over the

grid ½� 1
2
D; 1

2
D�2; for D ¼ 3; 5; 7ði:e:150; 250; 350 points

respectively). We set r2
1 ¼ r2 ¼ 1; q12 ¼ 0:25 and since

we are working under increasing domain asymptotics, we

also make a commensurate increase in the support of the

Askey functions by setting it equal to 1
8
D: The smoothing

parameters are fixed at lij ¼ 0:5 for i, j = 1, 2.

In Fig. 1 (first row) we report the boxplots for the

parameters for the increasing scenarios. From these box-

plots it is evident that the variance of the estimates, as

expected, decreases as the number of location sites

increases. On the other hand the variance associated with

the compact support parameter increases slightly: this is

not surprising since the strength of correlation increases

with the number of location sites.

For the sake of completeness, we repeated this simula-

tion study with the same parameter settings except that we

changed the co-location correlation coefficient whose

nominal value was now set to -0.25. The results are

reported in the second row of Fig. 1.

Concerning our computations, we used algorithms for

sparse matrices in computing likelihoods. We used the R

statistical computing environment (R Development Core

Team (2007)), using the SPAM package (Furrer and Sain

(2010)), coupled with C routines.

Figure 2 shows the computational time when evaluating

the likelihood function with or without the use of algo-

rithms for sparse matrices when D ¼ 3; 5; . . .; 69; in order
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Fig. 1 Boxplots for the simulation study reported according to the described scenarios. The true parameters are r11 ¼ r22 ¼ 1; a ¼ D
8

; r12 ¼
0:25 (first row) and r12 ¼ �0:25 (second row)
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to get 3,450 points (i.e 6,900 observations). The gain in

computational efficiency when using algorithms for sparse

matrices is readily apparent.

6 Data analysis

In this section, we use the dataset in Gneiting et al. (2010)

so as to compare the performance of the multivariate

Matérn model they used with our compactly supported

model. We expect this compactly supported model to fit

worse than the multivariate Matérn because with compact

support there is an obvious loss of information with respect

to any model with non-compact support. In our case, the

motivation for compact support is the computational gain,

as explained in the previous section via simulation.

The data used in Gneiting et al. (2010) consists of

temperature and pressure observations and forecasts made

at the 157 locations in the North American Pacific North-

west as indicated in Fig. 3 of their paper.

The forecasts are from the GFS member of the Uni-

versity of Washington regional numerical weather predic-

tion ensemble (Eckel and Mass 2005); they were valid on

December 18, 2003 at 4 pm local time, with a forecast

horizon of 48 h. Gneiting et al. (2010) argue convincingly

about the zero mean and the smoothness of this bivariate

process. An important remark in their exposition is the

frequently noted fact that temperature and pressure are

strongly negatively correlated: the co-located empirical

correlation coefficient for this dataset is -0.47. We follow

their recommendations and work within the framework of

the bivariate Gaussian weakly stationary and zero mean RF

ZðnÞ ¼ ðZPðnÞ; ZTðnÞÞ0; where the subscripts P and T are

used to denote temperature and pressure respectively, and

where n 2 R
2; which is important to keep in mind because

the permissibility of the model in Eq. (9) is obviously

related to the dimension of the Euclidean space where the

bivariate process is defined.

We discuss here the full version of our model as in

Eq. (11) for x 2 R
2; namely

CPPðxÞ¼ r2
P 1� jjxjja

	 
3þlP

þ
þs2

PIðx ¼ 0Þ;

CTTðxÞ¼ r2
T 1� jjxjja

	 
3þlT

þ
þs2

TIðx ¼ 0Þ;

CPTðxÞ¼ qPTrPrT 1� jjxjja

	 
3þlPT

þ
;

obtained in the special case m ¼ 3; which is sufficient for

this mapping to belong to the class U2
2 by virtue of Prop-

osition 3. We remark that there is no reason to propose a

model that has different radii aP and aT because it is known

from Gneiting et al. (2010) that for this dataset the gain in

terms of the likelihood is negligible.

We proceed to compare this full version of our model

with the parsimonious and full Matérn models which, as

Gneiting et al. showed, outperform the linear model of co-

regionalization (LMC). They used the formulae below for

the parsimonious model.

