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Abstract A deep spectral investigation of the monthly

time series of Standardized Precipitation Index (SPI) and

Standardized Precipitation Evapotranspiration Index

(SPEI) in 45 meteorological stations in the Ebro basin

(Spain) from 1950 to 2006 for timescales ranging from 1 to

48 months was performed. In order to summarize the

results for the whole basin, the spectral analysis was also

carried out on the four principal components of SPI and

SPEI. Results confirm that SPI and SPEI presents very

similar spectral characteristics. At the shorter time scales,

the signal of SPI and SPEI is characterized by purely

random temporal fluctuations. The longer time scales tend

to feature the signal as a smoothly varying time series or

persistent, mostly due to the aggregated nature of the

indices calculation. The comparative analysis of the spec-

tral properties of the drought indices for all the 45 sites in

the Ebro basin lead to the identification of global or

regional effects discriminated by local effects. It was found

that some periodical signals are common to almost all the

sites, while others where only identified in specific mete-

orological stations.
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1 Introduction

Droughts are one of the main natural hazards that affect the

Mediterranean region. In this area droughts have severe

consequences for agriculture and natural vegetation (Lázaro

et al. 2001; Reichstein et al. 2002; Iglesias et al. 2003),

increasing the frequency of fires (Colombaroli et al. 2007;

Pausas 2004) and significantly reducing water availability

for urban and tourist consumption (Morales et al. 2000).

The identification of drought events is a difficult task since

we identify a drought by its effects at different levels, but

there is not a physical variable we can measure to quantify

droughts. In addition it is very difficult to clearly identify

their beginning, the duration and quantify its magnitude in

both, time and space (Wilhite 1993). The impact of a given

drought on different natural or socioeconomic frames will

depend largely on the temporal persistence of the drought

conditions, as the different subsystems of the water cycle

(i.e. soil moisture, streamflows, snowpack, aquifers or water

stored in lakes or artificial reservoirs) have a different time

of response to antecedent climatic conditions (Vicente-

Serrano et al. 2011). For this reason, drought is considered

as a multi-scalar phenomenon (McKee et al. 1993). Such

multiscalar character and the difficulties to delimit droughts

in time and space have promoted to invest large efforts on

the development and improvement of climatic drought

indices which permit to assess objectively the magnitude

and extent of a drought event from climatic information (see

reviews in Heim 2002; Keyantash and Dracup 2002; Mishra

and Singa 2010; Sivakumar et al. 2010).

In the last years, the Standardized Precipitation Index

(SPI, McKee et al. 1993) has been widely used and high-

lighted for a number of advantages over other indices

(Guttman 1998; Keyantash and Dracup 2002). It needs

only precipitation monthly data for its computation, it
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employs a moving average that facilitates spatial compa-

rability (Guttman 1998), it is valid for any season, and the

results are not affected by topography (Lana et al. 2001). In

addition, the length of the precipitation record and the

period used for calculation do not significantly affect

the final calculation of the SPI (Wu et al. 2005). Thus,

given its substantial advantages in quantifying and moni-

toring droughts, the SPI has been accepted by the World

Meteorological Organization as the reference drought

index. In the ‘‘Lincoln Declaration on Drought Indices,’’ 54

experts from all regions of the world agreed on the use of a

universal meteorological drought index for more effective

drought monitoring and climate risk management. They

made the significant consensus agreement that the Stan-

dardized Precipitation Index (SPI) should be used by

national meteorological and hydrological services world-

wide to characterize meteorological droughts (Hayes et al.

2011). More recently, Vicente-Serrano et al. (2010a, b)

developed the Standardized Precipitation and Evapotrans-

piration Index (SPEI), which is computed from the monthly

climatic water balance (precipitation minus potential

evapotranspiration) instead of using only precipitation. In

this manner, the effect of evapotranspiration on certain

drought events is now possible to be included in the

computation of the drought duration and magnitude

maintaining the same capability of SPI to monitor drought

at different time scales. The SPEI has advantages over

previous indicators because it combines the sensitivity of

the Palmer Drought Severity Index to changes in evapo-

ration demand (caused by temperature fluctuations and

trends), simplicity of calculation, and the multi-temporal

nature of the SPI.

