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Abstract Macro-evolution is a new kind of high-level

species evolution inspired by the dynamics of species

extinction and diversification at large time scales. Immune

algorithms are a set of computational systems inspired by

the defense process of the biological immune system. By

taking advantage of the macro-evolutionary algorithm and

immune learning of artificial immune systems, this article

proposes a macro-evolutionary multi-objective immune

algorithm (MEMOIA) for optimizing multi-objective

allocation of water resources in river basins. A benchmark

test problem, namely the Viennet problem, is utilized to

evaluate the performance of the proposed new algorithm.

The study indicates that the proposed algorithm yields a

much better spread of solutions and converges closer to the

true Pareto frontier compared with The Non-dominated

Sorting Genetic Algorithm and Improving the Strength

Pareto Evolutionary Algorithm. MEMOIA is applied to a

water allocation problem in the Dongjiang River basin in

southern China, with three objectives named economic

interests (OF1), water shortages (OF2) and the amount of

organic pollutants in water (OF3). The results demonstrate

the capabilities of MEMOIA as well as its suitability as a

viable alternative for enhanced water allocation and man-

agement in a river basin.

Keywords Macro-evolutionary � Artificial immune

systems � Multi-objective optimization � Water allocation

1 Introduction

Water resources play a critical role in human society and

healthy ecosystems. Rapid population growth with the

requirements of higher living standards and excessive

water pollution due to agricultural and industrial expan-

sions have led to an increasing demand for water and

caused intense social and environmental conflicts world

wide (Kerachian and Karamouz 2007). In order to restore

sustainable development, possible alternatives to deal with

the increasing water demand have been developed, such as

developing new water resources projects (supply manage-

ment) and increasing overall management efficiency

(Khare et al. 2007). Optimal allocation of water resources

in river basins is an important objective of water resource

development projects all over the world (Abolpour et al.

2007) and may also be one of the most effective water

management alternatives to deal with increasing water

demand and inadequate surface supplies (Khare et al. 2007;

Maqsood et al. 2005).
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A basic problem in optimal allocation of water resources

is that different interest groups have different objectives

which may be conflicting and incommensurable (Chen et al.

2007). The optimization problem becomes more compli-

cated as the number of interaction factors, such as upstream–

downstream impacts and environmental changes, becomes

large. The interactions factors are also often nonlinear and

thus difficult to predict (Vink and Schot 2002). Tradition-

ally, multi-objective optimization problems are often solved

using the weighting method or the e-constraint method

(Carlos and Peter 1995; Cohon and Marks 1975; Nemhauser

et al. 1989). The weighting method produces only a single

Pareto optimum for each run of the optimization process and

is highly sensitive to the weight vector used in the scaling

process. In order to provide a group of Pareto optimal

solutions, the Pareto optimal set is obtained by varying the

weight associated with each objective and solving the prob-

lem sequentially. In the constrained method, one objective is

left out in the formation of the constraint set. The objectives

included in the constraint set are varied from the lower

bound to the upper bound in order to trace out the Pareto

frontier (Louie et al. 1984). In recent years, many heuristic

and metaheuristic algorithms such as evolutionary algo-

rithms (EA), evolutionary strategies (ES) (Coello Coello

et al. 2007), ant colony optimization (ACO) and particle

swarm optimization (PSO) have been proposed and suc-

cessfully applied to solve multi-objective problems. PISA

project (http://www.tik.ee.ethz.ch/pisa/) provides some

ready-to-use modules of multi-objective optimization for

application engineer and optimizers. Although such algo-

rithms may not always guarantee the global optimum solu-

tion, they provide quite good results in an acceptable

computation time (Kumar and Reddy 2006). While it has

been shown that these biologically inspired heuristics offer

better performance over classical optimization approaches

(the weighting method and the constrained method) in multi-

objective optimization problems, they still suffer from some

limitations such as premature convergence and poor

exploitation abilities (Tan et al. 2008). So there is a constant

need to improve existing algorithms.

The human immune system (HIS) is a highly developed,

parallel and distributed adaptive system. A relatively new

optimization algorithm, namely the immune algorithm

(IA), has been proposed by imitating the HIS defense

against invaders and is becoming increasingly popular in

tackling various optimization challenges (Du et al. 2005;

Garrett 2004; De Castro and Von Zuben 2002; Köster et al.

2003). Zhang (2007) developed a new dynamic immune

optimization algorithm for constrained nonlinear multi-

objective optimization problems, and Vrugt and Robinson

(2007) conducted a simulation of multiple optimization

algorithms using the concepts of global information shar-

ing and genetically adaptive offspring creation. Chen and

Mahfouf (2006) proposed a novel population adaptive-

based immune algorithm (PAIA) using clonal selection and

immune network theories for multi-objective optimization

problems.

