
ORIGINAL PAPER

An improved statistical analogue downscaling procedure
for seasonal precipitation forecast

Quanxi Shao • Ming Li

Published online: 28 June 2012

� Crown Copyright as represented by: Simon Barry 2012

Abstract Seasonal forecasting can be highly valuable for

water resources management. Hydrological models (either

lumped conceptual rainfall-runoff models or physically

based distributed models) can be used to simulate stream-

flows and update catchment conditions (e.g. soil moisture

status) using rainfall records and other catchment data.

However, in order to use any hydrological model for

skillful seasonal forecasting, rainfall forecast at relevant

spatial and/or temporal scales is required. Together with

downscaling, general circulation models are probably the

only tools for making such seasonal predictions. The Pre-

dictive Ocean Atmosphere Model for Australia (POAMA)

is a state-of-the-art seasonal climate forecast system

developed by the Australian Bureau of Meteorology. Based

on the preliminary assessment on the performance of

existing statistical downscaling methods used in Australia,

this paper is devoted to develop an analogue downscaling

method by modifying the Euclidian distance in the selec-

tion of similar weather pattern. Such a modification con-

sists of multivariate Box–Cox transformation and then

standardization to make the resulted POAMA and observed

climate pattern more similar. For the predictors used in

Timbal and Fernadez (CAWCR Technical Report No. 004,

2008), we also considered whether the POAMA precipi-

tation provides useful information in the analogue method.

Using the high quality station data in the Murray Darling

Basin of Australia, we found that the modified analogue

method has potential to improve the seasonal precipitation

forecast using POAMA outputs. Finally, we found that

in the analogue method, the precipitation from POAMA

should not be used in the calculation of similarity. The

findings would then help to improve the seasonal forecast

of streamflows in Australia.

Keywords Bias correction � POAMA � Quantile–quantile

(Q–Q) transformation � Standardization � Statistical

downscaling

1 Introduction

Skillful seasonal forecasting (with a lead time of one to

several months) of streamflow can be highly valuable for

water resources management, especially in agriculture and

water allocation. Hydrological models (either lumped

conceptual rainfall-runoff models or physically based dis-

tributed models) can be used to simulate streamflows and

update catchment conditions (e.g. soil moisture status)

using rainfall records and other catchment data. However,

in order to predict future streamflow using any hydrologi-

cal model, rainfall forecast at relevant spatial and/or tem-

poral scales is required. Together with downscaling,

general circulation models (GCMs) are probably the only

tools for making such seasonal predictions. POAMA (The

Predictive Ocean Atmosphere Model for Australia) is a

state-of-the-art seasonal climate forecast system developed

by the Australian Bureau of Meteorology (the bureau)

based on a coupled ocean/atmosphere model and ocean/

atmosphere/land observation assimilation systems (Alves

et al. 2003). It produces a set of ensembles for climatic

variables based on different initial atmospheric conditions.

However, like other GCMs, POAMA produces only large

spatial scale predictions over Australia, which cannot be

used directly as inputs for catchment scale hydrological

models. Such predictions do not capture the large degree of
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spatial variability in rainfall. Robust downscaling of the

large scale rainfall predictions from POAMA to rainfall at

a catchment or point scale is needed to drive the hydro-

logical models for streamflow forecasting.

The term ‘‘downscaling’’ has been adopted in literature

to describe a set of techniques that relate the local and

regional scale climate variables to the large scale atmo-

spheric and oceanic forcing variables. It bridges the gap

between what the current GCMs are able to provide and the

information users require. There are two general categories

of downscaling: dynamic downscaling and statistical

downscaling. Dynamic downscaling uses nested regional

climate models with intensive computing. In contrast, sta-

tistical downscaling establishes transfer functions between

different scales and can easily be implemented in practice.