Many studies have analysed the temporal evolution of

drought indices (i.e. SPI and SPEI) at different time scales

for different regions (e.g., Lloyd-Hughes and Saunders

2002; Vicente-Serrano 2006a, b; Bari Abarghouei et al.

2011; Du et al. 2012; Moreira et al. 2012), or they have

related the drought anomalies with the fluctuations of water

resources availability in different subsystems of the water

cycle or ecological indicators (Lorenzo-Lacruz et al. 2010;

Vicente-Serrano 2007; Quiring and Ganesh 2010; Pasho

et al. 2011). However, much lesser studies have analyzed

the temporal structure of these indices in order to identify

scaling behavior and periodicities in the temporal series of

the drought indices, as it was done by Santos et al. (2010)

using the SPI index in Portugal, who demonstrated the

existence of different periodicities for different time scales

and geographical sectors of the country.

In this study, we analyze the power spectral character-

istics of the SPI and SPEI index in the Ebro river basin.

This is a Mediterranean river basin affected by periodic

intense droughts (Vicente-Serrano 2006b; Vicente-Serrano

and Cuadrat-Prats 2007; Vicente-Serrano and López-

Moreno 2006) and characterized by a marked contrast in

climatic conditions as a consequence of the complex

topography and the geographical location between the

Atlantic Ocean and the Mediterranean sea (López-Moreno

et al. 2011). The main purpose of the study is to assess

whether the spectral characteristics of SPI and SPEI differ

as a consequence of the inclusion of potential evapotrans-

piration in the computation of the later. Moreover, the

conducted analyses will allow to test how spectral prop-

erties of SPI and SPEI changes with different time scales,

and to identify geographical differences in the temporal

evolution and spectral structure of SPI and SPEI indices.

2 Study area

The Ebro basin has an extent of about 83,000 km2 in the

northeast of Spain and has very contrasting relief. The

main unit is the Ebro Valley, which is a depression sur-

rounded by high mountain ranges including the Cantabrian

Range and the Pyrenees to the north, the Iberian mountains

to the south, and the Coastal Range to the east. The het-

erogeneous topography, contrasting influences of Atlantic

and Mediterranean conditions, and the influence of various

large scale atmospheric patterns (Vicente-Serrano and

López-Moreno 2006) generate a complex spatial distribu-

tion of climate parameters. Large variations in precipitation

and evapotranspiration occur throughout the region

(Vicente-Serrano et al. 2010a, b), and annual precipitation

varies from 307 to 2,451 mm yr–1. Average annual tem-

perature varies from 0.8 to 16.2 �C.

The humid conditions in the mountainous areas are in

contrast to the dry climate of the lowlands, emphasizing the

importance of hydrology and water resources throughout

the study region. Moreover it exits a trancsition of oceanic

climate to Mediterranean conditions from west to east

(López-Moreno et al. 2011). The relative abundance of

water in the area led to the construction of numerous dams

to regulate the main rivers, which markedly altered river

regimes and reduced flood occurrence. Most of the dams

were built between the 1950s and the 1980s, leading to an

increase in storage capacity from 500 to 3,000 hm3; they

have introduced noticeable alterations of river regimes and

flood occurrence (López-Moreno and Garcı́a-Ruiz 2007).

3 Data

Drought indices were calculated in 45 observatories loca-

ted within the Ebro basin or in its immediate surroundings.

These observatories recorded simultaneously temperature

and precipitation data since 1950–2006. Definitive climatic

series were obtained from raw data processing including
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stations reconstruction, gap filling, quality control and

homogenization testing with independent reference series

(see Vicente-Serrano et al. 2010a, b; El Kenawy et al. in

press).