CPPðxÞ ¼ r2
PMatðx; lP; aÞ þ s2

PIðx ¼ 0Þ;
CTTðxÞ ¼ r2

T Matðx; lT ; aÞ þ s2
TIðx ¼ 0Þ;

CPTðxÞ ¼ qPTrPrT Mat x; 1
2

lP þ lTð Þ; a
� �

;

and similar expressions for the full Matérn model. The

estimates we find are consistent with those in Gneiting

et al.’s work and are reported in Table 1. For this dataset,

the log-likelihood under the bivariate Askey model is

-1266.47, which is slightly worse than those obtained under

the bivariate parsimonious or full Matérn, being respec-

tively equal to -1,265.76 and -1,265.53 as Gneiting et al.

reported. At the same time, using the AIC criterion we have

that the order of preference would be parsimonious Matérn

(the best), full Askey, and full Matérn. In Fig. 3 we report the

maximum likelihood fitting of the empirical covariance and

cross-covariance functions for the pressure and temperature,

under both the parsimonious Askey and Matérn models.
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Appendix

Some proofs

Proof of Theorem 1. Direct inspection shows that
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Fig. 2 Time (in seconds) for evaluating the likelihood under the

bivariate Askey model with or without sparce algorithm matrices
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wmþlðtÞ :¼ Cð1þ mþ lÞ
CðmÞCð1þ lÞ

Z1

0

wm�1;0;bðtÞgðb; lÞdb;

t 2 ½0;1Þ;

ð15Þ

for wm�1;0;bð�Þ 2 UðRdÞ; m� 1
2

d þ 2 and b 7!gðb; lÞ :¼
bmð1� bÞlþ; l� 0: This is evidently of the form in

Eq. (8), being a special case of Theorem A, so that we only

need to show that the matrix-valued mapping

gðb; lÞ :¼
�
gðb; lijÞ

�m
i;j¼1

belongs to the class Um for all 0� b� 1 and l 2 R
mðmþ1Þ=2
þ :

To do this we appeal to the stronger statement of diagonal

dominance and nonnegativity of the elements on the

diagonal, which follows from noting that

ciigðb; liiÞ�
X

j 6¼i

jcijjgðb; liiÞ�
X

j 6¼i

jcijjgðb; lijÞ:

Because positive definiteness is preserved under scale

mixtures and under Schur products with the positive-defi-

nite matrix c of coefficients cij used in Eq. (9), the proof is

complete.

Proof of Proposition 3. The proof is again constructive.

The structure in Eq. (11) is obtained through the Schur

product of the matrix based on (9), namely

r2
1

Cð2þmþl11Þ
Cð1þmÞ Cð1þl11Þ q12r1r2

Cð2þmþl12Þ
Cð1þmÞ Cð1þl12Þ

q12r1r2
Cð2þmþl12Þ

Cð1þmÞ Cð1þl12Þ
r2

2
Cð2þmþl22Þ

Cð1þmÞ Cð1þl22Þ

 !

;

with the matrix Cð�Þ defined in Eq. (9) for m = 2, so that

we only need to verify that the matrix above is positive
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Fig. 3 Empirical covariance

and cross-covariance functions

for the pressure and temperature

data, with maximum likelihood

fitting under the bivariate Askey

(black line) and the bivariate

Matérn (red line)

Table 1 Estimates for the bivariate Askey and the full and parsimonious bivariate Matérn models

Model brP brT bqPT baP baT baPT blP blT blPT bsP bsT

Bivariate Askey 290.08 2.64 -0.52 1499.17 1499.17 1499.17 2.16 10.79 6.695 54.02 0

Full Matérn 261.50 2.67 -0.54 99.00 98.40 82.20 1.50 0.59 1.41 68.4 0

Parsimonious Matérn 264.20 2.63 -0.51 92.30 92.30 92.30 1.67 0.60 1.14 70.1 0
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definite; this is indeed the case when the condition in

Eq. (12) holds. The condition l12� 1
2
ðl11 þ l22Þ comes

from the matrix Cð�Þ in Eq. (11) for the case m = 2 via a

determinantal inequality.

Proof of Proposition 5. We detail some algebra

involving the convolution ðwm 	 wlÞðtÞ; t 2 R; of the

basic Askey functions wmðtÞ :¼ ð1� jtjÞmþ under the

restriction m; l 2 N; namely

ðwm 	 wlÞðtÞ :¼
Z1

�1

ð1� jt � ujÞmþð1� jujÞ
l
þdu: ð16Þ

As written in (16) the functions are defined on the interval

[-1, 1] in R
1; the essential features are that they are

nonnegative, are positive definite for m; l greater or equal

than two, and have compact support. The convolution at (16)

also has compact support, albeit on [-2, 2].