A general review of different statistical downscaling meth-

ods is given in Wilby and Wigley (1997). Incorporated

with POAMA outputs, Shao et al. (2010) recommended the

analogue method proposed by Timbal et al. (2008) (here-

after, called Timbal’s analogue method for short) as the

preferred statistical downscaling method for seasonal

forecasting of precipitation in Australia from a comparison

with the nonhomogenous hidden Markov model (NHMM)

(Hughes et al. 1999; Charles et al. 1999) and the Gener-

alised Linear Modelling of Daily Climate Sequences

(GLIMCLIM) (Chandler and Wheater 2002).

One of main error sources in the analogue method is the

mismatch of POAMA outputs and real observations, which

makes the weather patterns identified by two datasets dif-

ferent especially in the case of seasonal forecasting. As a

result, the downscaled local variable based on the POAMA

outputs may not be as accurate as we expect. In this study,

we explore such a mismatch in terms of bias and dispersion

and further develop an improvement of Timbal’s analogue

method to address the bias correction of POAMA outputs.

An application to the south Murray Darling (SMD) region

is assessed using precipitations at 35 high quality stations.

The paper is organized as following. Section 2 describe

the data used, followed by methodology development. The

results are presented in Sect. 4. The paper is concluded by

conclusions and discussion.

2 Data

POAMA (The Predictive Ocean Atmosphere Model for

Australia; see http://poama.bom.gov.au/), is developed by

the Australian Bureau of Meteorology (the bureau). POAMA

1.5 is the version used during our development, and is

available to public. POAMA hindcast (1980–2006) is where

POAMA was run for a past period of time with actual (or as

near as known) forcing and realistic starting conditions. This

allows researchers to see how well that model performs. We

used the POAMA grids latitude = [-25.07, -40.96] 9

longitude = [140, 155], which covers the Southern part of

the Murray Darling basin (SMD) and contains 7 9 7 PO-

AMA grids (Fig. 1). The grids were optimized for the SMD

region when the bureau’s analogue downscaling method was

developed (Timbal et al. 2008) and was also used for

downscaling POAMA (Charles et al. 2010). The grids are

named (1, 1) to (7, 7) with i; jð Þ representing the grid located

at the ith node from west and jth node from north. We used

the NCEP/NCAR reanalysis as observations. The NCEP/

NACR reanalysis is regrided by interpolation to match the

POAMA grids. The available NCEP/NACR reanalysis data

used are from 1958 to 2006. Three variables are examined:

mean sea level pressure (MSLP); v-wind at 850 hPa (V850)

and precipitation (PRCP), which are used in the analogue

downscaling method for this region (Timbal et al. 2008). In

this study, the local weather is referred to the 24-h rainfall

total between 9 am local time, the calendar window is chosen

to be 30 days, and the reference period is from 1958 to 2006.

To assess the performance of our method, we applied it to

35 high quality stations in the Murray Darling Basin of

Australia (see Fig. 1) which are of best interest for Australian

water resources management (CSIRO 2008) and carefully

selected by our projects team for testing the impact on

streamflow via dynamic hydrological models (Wang et al.

2011). The daily rainfall data are from 1980 to 2000. Three

lead times are considered, including 1, 2 and 3 months.

3 Methodology

3.1 A review of analogue downscaling method

An analogue in a given day is the single and best day

selected from the historical pool which has the closest

weather pattern. The similarity between two weather

Fig. 1 POAMA grids used for downscaling and the high quality

stations used for assessment
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patterns is defined by the Euclidean metric of a set of atmo-

spheric predictors. Such an idea is based on the assump-

tions that the simultaneously observed local weather is

associated to the large-scale weather pattern and that such

weather patterns dominate at least the occurrence and to

certain extent the amount of precipitation. The analogous

weather pattern is based on the search of the analogous

vector formed by large scale climate variables. The feasi-

bility of this idea is investigated first by Lorenz (1969) and

explored further by many researchers (Kruizinga and

Murphy 1983; Zorita et al. 1995; Zorita and von Storch

1999; Timbal et al. 2008).