The macro-evolution algorithm (MA) is inspired by the

dynamics of species extinction and diversification at large

time scales. It has been found to be successful for a wide

variety of optimization tasks (Marin and Solé 1999). MA

has the advantages of reaching higher fitness values and

higher probability of success in reaching good fitness val-

ues in comparison with genetic algorithms (GA) with

tournament selection. In this article, we propose the so-

called macro-evolutionary multi-objective immune algo-

rithm (MEMOIA) by incorporating the features of MA,

clonal selection and immune memory to perform a global

optimal search, where the clonal selection based on the

diversity in the evolving population is used for solution

exploitation, an entropy-based density assessment scheme

(EDAS) is used to distribute non-dominated individuals

uniformly along the discovered Pareto-frontier, and MA is

employed to preserve the diversity of individuals and form

part of the pool solution.

The article is organized as follows. Section 2 describes

the proposed algorithm. Its performance in solving an

experimental multi-objective function is assessed in Sect. 3,

followed by an application to a water resources allocation

problem with multi-objective water management require-

ments in the Dongjiang River basin of southern China, with

consideration of social, economic and environmental issues.

The results and discussions of the application are presented

in Sect. 5. Conclusions are given in Sect. 6.

2 Proposed MEMOIA

2.1 Principles and theories

With a view to attaining global multi-objective optimal

solutions with fast convergence, diversity, and spread of

solution sets, we proposed a MEMOIA based on macro-

evolutionary theories and features of immune pattern rec-

ognition and learning through the mechanism of clonal

selection and immune memory for multi-objective prob-

lems. For an immune system, the effectiveness of the

immune response to secondary encounter of antigens is

enhanced by the presence of memory cells associated with

the first infection, which is capable of producing high

affinity antibodies (Abs) after subsequent encounters.

Therefore, instead of starting from scratch every time, an

intrinsic scheme involving a reinforcement learning strat-

egy is adopted to ensure a fast and accurate immune

response after subsequent infection. Thus, antibodies with

high affinities are cloned and stored in the local memory

492 Stoch Environ Res Risk Assess (2012) 26:491–507

123

http://www.tik.ee.ethz.ch/pisa/


(Wong et al. 2009). The archive diversity of MEMOIA is

maintained by the proposed entropy-based density assess-

ment technique while evolving population diversity is

maintained by a new clonal selection scheme. Archive

diversity ensures that a representative set of non-dominated

solutions is stored, while evolving population diversity is

crucial to the discovery of a diverse, well-distributed and

near-optimal solution set (Tan et al. 2008). The represen-

tation of a MEMOIA for the biological immune system is

given in Table 1. The antigenic stimulus and the antibodies

define the multi-objective problem to be solved and the

potential solutions to the problem, respectively. Intuitively,

the affinity of the antibodies is associated with the extent it

solves the problem defined in terms of Pareto dominance.

Immune memory is implemented in the form of a fixed-size

archive and memory cells are represented by non-domi-

nated antibodies (Tan et al. 2008). In order to promote

antibody (Ab) diversity and to facilitate the exchange of

good information among antibodies, antibodies are sub-

jected to macro-evolutionary operators, which use a con-

nectivity matrix W to compare the fitness values and

similarities of all the antibodies in one generation

dynamically (Marin and Solé 1999; Zhang and Xu 2005).

The proposed hybrid algorithm tends to overcome

shortcomings of individual algorithms. The hybridization

has been used in the literature and many researchers have

proven that the hybrid approaches in solving optimal

problems are highly efficient (Heinonen and Pettersson

2007; Zhang et al. 2008). We employ the MEMOIA, which

combines the macro-evolutionary algorithm and immune

learning of artificial immune systems (AIS), here to resolve

the multi-objective optimization problems.

2.2 Algorithmic flow of MEMOIA

The computational procedure of our MEMOIA is as

follows.

Step 1 Define the antigen

According to Table 1, the objective function and con-

straints are represented by antigens.

Step 2 Initialize population

The initial population of antibodies is generated via

uniform random coding. Binary and real number coding

are the two most popular coding techniques. The real

number coding is used for the problems presented in this

article. For decision variables xi; i ¼ 1; . . .; n; defined

on intervals xi [ [ai, bi], the real number coding of xi, can

be expressed as:

xi ¼ ai þ b � bi � aið Þ ð1Þ

where b is within [0, 1]. An antibody Vi ¼ fx1; . . .; xjg is

represented as a vector of real numbers, where j is the

number of elements in Vi.

Step 3 Evaluate antibodies

Deb (2001) proposed an algorithm to compare two

solutions and determine whether one has dominated the

other. The scheme will be described in Sect. 2.3.

Step 4 Generate memory set/Update archive

After all antibodies are evaluated, antibodies are selected

or updated as memory cells. The archive is updated at

each cycle, and if the candidate solution is not

dominated by any member in the archive, it will be

added to the archive. Likewise, any memory cells

dominated by this solution will be removed from the

archive. When the predetermined archive size is reached,

a recurrent truncation process based on EDAS is used to

remove the most ineffective archive members. The

EDAS will be described in Sect. 2.4. The rationale of

eliminating memory cells based on EDAS is to maintain

a set of uniformly distributed memory cells in the

archive.

Step 5 Clonal selection

After the archiving process, appropriate antibodies are

selected and cloned into the mating pool which has the

same size as the evolving population. There are actually

two stages in the selection process. The first stage

involves the cloning of memory cells from the archive

by the proposed clonal selection scheme which will be

described in Sect. 2.5. These cloned memory cells will

form only part of the mating pool solution. As both the

clonal selection and macro-evolutionary algorithm are

employed, in order to maintain the diverse of solutions,

the effects of the both algorithms should be considered.

Here only 50% of them, that is 0.5�narchive, are used.

To fulfill the rest, we will use the macro-evolutionary

algorithm which will be described in Sect. 2.6.

Step 6 Crossover/Mutation

Genetic operations, such as crossover and mutation, can

enhance the immune algorithm in producing solutions

and perturbing selected solutions to avoid local optima

Table 1 Mappings of the biological immune system and MEMOIA

Immune system MEMOIA

Antigen Multi-objective problem

Antibody (Ab) Candidate solution

Immune memory Archive

Memory cell Archive solution or non-dominated antibody

Clonal selection Selection of antibodies contributing to quality

of solution set

Suppression Eliminating antibodies with close affinity

values

Identification of

antibodies

Affinity calculation

Antibody

production

Macro-evolutionary
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(Chen and You 2005). The crossover operation generates

new antibodies by mixing genetic material in the

chromosomes of the original antibodies in the mating

pool. For the variables with real number coding (as in

this study), arithmetical crossover is applied to interpo-

late at selected crossover points between the values of

two elements instead of exchanging them. This approach

can maintain elements of newly generated vectors within

the original domain, and can be expressed as (Chu et al.

2008; Michalewicz 1992):

xtþ1
u ¼ c � xt

v þ 1� cð Þ � xt
u;

xtþ1
v ¼ c � xt

u þ 1� cð Þ � xt
v;

ð2Þ

where xt
u and xt

v are the two decision variables to be

crossed, xtþ1
u and xtþ1

v are the newly generated variables,

and c is a constant between 0 and 1.

Mutation randomly changes antibody elements, introduc-

ing diversities such that the algorithm does not stick at

local optima. For an antibody Vi ¼ fx1; . . .; xm; . . .; xng;
each decision variable, xm (1 B m B n) has the same

mutation probability. Let V 0i ¼ x1; . . .; x0m; . . .; xn

� �
be the

antibody Vi mutated; the mutated element x0m can be

defined as (Chu et al. 2008; Östermark 1999):

x0m ¼
xm þ Dðt; bm � xmÞ if rr ¼ 0;

xm � Dðt; xm � amÞ if rr ¼ 1;

(

ð3Þ

and

D t; yð Þ ¼ y � 1� c 1� t
Tð Þb

� �
ð4Þ

where c is a random number uniformly distributed

within [0, 1], rr is a random zero–one digit, t is the

evaluation number, T is the maximal evaluation number,

and b is a system parameter determining the degree of

dependency on evaluation number (we have used b = 2

in this article). The flowchart of MEMOIA is shown in

Fig. 1.

2.3 Constrained dominance scheme

In order to evaluate antibodies that satisfy the various

constraints, a constrained non-dominance scheme is pro-

posed by Deb (2001) In particular, an antibody Fa domi-

nates an antibody Fb if any one of the following conditions

is true:

(1) Fa is feasible and Fb is infeasible.

(2) Both solutions are infeasible and Fa has few con-

straint violations than Fb.

(3) Both solutions are infeasible, both solutions have the

same number of constraint violations and Fa domi-

nates Fb in terms of the objective values.

(4) Both solutions are feasible and Fa dominates Fb

according to the objective values.

2.4 EDAS

The EDAS, which is motivated by the immune system’s

ability to maintain a regulated repertoire of lymphocytes

that is representative of the actual antigenic environment, is

proposed to maintain a uniformly distributed set of non-

dominated solutions (Tan et al. 2008). In order to maximize

the information conveyed by the memory cells about the

problem at hand, the concept of entropy or information

gain is applied to quantify the information contributed by

the each memory cell to the archive.

According to the entropy optimization principles

of Shannon (Kapur and Kesavan 1992), considering

the archive X
*

ðwhere X
*

¼ fx*i i ¼ 1; 2; . . .; narchivej g; x*i 2
½lowbdj; uppbdj�Þ as a statistical population containing

narchive non-dominated antibodies or memory cells in an

m-dimensional feature space, and the probability value of X
*

is denoted by P where P ¼ pðxiÞ i ¼ 1; 2; . . .; narchivejf g;ð
0� p xið Þ� 1; and

Pnarchive
i¼1 p xið Þ ