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Abstract Typhoon is one of the most destructive disas-

ters in Taiwan, which usually causes many floods and

mudslides and prevents the electrical and water supply.

Prior to its arrival, how to accurately forecast the path and

rainfall of typhoon are important issues. In the past, a

regression-based model was the most applied statistical

method to evaluate the associated problems. However, it

generally ignored the spatial dependence in the data,

resulting in less accurate estimation and prediction, and the

importance of particular explanatory variables may not be

apparent. Therefore, in this paper we focus on assessing the

spatial risk variations regarding the typhoon cumulated

rainfall at Taipei with respect to typhoon locations by using

the spatial hierarchical Bayesian model combined with the

spatial conditional autoregressive model, where the model

parameters are estimated by designing a family of sto-

chastic algorithms based on a Markov chain Monte Carlo

technique. The proposed method is applied to a real data

set of Taiwan for illustration. Also, some important

explanatory variables regarding the typhoon cumulated

rainfall at Taipei are indicated as well.

Keywords Conditional autoregressive model �
Cumulated rainfall � Hierarchical Bayesian model �
Markov chain Monte Carlo � Metropolis–Hastings

algorithm � Spatial risk assessment

1 Introduction

Taiwan is an island country and locates in the subtropical

zone. Due to its special geographical position, earthquakes

and typhoons both are major natural disasters. In this paper,

we focus on discussing the associated problems of typhoon.

In Taiwan, typhoon usually happens in summer from early

May to late August and attacks us about three or four times

every year. It generally brings heavy rain and strong wind,

resulting in many floods and mudslides and stops the

electrical and water supply. At the same time, typhoon also

usually causes heavy economic loss and many people die.

In recent years, weather satellites have been able to help us

to gain more information about typhoon prior to its arrival,

so we may go through a series of preparatory tasks to

prevent possible damages; even so, typhoon is still the

main cause of disaster loss in Taiwan every year. There-

fore, in addition to taking necessary precautions against

typhoon, how to develop an efficient statistical methodol-

ogy to accurately assess the path, rainfall, or intensity of

typhoon prior to its arrival is essential. As pointed out by

Yeh et al. (1999), there are relatively few methods that can

be applied for solving the associated problems. In the past,

a regression-based model is a popular statistical method.

For example, Neumann (1972) and Xu and Neumann

(1985) used a regression model to forecast the path of

typhoon, while DeMaria and Kaplan (1994) and Fitzpatrick

(1997) also applied a regression model to forecast the

intensity of typhoon. In addition, Carter et al. (1989)
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applied regression prediction equations to an usual weather

forecast, and then the Central Weather Bureau (CWB) of

Taiwan adopted the same scheme to establish a statistical

forecast system to predict the daily high and low temper-

atures, cloud cover, and rainfalls (Chen et al. 2000). Other

issues regarding the rainfall estimation have been widely

studied and the readers may consult Unal et al. (2004), Xu

and Tung (2009), Lee et al. (2010), and Haddad et al.

(2010) for more details. For predicting the rainfall brought

by typhoons, Yeh et al. (2001) and Yeh (2002) proposed

the forecast models of rainfall based on a linear regression

model and the empirical orthogonal function modes,

respectively. In addition, Fan and Lee (2007) further

combined the Bayesian technique to develop a mixture

model for predicting the typhoon rainfall at Taipei. How-

ever, none of these studies accommodate the spatial

dependence in the data, resulting in the estimation and

prediction that may be inaccurate. Hoeting et al. (2006)

also indicated that the importance of particular explanatory

variables may not be significant when spatial correlation is

ignored. Therefore, incorporating spatial dependence into

models to assess the spatial risk variations of rainfall is

essential.