We evaluate (16) for positive integers m and l: Observe

that the function on the left-hand side is symmetric about

the origin so that it is a function of jtj: Indeed, inspection of

the right-hand side shows that the first factor of the inte-

grand is exactly ð1� t þ uÞmþfor 1\t\2;and in this range

it is nonzero only for t � 1\u\1: So for such t (and,

indeed, for jtj ¼ t) the integral equals

Z1

t�1

ð1� tþ uÞmð1� uÞldu¼
Z2�t

0

vmð2� t� vÞldv

¼
Z2�t

0

m
lþ 1

vm�1ð2� t� vÞlþ1
dv

¼
Z2�t

0

m!l!

ðlþ mÞ!ð2� t� vÞlþm
dv

¼ m!l!

ðmþ lþ 1Þ! ð2� tÞmþlþ1:

ð17Þ

For 0\t\1; the set of values of u making positive

contributions to the convolution expands to �ð1� tÞ
\u\1; while

ð1� jt � ujÞþ ¼
1� t þ u for � ð1� tÞ\u\0;
1� t þ u for 0\u\t;
1þ t � u for t\u\1:

8
<

:

Writing the convolution integral at (16) for this range

of u as
R 1

�ð1�tÞ � � � ¼
� R 0

�ð1�tÞ þ
R t

0
þ
R 1

t

�
� � � ; we evaluate

each of these contributions as below:

Z1

t

ð1þ t � uÞmð1� uÞldu

¼ �ð1þ t � uÞmð1� uÞlþ1

lþ 1

�����

1

t

�
Z1

t

mð1þ t � uÞm�1ð1� uÞlþ1

lþ 1
du

¼ ð1� tÞlþ1

lþ 1
� mð1� tÞlþ2

ðlþ 1Þðlþ 2Þ

þ
Z1

t

mðm� 1Þð1þ t � uÞm�2ð1� uÞlþ2

ðlþ 1Þðlþ 2Þ dv

¼
Xm�1

j¼0

m!l!ð�1Þ jð1� tÞlþ1þj

ðm� jÞ!ðlþ 1þ jÞ!

þ ð�1Þm
Z1

t

m!l!

ðlþ mÞ!ð1� uÞlþm
dv

¼
Xm

j¼0

m!l!ð�1Þ jð1� tÞlþ1þj

ðm� jÞ!ðlþ 1þ jÞ! ;

ð18Þ

Z t

0

ð1� t þ uÞmð1� uÞldu

¼ �ð1� t þ uÞmð1� uÞlþ1

lþ 1

����

t

0

þ
Z t

0

mð1� t þ uÞm�1ð1� uÞlþ1

lþ 1
du

¼
Xm

j¼0

m!l!½ð1� tÞm�j � ð1� tÞlþ1þj�
ðm� jÞ!ðlþ 1þ jÞ! ;

ð19Þ

Z0

�ð1�tÞ

ð1� tþuÞmð1þuÞldu

¼ð1� tþuÞmð1þuÞlþ1

lþ1

����

0

�ð1�tÞ

�
Z0

�ð1�tÞ

mð1� tþuÞm�1ð1þuÞlþ1

lþ1
du

¼
Xm�1

j¼0

m!l!ð�1Þjð1� tÞm�j

ðm� jÞ!ðlþ1þ jÞ! þð�1Þm m!l!

ðlþmÞ!

Z0

�ð1�tÞ

ð1þuÞlþm
du

¼
Xm

j¼0

m!l!ð�1Þjð1� tÞm�j

ðm� jÞ!ðlþ1þ jÞ! þð�1Þmþ1 m!l!tlþmþ1

ðlþmþ1Þ!: ð20Þ
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Putting together (18)–(20) gives for this integration,

when 0\t\1;

2m!l!
X

1
2
m½ �

j¼0

ð1� tÞm�2j

ðm� 2jÞ!ðlþ 1þ 2jÞ!

0

@

�
X

1
2
ðm�1Þ½ �

j¼0

ð1� tÞlþ2þ2j

ðm� 1� 2jÞ!ðlþ 2þ 2jÞ!þ
1
2
ð�1Þmþ1tlþmþ1

ðlþ mþ 1Þ!