The SPI calculation is based on precipitation records

summarised on different time scales. The total precipitation

Xk
i;jin a given month j and year i depends on the time scale

chosen, k. For example, the 12-month SPI for one month in

a particular year i with a 12-month time scale is calculated

according the following formulae (Paulo et al. 2003):

Xk
i;j ¼

X12

l¼13�kþj

wi�1;lþ
Xj

l¼1

wi;l; if j\; k; ð1Þ

and

Xk
i;j ¼

Xj

l¼j�kþ1

wi;l; if j� k ð2Þ

where wi,1 is precipitation in the lst month of year i [mm].

Among different models, the Pearson III shows an

enhanced adaptability to precipitation series at different

time scales (Guttman 1999; Vicente-Serrano 2006b). In our

study, Pearson III distribution was chosen to calculate SPI

for time scales from 1 to 12 months.

According Pearson III distribution, the probability dis-

tribution function of x is given by:

FðxÞ ¼ 1

aCðbÞ

Zx

c

x� c
a

� �b�1

e�
x�c
að Þ ð3Þ

where a, b and c are the shape, scale and origin parameters,

respectively, for precipitation values x [ 0; and C (b) is the

Gamma function of b.

Parameters of the Pearson III distribution were obtained

according to the L-moment approach, following an unbi-

ased estimator (Hosking 1990).

Pearson III distribution is not defined for x = 0, which is

a drawback as precipitation series may include months in

which there is no precipitation. With this in mind, an

adapted statistic H(x) can be calculated using the following

formula (Edwards and McKee 1997):

HðxÞ ¼ qþ ð1� qÞFðxÞ ð4Þ

S
P

E
I

-3

-2

-1

0

1

2

3

S
P

E
I

-3

-2

-1

0

1

2

3

S
P

E
I

-3

-2

-1

0

1

2

3

S
P

E
I

-3

-2

-1

0

1

2

3

S
P

E
I

-3

-2

-1

0

1

2

3

PC1

PC2

PC3

PC4

PC5

1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 2004 2009

Fig. 1 The five principal components which summarize more than a 70 % of the variance from the 45 SPEI series at a time scale of 6 months
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where q is the probability of zero precipitation. q can be

calculated simply as m/n, where n is the total number of

months and m is the number of months with no

precipitation.

After calculating H(x), the mean is standardised as 0 and

standard deviation as 1. This standardised variable is

interchangeable with the SPI, and is commensurable with

other SPI values over time and space. An SPI of 0 indicates

precipitation corresponding to 50 % of accumulated prob-

ability according to Pearson III distribution. To transform

H(x) and obtain normalised SPIs, the classical approach

formulated by Abramowitz and Stegun (1965) was used.

The SPEI is based on a monthly climatic water balance

(precipitation minus potential evapotranspiration) adjusted

using a three-parameter log-logistic distribution to take into

account common negative values (Vicente-Serrano et al.

2010a, b). The SPEI was calculated according Thorthwa-

ite’s equation. The probability distribution function of the

series according to the Log-logistic distribution is given by:

FðxÞ ¼ 1þ a
x� c

� �b
" #�1

: ð5Þ

The L-moment procedure was used to obtain the

parameters of the Pearson III distribution, following

Singh and Guo (1993). With F(x) the SPEI is easily

obtained as the standardized values of F(x), following

again the classical approximation of Abramowitz and

Stegun (1965). Details of the calculation of the SPI and the

SPEI can be found in López-Moreno and Vicente-Serrano

(2008) and Vicente-Serrano et al. (2010a, b).

4 Methods

4.1 The principal component analysis

The Principal Component Analysis (PCA) is a widely used

procedure of identifying patterns in climatic and hydro-

logical data (Smith 2002). The PCA permits to reduce the

original dimensionality of the data thanks to the extraction

of a some uncorrelated variables which explain a large

portion of the total variance. As Santos et al. (2010) did for

SPI series of Portugal, we performed individual PCA

analysis for SPI and SPEI series at times scales of 1, 3, 6,

12 and 24 months, in order to assess their spatial and

temporal patterns. To guarantee the stationarity of the time

series, before calculating the principal components of the

SPI and SPEI series on different time scales, we detrended

them using linear adjustments and residual values.

We performed the PCA in S-mode (correlation between

time series) to obtain the general temporal patterns of SPI

and SPEI at different time scales. This mode provides

loading values corresponding to each pattern, which can

then be represented spatially. For the PCA, we used a

correlation matrix. The number of components was chosen

so that the total explained variance was at least 70 %.

Finally, the components were rotated to redistribute the

final explained variance and to obtain more stable and

physically robust patterns (Richman 1986). For this pur-

pose, we used the Varimax rotation, which provides clearer

and physically explainable patterns (Jolliffe 1990). As an

example, Fig. 1 shows the five principal components which

summarize more than 70 % of the variance from the 45

SPEI series at the time scale of 6 months. Within the study

area different patterns can be found in the temporal evo-

lution of SPEI, characterized by phases of positive and

negative magnitude and by the occurrence of dry and wet

periods. Power spectral density analyses were further

applied to each component for SPI and SPEI at the con-

sidered time scales (1, 3, 6, 12, 24 months) to assess the

scaling properties of the different drought indices across

the study area.

4.2 Power spectral density

The power spectrum is a method that allows identifying

mainly relatively strong oscillations, given by frequency

peaks with relatively high amplitude, and scaling behav-

iour, indicated by a power-law form of the power spectrum

at certain frequency bands. An oscillation indicates that the

process is modulated with a characteristic frequency, given

by the inverse of the period of that oscillation; a scaling

behaviour indicates that there are not typical characteristic

Table 1 PCA results. Cumulative explained variance of the PCA applied to SPI and SPEI temporal series at different scales

Temporal scale SPI: explained variance (%) SPEI: explained variance (%)

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

1 month 22 37 51 63 72 18 35 49 66 72

3 months 21 36 50 62 72 23 41 57 71 77

6 months 43 57 64 69 72 22 41 57 71 75

12 months 18 33 46 57 68 20 35 48 59 68

24 months 36 50 59 65 71 19 38 51 61 69
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Fig. 2 Distribution of the

meteorological stations that

exhibited a higher correlation

with the different principal

components (PCs)
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frequencies, contrarily to what happens, for instance, for

exponential distributions. The strength of an oscillation is

quantified by the amplitude of the corresponding frequency

peak; while the strength of the scaling is quantified by the

exponent of the power-law that fits the spectrum in a cer-

tain frequency band (the slope of the line fitting in a least-

square sense the power spectrum plotted in log–log scales).

The scaling is also typical of memory phenomena and

indicates the presence of correlation structures in the pro-

cess. As opposite, the white noise does not present domi-

nant oscillations nor scaling behaviour (it is flat for any

frequency band); thus it can be used to test the significance

of both the features in a power spectrum.

5 Analisys

5.1 Principal component analysis: spatial variability

of droughts

Table 1 summarizes the results of the Principal Component

Analyses (PCA) for SPI and SPEI series at times scales of

1, 3, 6, 12 and 24 months, as an example. In almost all

cases 5 components are enough to explain at least a 70 %

of the variance. Figure 2 shows the distribution of the

meteorological stations that exhibited the maximum cor-

relation with any of the different principal components
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Fig. 3 Comparison between the power spectra of SPI1 and SPI48 for

the site 1024E
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Fig. 4 Comparison between the power spectra of SPI1 and SPEI1 (a) and that between the power spectrum of SPI48 and SPEI48 (b)

Fig. 5 Bi-dimensional pattern of the logarithm of the power spectra

of the SPI (a) and SPEI (b) varying the logarithm of the frequency f

(on the y-axis) and the timescale T (on the x-axis) for the site 1024E.

The color bar indicates the logarithm of the intensity of the power

spectrum. (Color figure online)
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(PCs). In general, there is a spatial coherence in the dis-

tribution of stations associated to each PC. In some cases,

all stations have exhibited a maximum correlation with two

or three component identified in the PCA analysis (i.e. at

1 month time scale). In other cases, SPEI and SPI series

have exhibited a more contrasted spatial variability, and

different groups of stations are related to the 5 different

PCs. In general, there is a good association in the spatial

differences identified for SPI and SPEI indices. Only for

SPI at 3-months time scale shows a larger spatial vari-

ability in the series, and the opposite occurs for SPEI at

12 months, when it exhibits a higher variability than SPI.

5.2 Spectral analysis of SPI and SPEI time series

We calculated the power spectra of the SPI and SPEI time

series for each of the investigated sites by using the peri-

odogram method. As an example, we show the spectral

analysis performed for the site 1024E. Figure 3 shows the

comparison between the power spectra of SPI1 and SPI48

for the site 1024E, where the subscript indicates the time

scale as defined in Sect. 3. Both the spectra show a quite

flat behaviour in the very low frequency band up to

approximately the frequency f0 & 0.017 month-1 (corre-

sponding to a period of approximately 4.8 years), for

higher frequencies the power spectrum of SPI1 keeps on

being approximately flat, while that of SPI48 scales with the

frequency with a decreasing power-law shape (linear in

log–log scales) with scaling exponent b & 1.7. The SPI

time series for the intermediate timescales are character-

ized by a shape of the power spectra approximately inter-

mediate between those of SPI1 and SPI48. The power

spectrum of SPEI at the site 1024E has a very similar form

as that of the SPI; Fig. 4 shows the comparison between the

power spectra of SPI1 and SPEI1 (Fig. 4a) and that between

the power spectrum of SPI48 and SPEI48 (Fig. 4b). Figure 5

shows the bi-dimensional pattern of the logarithm of the

power spectra P(f) of the SPI (Fig. 5a) and SPEI (Fig. 5b)

varying the logarithm of the frequency f (on the y-axis) and

the timescale T (on the x-axis) for the site 1024E. It can be

observed that for the lower timescales the power spectrum

is distributed on the frequency more homogenously than

for higher timescales; in fact, for the higher timescales, the

most of the power is concentrated in the lower frequency

bands.

By using the power spectrum, the signal is decomposed

in series of cycles (represented by frequency lines), whose

power is indicated by the amplitude (given by the height

of the lines); the larger the amplitude, more powerful

the cycle, more intense the modulating effect of such cycle

on the whole series. The identification of strong cycles or

oscillations in a signal is crucial for the identification of

possible external factors that could be responsible of such

oscillatory behavior of the process. In order to identify

significant cycles in the power spectra of the SPI and SPEI

time series, we used the shuffling procedure. By this

method, we generated simulated series having the same

statistical features of the original ones (the same proba-

bility density function) but characterized by white-noise

spectral features (approximately flat power spectrum).

Thus, our aim was to check the significance of the cycles

against the white noise hypothesis. The original time series

was shuffled one thousand times; the shuffling procedure

destroys all the inner time structures and make the time

series a realization of white noise (Telesca 2010). For each

shuffle, the power spectrum was calculated. Then, to test

the significance of a particular frequency, the 95-th per-

centile of the distribution of the values of the shuffle power

spectra was calculated, giving the 95 % confidence level

for that frequency; therefore, if the corresponding value of

the power spectrum of the original time series is above the

95 % confidence level, that frequency is significant with

95 % confidence. Figure 6 shows the power spectrum of

the SPI1 (Fig. 6a) and SPEI1 (Fig. 6b) along with their

95 % confidence curve (red line) for the site 1024E. The

power spectrum of the SPI1 is approximately flat, mostly
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Fig. 6 Power spectrum of the SPI1 (a) and SPEI1 (b) along with their 95 % confidence curve (red line) for the site 1024E. (Color figure online)
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below the 95 % confidence curve, with few frequency

peaks slightly above the 95 % confidence curve, in par-

ticular, the 21-month, 1-year and 5-month cycles;

therefore, we can deduce that the SPI1 time series of the

site 1024E (San Sebastian, in the Atlantic Ocean coast) is

mostly a realization of a white noise process, but very

weakly modulated by the three cycles at 21 months, 1 year

and 5 months. SPEI1 shows almost identical spectral

characteristics; it is mainly characterized by purely random

time variability, but very weakly modulated by the three

cycles. Figure 7 shows the power spectrum of the SPI48

(Fig. 7a) and SPEI48 (Fig. 7b) along with their 95 % con-

fidence curve (red line): both indices shows the same sig-

nificant cycles at 13.2, 8.8 and 6.6 years.