Let the weather pattern be characterized by a vector of

large-scale predictors X ¼ x1; . . .; xmð Þ0, which has a series

of historical observed values fXO
1 ;X

O
2 ; . . .;XO

n g with

XO
i ¼ xO

i;1; . . .; xO
i;m

� �0
. The large-scale predictors are usually

a collection of climate variables at regular GCM grids in a

large region. The large region does not have to be a regular

rectangular shape (as we used in here) but needs to be suf-

ficiently large so that the weather pattern can be identified.

For a target time t, a vector of model-derived predictors

(e.g. POAMA outputs) XM
t ¼ xM

t;1; . . .; xM
t;m

� �0
is used for

forecasting. The dissimilarity between the model-derived

predictor vector Xt
M at the target time t and the observed

predictor vector Xi at the historical time i is measured by

the Euclidean distance as

d XM
t ;X

O
i

� �
¼
Xm

k¼1

xM
t;k � xO

i;k

� �2

ð1Þ

The best analogue time a(t) at time t is defined as the

day in the historical pool with minimum dissimilarity,

aðtÞ ¼ arg min
i¼1;::;n

d XM
t ;X

O
i

� �
ð2Þ

The predictor vector can be the grid values of selected

variables in a region which covers the area of interest. The size

of region needs to be large enough so that the weather pattern

is representative. Timbal et al. (2008) used the standardization

for each grid by applying the long term monthly mean and

standardization (removing the mean and then dividing by the

standardization). With the consideration of seasonality, the

search of analogue weather pattern is excised within a

calendar window spanning a calibrated period of months. As

suggested by Timbal et al. (2008), searching analogues is only

carried out in the same season over years.

3.2 A review of existing bias correction method

The present statistical downscaling excises calibrate the

models to historical data (e.g. NCEP/NCAR reanalysis data

from the National Oceanic and Atmospheric Administration

(NOAA)) and then the calibrated models are applied to

GCMs (e.g. POAMA) for long term climate prediction. That

is, the calibration is independent of the GCM output. While

the GCM’s climatology can be used to simulate long term

climate changes, it is not directly applicable to seasonal

forecasting. It is well known that GCM precipitation output

cannot be used to force hydrological or other impact models

without some form of downscaling that includes bias cor-

rection if realistic output is sought (Sharma et al. 2007;

Hansen et al. 2006; Feddersen and Andersen 2005).

In general, each GCM (including POAMA) has its own

climatology which can be different from the observed cli-

matology that drives historical data (e.g. NCEP reanalysis).

Typically, (a) GCM output exhibits less variability than the

NCEP reanalysis; (b) The average of GCM values can be

significantly different from that of observed values. Such a

mismatch between GCM and historical data should be

addressed before statistical analogue method is used.

Standardization (Timbal et al. 2008; Charles et al. 2010)

tends to match the first two orders of distributional statis-

tics by shifting (i.e. addition) the GCM outputs by the

difference of the average NCEP/NCAR and GCM values

and scaling (i.e. multiplication) the GCM outputs by the

ratio of the standard deviations of NCEP and GCM values.

Let lO (or lM) and rO (or rM) be the mean and standard

deviation of historical observed data (or GCM outputs),

respectively. (Here the index of individual predictor vari-

able is ignored for simplicity.) Standardization transforms a

particular GCM data xM as follows

SðxMÞ ¼ rO

rM
xM � lM

� �
þ lO ð3Þ

It is easily shown that the standardized GCM data have

the same mean and variance as the historical data.

Standardization is essentially a linear transformation and

the correlation between NCEP/NCAR and GCM remains

same after transformation. Standardization normalises

GCM outputs to match mean and standard deviation with

observations. If the distribution of a predictor does not

follow a normal distribution, the correction of mean and

standard deviation may not ensure the distribution of

transformed GCM outputs close to the observed one.

Standardization, therefore, is more appropriate for normal

distributed data than heavily skewed data.

Alternatively, in order to obtain a better match between

the distributions of GCM output and historical data,

quantile–quantile (Q–Q) transformation provides a perfect

match in term of distribution by assigning the GCM per-

centiles associated output values to the corresponding

percentiles associated NCEP outputs. Let FO (or FM) be the

distribution of historical observed data (or GCM output),

and quantile–quantile transformation can be simply repre-

sented by
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QðxMÞ ¼ F�1
O

FMðxMÞ ð4Þ

for a particular GCM data. In practice, theoretical distribu-

tions are replaced by the empirical distribution estimated

from historical observations. The Q–Q transformed POAMA

has the exactly same distribution to NCEP in the period of

interest, and therefore all distributional characteristics, such

as mean and variance, are preserved. Unlike standardization,

the Q–Q transformation is generally non-linear and therefore

may lose the correlation between GCM and NCEP.

The Q–Q transformation has been used widely as a post

bias correction for the GCM output to translate long-range

climate predictions to the realm of hydrology in hydro-

logical modeling (Wood et al. 2002, 2005; Luo and Wood

2008; Ines and Hansen 2006; Sharma et al. 2007; Piani

et al. 2010). The Q–Q transformation has some variations

including empirical Q–Q transformation, distribution-

based Q–Q transformation and a mix of empirical and

distribution-based transformation.

The Q–Q transformation ensures a perfect match (or

nearly perfect in the parametric Q–Q transformations)

between the NECP and GCM data for the period used for

calibration. The disadvantage of the Q–Q transformation is

two-fold: (1) The Q–Q transformation is dependence on time

scale of available data. A Q–Q transformation based on daily

data has no relationship with the transformation established

on the same set of data but aggregated to monthly totals. In

order words, the Q–Q transformation does not own invariant

property at different times scales. (2) The Q–Q transforma-

tion is often a non-linear transformation and loses the cor-

relation of original large-scale predictors and a local-scale

variable.

Although the Q–Q transformation is a monotonic trans-

formation, it could not control the change of correlation

after the transformation because of the nonlinearity in the

transformation. However, if the Q–Q transformation is

linear, it will reserve the correlation. Therefore, it will

encourage us to find a distribution which gives a linear Q–Q

transformation. An obvious one is normal distribution.

Two different time scales are used in bias correction: daily

and monthly scales. However, the bias corrected results can

be different for different time scales, making it difficult to be

interpreted. From a statistical point of view, the standardi-

zation only considers mean and standard deviation and

therefore normality on data is implicitly assumed in order to

have an invariant property at different time scales.

3.3 Two-step bias correction

Based on the review of the existing bias correction approa-

ches, we develop a two-step bias correction and incorporate

the analogue method to improve seasonal forecasting of

rainfall.

3.3.1 Step 1: Box–Cox transformation

The Box–Cox transformation (Box and Cox 1964) is widely

used in statistical analysis to transform data to a normal

distribution. The transformation is applicable for both uni-

variate and multivariate data by using appropriate objective

function in estimation. In this study, we apply a bivariate

Box–Cox transformation to historical variable xk
O and cor-

responding GCM variable xk
M

xO;B
k ¼ sðxO

k ; kO; aOÞ ¼
ðxO

k
þaOÞkO�1

kO
; if kO 6¼ 0;

lnðxO
k þ aOÞ; if kO ¼ 0;

(
ð5Þ

xM;B
k ¼ sðxM

k ; kM; aMÞ ¼
ðxM

k þaMÞkM�1

kM
; if kM 6¼ 0;

lnðxM
k þ aMÞ; if kM ¼ 0;

(
ð6Þ

to make the joint distribution of (xk
O,B, xk

M,B) as close to the

bivariate normal distribution as possible. The transforma-

tion parameters kO; aOð Þ and kM ; aMð Þ are estimated from a

likelihood approach. The main reason of employing

simultaneous transformation rather than individual trans-

formations separately is that we aim to match the NCEP/

NCAR and POAMA data to achieve a better downscaled

precipitation.