Spatial statistics arises when the data are points in some

Euclidean space and has been widely developed in many

fields of study, such as geography, biology, and epidemi-

ology. In the past, researchers mostly focused on modeling

the spatial variations in disease risk (e.g., Kelsall and

Wakefield 2002; Stern and Cressie 2002). However, how to

assess the spatial risk variations for the natural disaster

caused by earthquake or typhoon is also an important

problem, but it has not been extensively studied in the

literatures. Chen and Yang (2011) proposed a joint spatial

modeling approach to assess the spatial variations in

earthquake risks and obtained much useful information. To

our knowledge, there does not have a suitable spatial model

that can be satisfactorily applied to the problems of

typhoon cumulated rainfall. It is known that most of the

disasters caused by typhoons in Taiwan are due to heavy

rain, and therefore we focus on assessing the spatial risk

variations of typhoon cumulated rainfall at Taipei with

respect to typhoon locations in this paper. Motivated from

Chen and Yang (2011), we use the spatial hierarchical

Bayesian model combined with the spatial conditional

autoregressive (CAR) model to account for the spatial

dependence among the risks, where a family of stochastic

algorithms based on a Markov chain Monte Carlo (MCMC)

technique is designed to estimate the model parameters.

Based on the framework, some important factors influ-

encing the typhoon cumulated rainfall at Taipei are also

discussed.

The rest of this paper is organized as follows. Section 2

introduces the proposed spatial models for assessing the

spatial risk variations of typhoon cumulated rainfall at

Taipei with respect to typhoon locations and then displays

the procedures of estimating the model parameters. Sec-

tion 3 applies the proposed method to a real data set

recorded by Taiwan’s CWB from 1961 to 1994. Finally, a

brief discussion is given in Sect. 4.

2 Modeling

Assume that A � R
2 is the study region of interest. We

partition A into N = n1 9 n2 non-overlapping regular grids

and denote them as Ai; i = 1, 2, …, N. In this paper, we

are interested in investigating the impact of typhoon

locations with respect to h-hour cumulated rainfall over M

(in millimeter) at some rainfall station, where h and M are

pre-specified values and a data set of h-hour cumulated

rainfall at some rainfall station is required for each typhoon

within A: Thus, there may be several events (i.e., h-hour

cumulated rainfall over M at some rainfall station) for the

same typhoon. Let Yi be a nonnegative integer random

variable which counts the number of events when the

locations of candidate typhoons are in grid Ai;

i = 1, 2, …, N. In addition, we define the corresponding

expected number to be EM � N�1
PN

j¼1 Yj; where M is a

pre-specified threshold value of typhoon cumulated rain-

fall. In general, the quantity ri = Yi/EM is usually used to

estimate the relative risk of h-hour cumulated rainfall over

M at some rainfall station when a typhoon passes through

grid Ai, but it does not accommodate the spatial depen-

dence in the data. It may result in less accurate estimation

and large variation. Instead of using independent ri, in the

next section, we introduce the spatial hierarchical Bayesian

model combined with the spatial CAR model to account for

the spatial dependence among the risks.

2.1 Spatial statistical models

Suppose that Ri is the relative risk of h-hour cumulated

rainfall over M at some rainfall station when typhoon

locations are in grid Ai. We consider to model the random

variables Y � ðY1; . . .; YNÞ0 to be Poisson distributions as

follows

YijRi�PoiðRiEMÞ; i ¼ 1; 2; . . .;N; ð1Þ

where RiEM is the intensity rate of the Poisson process. As

suggested in Besag et al. (1991), we further model the

relative risks as

logðRiÞ ¼ aþ Xibþ di; i ¼ 1; 2; . . .;N; ð2Þ

where Xi ¼ ðxi1; . . .; xikÞ are grid-level covariates, a
and b ¼ ðb1; . . .; bkÞ