Figure 8 shows the 95 % significant cycles of SPI

(Fig. 8a) and SPEI (Fig. 8b) for the site 1024E, versus the

timescale T, which ranges from 1 to 48 months; any blue

cell represents a significant cycle whose amplitude is above

the 95 % confidence level. From these results we can

observe that cycles with the lower frequencies are almost

common for all the timescales T, while cycles with higher

frequency are significant only for the time series with lower

timescale T. Moreover, the time series corresponding to

lower timescales present more significant cycles than the

time series corresponding to higher timescales.

It is worth analyzing if a cycle is significant for many sites

or only for few sites: in the first case, the cycle could be

linked to some global effects that influence the hydrology of

the whole watershed; in the second case, the cycle could

describe local effects that are linked with the hydrology of

the particular site. Figure 9 shows, as an example, the dis-

tribution of the significant cycles/site for the 3-month,

12-month and 24-month timescale for the SPI and the SPEI

time series. Concerning the SPI3 (Fig. 9a) three significant

cycles (8 months, 1.6 years and 3.1 years) are present in the

most of the sites, other cycles (5.3 years, 4.1 years,

2.6 years, 1 year) are present in approximately 2/3 of the

sites, others are common only to few sites. Similar obser-

vations can be done for the SPEI3 (Fig. 9b). For the SPI12,24

and SPEI12,24 (Figs. 9c–f)we can see that the 3.1-year,
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Fig. 7 Power spectrum of the SPI48 (a) and SPEI48 (b) along with their 95 % confidence curve (red line): both indices shows the same

significant cycles at 13.2, 8.8 and 6.6 years. (Color figure online)

Fig. 8 The 95 % significant cycles of SPI (a) and SPEI (b) for the

site 1024E. The variable T is measured in months
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4.1-year, the 5.3-year, the 8.8-year and the 17.6-year cycles

are common to most of the sites, while the 8-month and 1.4-

year cycle are common to few sites. The 3.1-year, 4.1-year

and 5.3-year cycles are evidenced at any timescale and in the

most of the sites, therefore, such cycles would be indicative

of global effects (i.e. cycles in atmospheric circulation pat-

terns) that could influence the whole watershed.

Figure 10 shows the number of the sites in which

identical significant cycles of SPI and SPEI exist for each

timescale: as commented on the results regarding the par-

ticular cases shown in Fig. 9, we observe that the lower

frequency (higher period) cycles are common to the most

of the timescales in the most of the measuring sites, while

the higher frequency (lower period) cycles are significant

for few sites and only for the lower timescales.

5.3 Spectral analysis of the main components of PCA

The periodogram method was used to analyse the spectral

properties of the SPI and SPEI patterns obtained by means of

the PCA for the Ebro watershed. Figures 11, 12, 13, 14, 15,

16, 17, 18 show the power spectral density of the first four
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PCA components of the SPI and SPEI for the timescales

T = 1, 3, 6 and 12 months. In each plot the 95 % confidence

curve is also plotted (red). Thus, the significant cycles are

indicated by the frequency peaks above the confidence curve.

In some cases a peak corresponding to very low frequency

(indicated by a blue arrow in the plots) is more prominent

than the other cycles; anyway, it is not so intense to hide the

other cycles, which are clearly visible. The spectral analysis

of the first four components F1–F4 of SPI1 show the pre-

dominance of high frequency (low period) cycles (at

3–6 months in F1, F3 and F4), the yearly cycle (in F2) and the

2.6-year oscillation (in F3) (Fig. 11). The spectral analysis of

the PCA components of SPI3 reveals the predominance of the

cycle with period 1.6 years (in F1), 1.1 years (in F2) and

2.6 years (in F3), while regarding F4 there is a certain rich-

ness in the spectral behaviour with the presence of several

significant cycles with periods ranging between 6.6 years

and 6 months, with the most intense cycle at around

10 months (Fig. 12). Regarding SPI6, single cycles are pre-

dominant in each PCA component with periods ranging

between 1.6 years and 3 years (Fig. 13). Similar findings

can be observed in the power spectra of the PCA components

of SPI12, with the evidence of the 4.8-year cycle (in F1),

2.6-years (in F2), 13.2-years (in F3) and 4.1-years (in F4)