3.3.2 Step 2: standardization

After mitigating the possible skewness of the original data

from the Box–Cox transformation, we standardize the

transformed NCEP/NCAR and POAMA data (xk
O,B, xk

M,B)

as follows

xO;N
k ¼ NðxO;B

k Þ ¼
xO;B

k � lO;B

rO;B
ð7Þ

xM;N
k ¼ NðxM;B

k Þ ¼
xM;B

k � lM;B

rM;B
ð8Þ

The standardization used in this study is slightly different

from the one defined by Eq. (3) and is applied to both NCEP/

NCAR and POAMA data in order to make the normalized

data with zero mean and unit variance.

We apply this two-step bias correction to all large-scale

predictors, calculate the dissimilarity measure defined by

Eq. (1) based on xO;N
1 ; xO;N

2 � � � ; xO;N
m ; xM;N

1 ; xM;N
2 � � � ; xM;N

m

n o

and search the analogue day by Eq. (2). A flowchart for

the procedure of improved analogue method in given in

Fig. 2.

3.4 Assessment of variables used for forecast

Traditionally, a statistical downscaling method is assessed

by NCEP/NCAR reanalysis data in both calibration and

validation. The final model is then applied to a GCM to
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evaluate the future climate. However, for seasonal forecast,

we have to assess further whether or not a variable used in

calibration and validation based on NCEP/NCAR reanal-

ysis data is still suitable when the variable is replaced by

the GCM output, because the GCM may have very low

skill on this variable even after bias correction. In this case,

the use of low skill variable will not improve but may

reduce the forecasting skill on the precipitation by adding

more noise in the model. Therefore, we need re-assess if

any variable should be excluded for forecasting purpose

based on POAMA output.

Note that most statistical downscaling methods do not

use the precipitation as a predictor to downscale precipi-

tation due to the lack of skill but Timbal’s analogue

method sometimes uses it as a predictor. In this paper we

will also assess the usefulness of POAMA precipitation in

the sense of seasonal forecasting.

4 Results

In this paper, all the computations are implemented in an R

package (httep://cran.r-project.org/package = car) and the

codes are relatively simple. Readers can request the codes

from the authors.

Unlike other statistical downscaling methods, the ana-

logue statistical downscaling method does not need to

parameter calibration as the similarity is defined by the

Euclidian distance (see Eq. (1)). In order to obtain the

bivariate Box–Cox transformation and standardization, we

used all possible matched data between POAMA hindcast

(for each lead time) and NCEP/NCAR from 1980-2006. To

assess the performance of our improved analogue statistical

downscaling method, we need to compare the downscaled

and the observed rainfalls for the high quality stations. To

do it, for each date in 1980–2000 (which is the span of

observations for the high-quality stations), the analogue

date is found as the date which has the minimum Euclidian

distance between its POAMA hindcast and the full his-

torical NCEP/NCAR dataset from 1958 to 2006 excluding

the one-year window centred at the date. That is we choose

the analogue date having the highest similarity to the given

date and use the rainfall in the analogue date as the fore-

casted rainfall of the given date.

4.1 Assessment of different bias corrections

for the POAMA outputs

Several comparisons are used to assess the POAMA out-

puts against NECP/NCAR data. The following statistics are

used for comparison: (i) mean and standard deviation; (ii)

correlation with NCEP; (iii) correlation for ordered

observations (to check the quantile–quantile bias correction

which will be defined in the next section); and (iv) nor-

mality testing.

As an example, Fig. 3 gives the summary of daily NCEP/

NCAR and POAMA MSLP outputs across all grids with lead

time of 2 months. It can be seen that in general NCEP has

larger mean and standard deviation than POAMA. The Lil-

liefors test (Dallal and Wilkinson 1986) was performed for

normality test. Both NCEP and POAMA outputs are fre-

quently not normally distributed (large P-values mean that

the data are normally distributed). The POAMA outputs have

some skills with positive correlations between NCEP and

POAMA paired (matched) data and with quite high corre-

lations between ordered NCEP and POAMA data.