0
are regression parameters, and
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d ¼ ðd1; . . .; dNÞ0 are random effects with spatial correlations

that reflect small-scale spatial variabilities. In other words,

all the variations of log(Ri), apart from the small-scale

fluctuations of spatial dependence, are absorbed mostly into

the mean structure aþ Xib: For the spatial random

component d; it is often assumed to be a stationary process

and follows a multivariate normal distribution as follows

djr2;/�Nð0; r2Vð/ÞÞ; ð3Þ

where Vð/Þ is an N 9 N correlation matrix with the

unknown parameter / measuring the degree of spatial

dependence among d; and r2 is the variance of di;

i = 1, …, N. Here, we further consider the CAR model

for the process {di : i = 1, …, N}, resulting in the

covariance matrix r2Vð/Þ of (3) that can be decomposed

into ðI � /CÞ�1M; where I is an identity matrix, C ¼ ðcijÞ
is a pre-specified N 9 N spatial association matrix with

cii = 0 and cij = cji, and M ¼ r2I: Note that ðI � /CÞ is

invertible and ðI � /CÞ�1M is symmetric and positive

definite when / [ (/min, /max), where /min and /max are

determined by the reciprocals of the smallest and the

largest eigenvalues of C: There are many spatial correlation

functions that can be considered to construct the spatial

association matrix C: However, it would suffer a problem

regarding the selection of covariance functions but is

beyond the scope of this study. We will briefly discuss the

problem in Sect. 4 For simplicity in this study, we defined

the (i, j)th entry of C to be I(i * j), where I(�) is an

indicator function and i� j represents that grids Ai and Aj

are neighbors. The definition is typically called the rook

contiguity and I(i * i) : 0. Thus, the conditional

distribution of di conditioned on d�i is given by

dijr2;/; d�i�N /
X

j2Ni

cijdj; r
2

 !

; i ¼ 1; 2; . . .;N;

where d�i is a vector with the ith element deleted from d

and Ni � fj : j� ig is the neighborhood set of grid Ai.

Obviously, the spatial dependence is found based on the

information of neighbors and the degree of dependence

depends on the value of /. Applying the Factorization

Theorem of Besag (1974) and the properties of a multi-

variate normal distribution (Cressie 1993, p. 413), the joint

distribution of dijr2;/; d�i; i ¼ 1; . . .;N is a multivariate

normal distribution of (3). More details regarding the CAR

model can refer to Besag (1974) and Cressie (1993).

2.2 Prior and posterior distributions

Under the Bayesian framework, the prior specification and

derivation of posterior distribution both are required. First,

some mutually independent and non-informative or con-

jugate priors for r2;/; a; and b are given as follows: (i) the

usual non-informative prior is considered for a and b; (ii)

an inverse gamma prior IG(a, b) is assumed for r2; where

constants a and b are pre-specified values so that the prior

has variance as large as possible; (iii) we assume an uni-

form prior U(0, /max) for the spatial correlation parameter

/ because a negative value for / seems unlikely in most

applications. Then, applying the Bayes’ theorem, the joint

posterior distribution of ðr2;/; a; b; dÞ conditioned on Y

satisfies

where p(�) represents a given prior distribution. Because

the joint posterior distribution of (4) can not be summa-

rized analytically, we design a family of stochastic algo-

rithms based on MCMC techniques to estimate the model

parameters in the next subsection.

2.3 Estimation of parameters

Due to the conjugate prior, we obtain that the conditional

posterior distribution of r2 conditioned on all other vari-

ables follows an inverse gamma distribution as follows

r2j/; d� IG
N

2
þ a;

1

2
d0ðI � /CÞdþ 1

b

� ��1
 !

: ð5Þ

Therefore, we can apply the Gibbs sampler technique (e.g.,

Geman and Geman 1984) to generate the posterior samples

of r2; where the stochastic algorithm successively samples

p r2;/; a; b; djY
� �

/
YN

i¼1

p YijRið Þp djr2;/
� �

pðr2Þpð/ÞpðaÞpðbÞ

/ exp
XN

i¼1

Yiðaþ Xibþ diÞ � EM expðaþ Xibþ diÞ
 !

� ðdetðr2Vð/ÞÞÞ�1=2
exp � 1

2r2
d0Vð/Þ�1

d

� �

� r�2ðaþ1Þ exp � 1

br2

� �

;

ð4Þ
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from the conditional posterior distribution of (5) and results

in a Markov chain that converges to the joint posterior

distribution given in (4) under mild conditions (Tierney

1994).

For a; b; and di; i = 1, …, N, the corresponding con-

ditional posterior distributions are all non-standard. We

summarize them as follows

For each variable, a Metropolis–Hastings algorithm is

applied to iteratively generate an ergodic Markov chain

that yields the posterior samples (e.g. Metropolis et al.

1953; Hastings 1970; Chib and Greenberg 1995). In each

step, an update of the current state of the chain is generated

from a proposal distribution and the update is then accepted

or rejected according to a certain acceptance probability. In

practice, a most commonly used algorithm is Gaussian

random-walk Metropolis, where the proposal distribution is

Gaussian with mean being equal to the current state.

Finally, the conditional posterior distribution of the

spatial dependent parameter / is also non-standard but has

the following proportional form

p /jr2; a; b; d;Y
� �

/ pðdjr2;/Þpð/Þ

/ det Vð/Þð Þð Þ�1=2
exp

/
2r2

d0Cd

� �

:

In this paper, a discrete method is considered to generate /
due to its computational simplicity, where matrix Vð/Þ can

be computed in advance on fine grid points of /. For each

step, the probability mass function of / on find grid points

can be evaluated and then the posterior sample of / is

generated.

3 Analysis on the typhoon cumulated rainfall

In this section, we carry out models (1)–(3) to a real data

set of typhoon cumulated rainfall accompanied with some

covariates for evaluating the spatial risk variations of

typhoon cumulated rainfall in Taipei area with respect to

typhoon locations.

3.1 Description of data

A data set of h-hour typhoon cumulated rainfall at Taipei

rainfall station with respect to typhoon locations was sup-

plied by Taiwan’s CWB from 1961 to 1994, which con-

tains 145 typhoons and 9595 data regarding the typhoon

cumulated rainfalls at Taipei rainfall station. Note that the

original data were collected by Joint Typhoon Warning

Center of USA based on 6-h best tracks data of typhoons,

and then Taiwan’s CWB adopted the linear interpolation

technique to obtain the hourly typhoon center position and

relative information. As mentioned in Yeh et al. (1999,

2001), Taipei area is easier to have heavy rains when

typhoons pass through A ¼ ½120�E; 125�E	 �
½21:9�N; 25:5�N	: Thus, in this paper we let A be our study

region and we partition it into N = 15(= 5 9 3) non-

overlapping regular grids according to their suggestion. It

results in 68 typhoons that appear within A: Figure 1 shows

the study region A and 15 non-overlapping regular grids. In

this study, we use three threshold values of 24-h typhoon

cumulated rainfalls, say, M = 50, 100, and 130, to

respectively assess the spatial risk variations of 24-h

120 121 122 123 124 125
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23

24
25

Longitude

La
tit

ud
e

A1 A2 A3 A4 A5

A6 A7 A8 A9 A10

A11 A12 A13 A14 A15

Fig. 1 The study region A and 15 non-overlapping regular grids

p ajr2;/; b; d;Y
� �

/
YN

i¼1

pðYijRiÞpðaÞ / exp
XN

i¼1

aYi � EM expðaþ Xibþ diÞ
 !

;

p bjr2;/; a; d;Y
� �

/
YN

i¼1

pðYijRiÞpðbÞ / exp
XN

i¼1

YiXib� EM expðaþ Xibþ diÞ
 !

;

p dijr2;/; a; b; d�i;Y
� �

/ pðYijRiÞpðdijr2;/; d�iÞ / exp Yidi � EM expðaþ Xibþ diÞ �
1

2r2
d2

i � 2di/
X

j2Ni

cijdj

 ! !

:
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typhoon cumulated rainfall at Taipei with respect to

typhoon locations. According to the definition of Taiwan’s

CWB, M = 50 and M = 130 are called heavy rain and

extremely heavy rain, respectively. We summary the three

cases in Table 1 and Figs. 2, 3, 4 display the paths of

typhoons and the scatter plots of events with circle marks

(i.e., the typhoon locations where 24-h cumulated rainfalls

of Taipei rainfall station are over M) for the three cases,

where Taipei rainfall station locates in A2 and is marked as

a triangle.