1

A:

Finally then, ðwm 	 wlÞðtÞ is zero except when jtj\2 where

it is as given at (13) and (14) of Proposition 5 for mi ¼
m; mj ¼ l and jtj ¼ jxj:
Derivation of convolution formulae in R

3:

The argument sketched below follows the lines of

Theorem 3.c.1 in Gaspari and Cohn (1999), and shows that

the convolution ðCi 	 CjÞðzÞ of two radial functions com-

pactly supported in the unit ball of R3; when their centres

are distance z apart, is expressible

z :¼ x 7!CijðzÞ ¼
2p
z

R 1

0
rCiðrÞ

R rþz

jr�zj sCjðsÞdsdr; z [ 0;
R 1

0
CiðrÞCjðrÞ4pr2dr; z ¼ 0:

(

ð21Þ

Appealing to the formula at (21), we calculate the convolution

ðwm 	 wlÞðzÞ of two Wendland–Gneiting functions as

2p
z

Z1

0

rð1� rÞmþ
Zrþz

jr�zj

sð1� sÞlþdsdr: ð22Þ

The inner integrand at (22) equals

Zminðrþz;1Þ

maxðr�z;z�rÞ

sð1� sÞlds;

where the upper limit replaces the truncation in the

integrand. For the case r [ z this equals

Zminð1;rþzÞ

r�z

sð1� sÞlds

¼ �sð1� sÞlþ1

lþ 1
� ð1� sÞlþ2

ðlþ 1Þðlþ 2Þ

 !�����

minð1;rþzÞ

r�z

after integration by parts, and depending on r þ z [ or

� 1; this equals

ðr � zÞð1� r þ zÞlþ1

lþ 1
þ ð1� r þ zÞlþ2

ðlþ 1Þðlþ 2Þ ;

�ðr þ zÞð1� r � zÞlþ1 þ ðr � zÞð1� r þ zÞlþ1

lþ 1

if r þ z [ 1;

þ�ð1�r�zÞlþ2þð1�rþzÞlþ2

ðlþ1Þðlþ2Þ ; if r þ z� 1:

The case z [ r equals

Zminð1;rþzÞ

z�r

sð1� sÞlds

¼
�
�sð1� sÞlþ1

lþ 1
� ð1� sÞlþ2

ðlþ 1Þðlþ 2Þ

�����

minð1;rþzÞ

z�r

;

¼ ðz� rÞð1� zþ rÞlþ1

lþ 1
þ ð1� zþ rÞlþ2

ðlþ 1Þðlþ 2Þ ; if rþ z[1;

¼�ðrþ zÞð1� r� zÞlþ1þ ðz� rÞð1� zþ rÞlþ1

lþ 1

þ�ð1� r� zÞlþ2þ ð1� zþ rÞlþ2

ðlþ 1Þðlþ 2Þ ; if rþ z�1:

Here the case that rþ z[1 can be given as the single

expression

ð1� jz� rjÞlþ2

ðlþ 1Þðlþ 2Þ þ
jz� rjð1� jz� rjÞlþ1

lþ 1
;

the case r þ z� 1 also gives a single expression in terms of

jz� rj:
To evaluate the expression at (22) write

R 1

0
ð� � �Þdr ¼

	 R 1�z

0
þ
R 1

1�z



ð� � �Þdr: This gives two integrals

J1 :

¼
Z1

1�z

rð1� rÞm
�
ð1� jz� rjÞlþ2

ðlþ 1Þðlþ 2Þ

þ jz� rjð1� jz� rjÞlþ1

lþ 1


dr

and

J2 :¼
Z1�z

0

rð1� rÞm

�
�
jz� rjð1� jz� rjÞlþ1 � ðr þ zÞð1� r � zÞlþ1

lþ 1

þ ð1� jz� rjÞlþ2 � ð1� r � zÞlþ2

ðlþ 1Þðlþ 2Þ


dr:

To evaluate J1 we must distinguish the two cases according

as 1� z [ or\z; i.e. according as z\ 1
2

or z [ 1
2
: For the

simpler case z\ 1
2
;

J1 ¼
Z1

1�z

rð1� rÞm

lþ 1

�
ð1� r þ zÞlþ2

lþ 2
þ ðr � zÞð1� r

þ zÞlþ1


dr;
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while for the case z [ 1
2

we use
R 1

1�z ¼
R z

1�zþ
R 1

z and find

J1¼
Zz

1�z

rð1� rÞm

lþ1

�
ð1� zþ rÞlþ2

lþ2
þðz� rÞð1� zþ rÞlþ1


dr

þ
Z1

z

rð1� rÞm

lþ1

�
ð1� rþ zÞlþ2

lþ2
þðr� zÞð1� rþ zÞlþ1


dr

:¼J11þ J12:

The rest of the formula is then deduced through simple,

albeit tedious, algebra. Table 2 shows some special cases

of the formulae above, obtained for l and m positive

integers.
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