Note that the bias correction by Q–Q transformation

can be performed at either daily or monthly scale. We

Input: NCEP/NCAR and 
POAMA data and region 

Determine the large-scale 
predictors based on the region

Box-Cox transformation on the 
NCEP/NCAR and POAMA data
by Eqns (5) and (6)

Standardize the transformed 
NCEP/NCAR and POAMA data
by Eqns (7) and (8)

Measure the dissimilarity of 
normalized NCEP/NCAR and 
POAMA at historical days

Search the analogue day with 
minimum dissimilarity by Eqn 
(1)

Use the precipitation observed at 
the analogue day as the 
downscaled precipitation by Eqn 
(2)

Fig. 2 Flow chart of improved analogue downscaling method
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conducted the bias correction at the daily time scale. To

compare our bias correction with other methods, we sum-

marize the results for all grids and months in Table 1 for

different bias correction methods, together with the results

for the original data. As a demonstration, we show the xy

plot of NCEP and POAMA daily (Fig. 4) data and sum-

marized data to monthly scale (Fig. 5) for MSLP at grid

(3, 3) with lead time of 2 months. It can be seen that there

are some correlations between the original POAMA and

NCEP data at daily scale with lead time of 1 month but the

correlation decreases fast for the lead times of 2 and

3 months, meaning that there are some skills in POAMA

up to 1 month but the skill decreases fast for the lead times

of 2 and 3 months. At monthly scale (Fig. 5), the correla-

tion is higher than that that at daily scale. However, the

POAMA outputs are relatively flat (with a smaller standard

deviation) compared with NCEP data.

At the original daily scale, the standardization approach

(referring to row 3 of Fig. 4) retains the correlation (row 3

and column 1) and corrects the distributional mismatch

except for upper and lower tails (row 3 and column 2) but

does not change the normality of the data (row 3 and

column 3). The Q–Q transformation (row 4) results in

perfect distribution match as expected (row 4 and column

2) but destroys the correlation (row 4 and column 1) and

does not change the normality of the data either (row 4 and

column 3). The proposed Box–Cox transformation

approach (referring to Row 2 of Figs. 4, 5) retains the

correlation (row 2 and column 1), makes two distributions

close to each other even at two tails (row 2 and column 2)

and approximately changes the data to normal distribution

(row 2 and column 3). The findings are also evident from

the qq plot between NCEP and POAMA values (row 1 and

column 2 of Fig. 4), from which we can see the distribu-

tional mismatch between POAMA and NCEP outputs.

To further understand the performance of bias correction,

the bias corrected daily data are also summed to monthly

scale and the same statistics are given in the second part of

Table 1 and demonstrated in Fig. 5. The normality is

important for the use of standardization. However, it can

also be seen that both NCEP and POAMA data are not

normally distributed (row 1 and column 3 of Figs. 4, 5) at

monthly scale although there are some correction.

4.2 Performance of different bias corrections

for the analogue downscaling

As the purpose of the bias correction is to improve the

performance of statistical downscaling methods, it is

important to assess the performance of different bias cor-

rections in term of the analogue downscaling results. To do

this, different bias correction methods were applied to the

Fig. 3 Summary of NCEP and

POAMA daily MSLP with lead

time = 2 month
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analogue downscaling method, including (1) the stan-

dardized NCEP and POAMA data; (2) the original NCEP

and Q–Q transformed POAMA data and (3) the Box–Cox

transformed NCEP and POAMA data.

In this paper we also assess the usefulness of POAMA

precipitation in the sense of forecasting. To do this, we

provide the results with and without precipitation as pre-

dictor. Precipitation is observed with many zero values,

and this results that the distribution of precipitation is

highly skewed and hardly possible to be transformed to

normal. Therefore, we do not carry out the Box–Cox

transformation on precipitation and use the standardized

precipitation instead.