In addition to the typhoon cumulated rainfall at Taipei

rainfall station, 7 corresponding explanatory variables

regarding the characteristics of the Taipei rainfall station

and typhoons were also recorded. Note that these explan-

atory variables were the same as Yeh et al. (2001) and Fan

and Lee (2007) who used the linear regression model and

mixture models to predict typhoon cumulated rainfalls at

Taipei area, respectively. We summarized 7 explanatory

variables as follows:

X1: Maximum wind speed of typhoon center

X2: Distance between the Taipei rainfall station (xs, ys)

and the typhoon center (x, y)

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððx� xsÞ � cos 20�Þ2 þ ðy� ysÞ2
q

X3: Moving direction angle of typhoon

X3 ¼ 360
2p � arctan

yq�yp

xq�xp

� �
; where (xp, yp) and (xq, yq)

are locations of a typhoon at time t and time t þ Dt;

respectively, and arctan
yq�yp

xq�xp

� �
is the corresponding

direction radian.

X4: Moving speed of typhoon

X4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððxq � xpÞ � cos 20�Þ2 þ ðyq � ypÞ2

q
=Dt

X5: Surface pressure of Taipei rainfall station

X6: Wind speed of Taipei rainfall station

X7: Transformation of the Julian day

X7 ¼ sin ðX07 � 41Þ � p
364:75

� �
; where X07 is the Julian

day of a typhoon at that time.

Note that the transformation formula of X7 is based on

Neumann (1992) and its maximum value occurs at the

Table 1 Three test cases

M Number of typhoons Events EM

50 38 486 32.4

100 17 177 11.8

130 9 87 5.8

120 121 122 123 124 125
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Fig. 2 The paths of 38 typhoons and the scatter plots of 486 events

for M = 50, where the triangle represents Taipei rainfall station
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Fig. 3 The paths of 17 typhoons and the scatter plots of 177 events

for M = 100, where the triangle represents Taipei rainfall station
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Fig. 4 The paths of 9 typhoons and the scatter plots of 87 events for

M = 130, where the triangle represents Taipei rainfall station
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Julian date X07 within July–September. In Taiwan, typhoon

usually happens in this period. Therefore, if the variable X7

is significant with a positive regression coefficient, it

indicates that a typhoon happens in the period will bring

heavy rainfalls for the Taipei area. In addition to variable

X7, we can divide variables X1–X6 into two groups. The

first group consists of variables X1–X4 which are associated

with the characteristics of typhoons and another group

includes X5 and X6 which show the status of the Taipei

rainfall station.

3.2 Computations and results

For M = 50, 100, and 130, we apply models (1)–(3) with

the spatial association matrix C given in Sect. 2.1 and

consider Xi ¼ ðxi1; . . .; xi7Þ; i ¼ 1; . . .; 15; as grid-level

covariates in model (2). That is, if there are ni events within

grid Ai; i ¼ 1; . . .; 15; and each event has 7 explanatory

variables, then each component of Xi can be obtained by

taking average over the corresponding ni values. In addi-

tion, for the settings of priors, we take

r2� IGð3; 0:001Þ;/�Uð0;/maxÞ; and U(-20,20) for a
and bj; j ¼ 1; . . .; 7; where /max = 0.32 is obtained by

taking the reciprocal of the smallest eigenvalue of C:

For each of M = 50, 100, and 130, we run 200,000

iterations for the posterior computations and discard the

first 100,000 iterations as a burn-in. We retain every 10th

set of parameter values to obtain approximately indepen-

dent joint posterior samples of size 10,000, where con-

vergence is assessed by examination of trace and

autocorrelation plots. In addition, some theoretical results

indicated that the proposal variances in Metropolis–Has-

tings steps should be tuned to achieve acceptance rates

around 0.23 for random walk updates; see Roberts et al.