(Fig. 14). The power spectral densities of the PCA compo-

nents for the SPEI1,3,6,12 are approximately similar to those

of the SPI1,3,6,12, with only very slight differences in the

intensity and period of the cycles (Figs. 15, 16, 17, 18).

6 Discussion

In this paper we performed the analysis of the time fluc-

tuations of the monthly SPI and SPEI of 45 different sites

widespread in the Ebro Basin (Spain). The analysis high-

lighted the following features:

(i) Spectral similarity between SPI and SPEI. The spectral

characteristics of both indices are quasi identical in

terms of power spectrum shape (from approximately

flat at small timescales to power-law at high time-

scales), and in terms of periodical signals detected. Such

strong similarity in the dynamical behavior is indicative

that both indices can be used for drought analysis.

(ii) Shape of the power spectrum. The shape of the power

spectrum reveals the type of the temporal fluctuations

inherent in the time series: an approximately flat power

spectrum indicates that the signal is characterized by

purely random temporal fluctuations, which should

prevent to use such signal for predictions that could be

unfeasible due to its inherently memoryless nature.

Such behavior was evidenced for the SPI and SPEI

corresponding to the low timescales. If the power

spectrum behaves as a power-law, then the process is

characterized by memory phenomena and correlated

structures; if it behaves, in particular, as a decreasing

power-law, then the signal is governed by positive

feedbacks, and this means that the signal is character-

ized by an inner dynamics that tends to reinforce the

variations so that if the signal increases (decreases), it

will keep on increasing (decreasing), this featuring the

signal as a smoothly varying time series or persistent.

On the contrary, an antipersistent signal is characterized

by negative feedback mechanisms that tend to annihi-

late the signal variations, so that if the signal increases

(decreases), it will tend to decrease (increase). This

behavior mainly characterizes the SPI and SPEI

corresponding to the longer timescales, which could

be more efficiently used for drought forecasting inves-

tigations and predictability of dry/wet ranges. However,

it should be observed that the power-law found in both

indices corresponding to the longer timescales should

not be interpreted as an indicator of the presence of

inner correlated phenomena in the hydrological pro-

cess, but rather as an effect of procedure of calculating

the SPI (McKee et al. 1993), which accumulates

Fig. 10 Number of the sites in which identical significant cycles of

SPI and SPEI exist for each timescale. The color bar indicates the

number of sites. (Color figure online)
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precipitation on the selected timescale, as more as

increasing the timescale, thus augmenting the long-

range correlation of the series. The method of calculat-

ing the SPI is equivalent to a white noise filtering, which

removes the white noise component of the SPI at

the higher frequencies producing such scaling effect;

the amount of the white noise component removed

increases with the increase of the timescale.
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(iii) Main frequencies. The typical significant frequencies

of the periodical signals detected in the SPI and

SPEI time variability range between intra-annual

(6–8 months) to inter-annual (4–5 years) order of

magnitude for the lower timescales, while range from

intra-annual (3–4 years) to inter-decadal (17–18 years)
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order of magnitude for the higher timescales. The

knowledge of the typical significant frequencies of the

main oscillations governing the index time series can be

useful for the long-range predictability of dry and wet

periods in the Ebro basin. Bordi et al. (2004) have

analysed the spatio-temporal variability of dry and wet

0.000

0.005

0.010

0.015

0.020

0.025

1.6 y

(a) 5 mo

P
(f

)

SPEI
1

F1

0.000

0.005

0.010

0.015

0.020

0.025

0.030

1 y

4 mo(b)
SPEI

1

F2

0.000

0.005

0.010

0.015

0.020 3 mo
5 mo

1 y(c)

P
(f

)

f(1/month)

SPEI
1

F3

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.000

0.005

0.010

0.015

0.020 3 mo
5 mo

1 y

(d)

f(1/month)

SPEI
1

F4

Fig. 15 Power spectral density of the first four PCA components of the SPEI1

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

(a) 1.6 y

4.8 y

P
(f

)

SPEI
3

F1

-0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.055 (b)

1 y

SPEI
3

F2

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

 f (1/month)

(c)
1 y

2.6 y

P
(f

)

SPEI
3

F3

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02

0.03

0.04

0.05 (d)

6 mo
10 mo

1 y

f(1/month)

SPEI
3

F4

Fig. 16 Power spectral density of the first four PCA components of the SPEI3

Stoch Environ Res Risk Assess (2013) 27:1155–1170 1167

123



periods in eastern China and found that SPI24 signal is

characterized by long-term fluctuations, which contrib-

uted to the power spectrum variance at periods varying

between 24–16 years (inter-decadal) and 4–3.7 years

(inter-annual). Our findings confirm such results. Fur-

thermore, the spectral analysis of the first four principal

components of SPI1,3,6,12 and SPEI1,3,6,12 obtained by

using the PCA corroborates such findings (Figs. 11, 12,
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13, 14, 15, 16, 17, 18): at timescales of 1 and 3 months

intra-annual periodicities are predominant; at timescales

of 6 months inter-annual cycles are more evident, and at

timescales of 12 moths also inter-decadal periodicities

appear. In particular the inter-annual frequency band

3–5 years could suggest a possible link with the El Niño/

Southern Oscillation (ENSO) phenomenon (Bordi et al.

2004). A further explanation of such frequency band

could be the significant influence of the North Atlantic

Oscillation (NAO) on the precipitation regimes in the

Mediterranean (Lopez-Moreno and Garcı́a-Ruiz 2007;

Lopez-Moreno and Vicente-Serrano 2008). In fact, it

was found by Küçük et al. (2009) that the significant

cycle periods at 2–4 years and 6–10 years are evident in

the power spectrum of the NAO index. The presence of

periodicities with period higher than 10 years could be

due to some regional phenomena involving the soil

moisture oscillation (Santos et al. 2010, and references

therein)

(iv) Global versus local effect. The comparative analysis of

the spectral properties of the drought indices for all the

45 sites in the Ebro basin lead to the identification of

global or regional effects discriminated by local

effects: it was found that some periodical signals are

common to almost all the sites, while others to only

some sites. This finding could lead to recognizing the

periodicities that are common to almost all the sites as

fingerprints of global or regional phenomena affecting

the whole watershed; on the other side, the periodical

signals detectable only in a small number of sites could

explain some local effects. This discrimination is very

clear at timescale of 12 and 24 months (Fig. 9d, f, h, l),

in which approximately only one tenth of the 45 sites

are characterized by significant frequencies ranging

from 8 months to 1.4 years, while the inter-annual and

inter-decadal periodicities characterize almost all the

sites.

(v) There is a very high climatic contrast as a conse-

quence of the transition between Mediterranean and

Atlantic climatic conditions existing in the study area.

The intensity of the climatic gradients is a conse-

quence of the short distance between both water

bodies and the complex topography which affects the

influence of the different air masses even at very short

distances (Vicente-Serrano and López-Moreno 2006).

7 Conclusions

This study represents a deep spectral analysis of two

drought indices, SPI and SPEI, calculated for 45 meteo-

rological stations in the Ebro basin (Spain) from 1950 to

2006 with timescales varying between 1 and 48 months.

Our results point out to a structural similarity between SPI

and SPEI, both showing white noise dynamics at the

shorter time scales, while appearing persistent at longer

time scales. The comparative analysis of the main fre-

quencies detected for both indices in the Ebro basin lead to

the identification of global or regional effects (periodical

signals are common to almost all the sites) versus local

effects (periodical signals characteristic of only few sites).

The performed study contributes to a better description and

understanding of the hydrological processes governing the

Ebro dynamics watershed.
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Rome, pp 103–114, 177 pp
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