Before applying the analogue downscaling method for

the purpose of forecasting, we examine its performance

when the NCEP/NCAR reanalysis data are used (that is, its

performance in calibration and validation). Figure 6 gives

that correlation of observed (NCEP/NCAR reanalysis) and

downscaled precipitations using bias corrections by stan-

dardization and Box–Cox transformation for each month. It

can be seen that for each bias correction, the use of NCEP/

NCAR reanalysis precipitation improves the downscaling

result. For a given set of predictors (i.e., with and without

precipitation), the bias correction by standardization has

more chance (8 of 12 months in both cases) of out-per-

forming that by the Box–Cox transformation. It is not

Fig. 4 Plot of NCEP (x axis)

and POAMA (y axis) daily

MSLP at grid (3, 3) with lead

time = 2 months. The plots are

organized in row by column by

following. Row 1 is the result

for observations, row 2 for

standardization, row 3 for Q–Q

transformation and row 4 for

our Box–Cox transformation

plus standardization. Column 1
gives xy plots, column 2 qq

plots and column 3 Q–normal

plots in which dots represent the

NCEP data and line represents

the POAMA data
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surprising as the NCEP/NCAR reanalysis precipitation has

high skill and contains more information on the station

precipitation, and it is not necessary to conduct data

transformation as the original data contain more precise

information than transformed data.

As we are interested in the seasonal forecasting by using

POAMA, we selected three lead times (1, 2 and 3 months

corresponding to 30, 60 and 90 days, respectively) in

preparing POAMA data. Note that most statistical down-

scaling methods do not use the precipitation as a predictor

to downscale precipitation due to the lack of skill but

Timbal’s analogue method sometimes uses it as a predictor.

In the following study, we provide the results with and

without precipitation as predictor. Precipitation is observed

with many zero values, and causes the distribution of

precipitation to be highly skewed and hardly possible to be

transformed to normal. Therefore, we do not carry out the

Box–Cox transformation on precipitation and use the

standardized precipitation instead.

The correlations of Timbal’s analogue method using

different bias correction methods with and without pre-

cipitation for June with three lead times are given in

Table 2. The boxplots of Timbal’s analogue method for the

winter rainfall forecasting using different bias correction

methods with and without precipitation are given in Fig. 7.

The following findings can be concluded. (1) For a given

lead time and predictor set, our new bias correction always

performed best, followed by the standardization. (2) For a

Fig. 5 Plot of NCEP (x axis)

and POAMA (y axis) monthly

MSLP at grid (3, 3) with lead

time = 2 months. The plots are

organized in row by column by

following. Row 1 is the result

for observations, row 2 for

standardization, row 3 for Q–Q

transformation and row 4 for

our Box–Cox transformation

plus standardization. Column 1
gives xy plots, column 2 qq

plots and column 3 Q–normal

plots in which dots represent the

NCEP data and line represents

the POAMA data
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given bias correction and predictor set, the skill of down-

scaling method decreases as the lead time increases, except

the Q–Q transformation without precipitation at lead time

of 2 month. (3) For our Box–Cox bias correction and

standardization, the use of precipitation generally decreases

the skill of downscaling result.

5 Discussions and conclusion

Our improved analogue method has the same dissimilarity

measurement as Eq. (1) but based on a different bias cor-

rection to solve the mismatch between the historical data

and GCM output. Our bias correction is a two-stage pro-

cedure: (i) bivariate Box–Cox transformation to make

both NCEP and GCM outputs as normally distributed as

possible and (ii) normalization to match mean and standard

deviation. The proposed bias correction is based on the

following considerations in statistics. (1) Both the stan-

dardization and Q–Q transformation try to rectify some

distortion of GCM outputs and are complementary to each

other. The standardization reserves the correlation between

the NCEP and GCM but does not change the shape of their

distributions. (2) In contrast, the Q–Q transformation

ensures a perfect match (or nearly perfect in the parametric

Q–Q transformations) between the NECP and GCM data in

the period of interest (e.g. all the POAMA 1 month fore-

cast daily data in January from 1980 to 2006). (3) Although

the Q–Q transformation is a monotonic transformation, it

could not control the change of correlation after the

transformation because of the nonlinearity in the transfor-

mation. However, if the Q–Q transformation is linear, it

will reserve the correlation. Therefore, it will encourage us

to find a distribution which gives a linear Q–Q transfor-

mation. An obvious one is normal distribution. (4) Note

also that standardization is a linear transformation from the

original data to standardized data and that for normal data,

standardization will produce the same transformation at

different time scale under mild assumptions (including

independent data and autocorrelated data). However, such

the scale invariant property does not hold in a general

distribution. (5) The normal distribution is determined by

two parameters: mean and standard deviation, and thus the

Q–Q transformation makes the distribution for normally

Fig. 6 The mean of correlation between downscaled and observed

monthly rainfall across 35 high quality stations. The model with

(or without) asterisk denote the use (or no use) of NCEP/NCAR

reanalysis daily precipitation

Table 2 The median of the correlation between monthly observed

and downscaled rainfall over 35 high quality stations

Method Lead time (month)

1 2 3

Stda 0.316 0.211 -0.018

Std 0.335 0.193 0.175

QQa 0.143 0.090 -0.049

QQ 0.084 0.137 -0.157

Bcta 0.360 0.216 0.080

Bct 0.381 0.287 0.192

a (or not) denotes the use (or not) of daily precipitation hr24_prcp

Fig. 7 Boxplots of the correlation between monthly observed and

downscaled rainfall over 35 high quality stations from six methods

including: standardization (denoted by S), Q–Q transformation

(denoted by Q) and Box–Cox transformation (denoted by B), with

(no superscript) and without (denoted by asterisk) daily precipitation,

for three lead times (1, 2 and 3 months). The POAMA data used are

from 1980 to 2000 and NCEP reanalysis used are from 1960 to 2000
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distributed data by just matching these two parameters.

Therefore, if both GCM and reanalysis data are normally

distributed, the Q–Q transformation and standardization are

almost identical (subject to sample error). (6) As GCM’s

climatology (modeled system) may be different from the

observed climatology in a nonlinear way, we cannot simply

expect the NCEP and GCM output have linear relationship.

We can see from our exploration in the next section that the

observed and modeled outputs are not highly (linearly)

correlated. In fact, the Q–Q transformation does not

assume that GCM and reanalysis data are linearly related.

(7) Many statistical tools require normality assumption on

variables. Otherwise the analysis, estimation and inference

may be inefficient, or more seriously, incorrect. (8) Data

transformations are widely used in statistics and have been

proved to be powerful. Furthermore, there are powerful

mathematical transformations to make variables as close to

normal distribution as possible.

We conclude that the proposed two-stage bias correction

is not only statistically sound but also was proven useful

when being applied in conjunction with Timbal’s analogue

method. The proposed two-bias correction was shown to

transform the non-normal POAMA data to normal distri-

bution and to largely retain the correlation between NCEP/

NCAR and POAMA data. The correlation between

observed and forecasted rainfall aggregated in monthly

totals has been improved by using the proposed two-stage

bias correction. Nevertheless, the forecasting skill reduces

with a long lead time. Furthermore, we found that the

precipitation should not be used in the calculation of sim-

ilarity when POAMA is used for forecasting. This may be

caused by the large uncertainty of precipitation output from

POAMA. Further research is being conducted to assess the

performances of our new bias correction in different

regions using different statistical downscaling methods and

to integrate our new bias correction to a new statistical

downscaling method being developed.

It is an important and interesting research to evaluate the

performance of our improved analogue statistical down-

scaling in other regions. We will extend our improved

analogue statistical downscaling methods to other Austra-

lian regions and assess its performance once high quality

data are available. Furthermore, it is also important to

assess the impact of this improved analogue statisti-

cal downscaling on seasonal streamflow forecasting. The

results will be reported in separate papers.

The two-step bias-correction presented in this paper is in

fact a data transformation technique which tends to make

the transformed data as closely to be normally distributed

as possible, because many statistical methods require nor-

mality in data. It would be an interesting research topic to

see the effect of newly transformed data on different sta-

tistical downscaling methods.
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