(1997). In our study, the average acceptance rates for

updating spatial random effects d and regression parame-

ters are near 0.22 and 0.20, respectively. Tables 2, 3, and 4

summarize the posterior inferences of model parameters

for M = 50, 100, and 130, respectively. Again, parameter

/ measures the degree of the spatial dependence among the

risks. As expected, the posterior mean or median of / for

each case is distant from zero, it indicates that the spatial

correlation exists among the risks. Therefore, it can not be

ignored in analyzing the spatial risk variation of typhoon

cumulated rainfalls. Based on the results of Tables 2, 3,

and 4, we summarize important explanatory variables for

each case in Table 5. In general, we notice that M = 50

and M = 100 have near important explanatory variables

but are very different to the case of M = 130. For heavy

rains (e.g., M = 50 or M = 100), the results of Table 5

indicate the following four facts (i)–(iv) correspond to

variables X1, X2, X4, and X7, respectively: (i) if the wind

speed of typhoon center is large, Taipei area will have a

large risk to suffer the 24-h typhoon cumulated rainfall

over M; (ii) when a typhoon approaches the Taipei rainfall

station, Taipei area will have a large risk to suffer the 24-h

typhoon cumulated rainfall over M; (iii) a typhoon with a

slow moving speed will result in a large risk for the Taipei

area to suffer 24-h typhoon cumulated rainfall over M; (iv)

a typhoon happens within July–September will bring heavy

rainfalls for the Taipei area. However, for the case of

extremely heavy rain (i.e., M = 130), the results indicate

that the moving direction angle of typhoons (X3) and the

surface pressure of Taipei rainfall station (X5) are major

reasons to cause the Taipei area to have the 24-h typhoon

cumulated rainfall over 130. Importantly, it is very sensible

that the moving speed of typhoon (X4) is always significant

to influence the cumulated rainfalls for all cases. In addi-

tion, as mentioned in Sect. 2.1, all the variations among the

risks, apart from the small-scale fluctuations of spatial

dependence, are absorbed mostly into the mean structure.

However, the estimate of r2 in model (3) is large for each

case. It indicates that there may be other important

explanatory variables that have not been discovered in

analyzing the typhoon cumulated rainfall of Taipei area.

Finally, the estimated relative risks of Taipei area

experiencing the 24-h typhoon cumulated rainfall over 50,

100, and 130 when the typhoon locations are within grid

Ai; i ¼ 1; . . .; 15; are shown in Figs. 5, 6, and 7, respec-

tively. For all three cases, we notice that there are smaller

relative risks for Taipei area when the path of typhoon

appears within grids A6, A11 and A12. This is because the

counterclockwise rotation of typhoon usually results in its

structure being destroyed by the Central Mountain Range

of Taiwan. In addition, we also notice that there is a higher

relative risk for Taipei area when a typhoon is a west-

forward type.

To sum up, the methodology presented here will help us

in assessing the spatial risk variations of the typhoon

cumulated rainfall at Taipei area with respect to typhoon

locations and hence we can take necessary precautions

against typhoon.

4 Discussion and conclusion

In this paper, we developed a spatial hierarchical Bayesian

model combined with a spatial conditional autoregressive

model to assess the spatial risk variations in the typhoon

cumulated rainfalls for the Taipei area with respect to

typhoon locations. The proposed method can be easily

implemented through the MCMC algorithms. In this study,

we focus on assessing the spatial risk variations of typhoon

cumulated rainfalls for the Taipei area as the results shown
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Table 2 Summary of posterior inferences for the model parameters when M = 50

Parameter 2.5% 5% Median 95% 97.5% Mean SD

r2 71.453 77.877 129.427 233.883 264.537 139.174 49.978

/ 0.031 0.031 0.124 0.279 0.279 0.142 0.078

a -10.714 -10.333 -4.951 -0.430 -0.127 -5.028 3.147

b1 0.245 0.260 0.426 0.622 0.658 0.428 0.106

b2 -11.892 -11.652 -9.169 -4.874 -4.215 -8.779 2.245

b3 -0.105 -0.101 -0.029 0.030 0.034 -0.036 0.042

b4 -284.752 -271.065 -198.202 -133.901 -127.011 -196.787 38.976

b5 -0.016 -0.013 0.003 0.018 0.022 0.004 0.009

b6 -2.049 -1.896 -0.259 1.796 1.896 -0.104 1.311

b7 30.020 31.882 63.539 105.833 110.919 67.749 26.377

Table 3 Summary of posterior inferences for the model parameters when M = 100

Parameter 2.5% 5% Median 95% 97.5% Mean SD

r2 99.771 109.014 190.161 358.224 408.770 206.640 81.696

/ 0.031 0.031 0.155 0.279 0.310 0.161 0.082

a -22.428 -21.645 -18.212 -12.317 -10.608 -17.733 2.827

b1 0.102 0.119 0.319 0.599 0.647 0.337 0.151

b2 -23.270 -21.402 -15.592 -11.885 -11.388 -15.833 2.703

b3 -0.106 -0.098 0.034 0.071 0.079 0.015 0.051

b4 -261.037 -238.434 -144.798 -18.859 -11.375 -141.287 72.263

b5 -0.008 -0.005 0.021 0.054 0.055 0.027 0.019

b6 -5.307 -5.193 -1.939 -0.761 -0.546 -2.532 1.508

b7 28.386 33.469 116.531 128.968 130.109 98.049 32.404

Table 4 Summary of posterior inferences for the model parameters when M = 130

Parameter 2.5% 5% Median 95% 97.5% Mean SD

r2 96.317 107.390 195.945 393.531 453.455 215.850 93.539

/ 0.031 0.031 0.155 0.310 0.310 0.162 0.084

a -21.799 -18.909 -13.155 -7.103 -6.188 -13.140 3.730

b1 -0.223 -0.107 0.197 0.606 0.631 0.218 0.235

b2 -8.011 -7.081 0.075 8.514 9.396 0.588 4.650

b3 0.110 0.120 0.205 0.292 0.301 0.202 0.052

b4 -213.495 -206.087 -136.767 -68.775 -54.257 -136.380 43.512

b5 0.014 0.016 0.036 0.063 0.065 0.038 0.015

b6 -4.869 -4.673 -2.771 0.291 0.696 -2.493 1.506

b7 -9.608 -7.892 11.797 32.098 34.346 11.413 12.349

Table 5 Significant explanatory variables for the three test cases, where ‘‘?’’ and ‘‘-’’ represent positive correlation and negative correlation,

respectively

M X1 X2 X3 X4 X5 X6 X7

50 ? - - ?

100 ? - - - ?

130 ? - ?
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in Figs. 5, 6, and 7. The risk trends of the three cases are

basically the same, but we notice that there are different

important variables that influence the relative risks of

Taipei area experiencing heavy rains when different

threshold values M are considered. These results would

help the Taiwan’s CWB to forecast the typhoon cumulated

rainfall of Taipei area within 24-h based on the typhoon

locations and the changes of important explanatory vari-

ables. Therefore, we can take necessary precautions against

typhoon.

In our study, we recommend the spatial random effects d

in the model to reflect the spatial correlations among the

risks, in which parameter / measures the degree of spatial

dependence of d: As demonstrated in Tables 2, 3, and 4,

the estimate of / is distant from zero for each case. It

indicates that the spatial correlation exists among the risks

and hence can not be ignored. In addition, Hoeting et al.

(2006) also pointed out that the important explanatory

variables may not be significant when spatial correlation is

ignored in the modeling procedure. Therefore, incorporat-

ing spatial dependence into models to assess the spatial risk

variations in typhoon cumulated rainfall is essential. For

the spatial association matrix C; we use a simple structure,

called the rook contiguity, into our model. Although it may

not be the best one, the results of data analysis indicate

some useful and significant information for us. Undoubt-

edly, other spatial correlation functions could also be

considered, but it would suffer a problem regarding the

selection of covariance functions. For the problem, a fair

selection criterion of covariance functions should be pro-

posed, but it is beyond the scope of this study.

Furthermore, we could apply the same technique to

analyze spatial risk variations of typhoon cumulated rain-

falls for other rainfall stations of Taiwan with respect to

typhoon locations. The results would provide some useful

information for the prevention of possible damages from

typhoons.
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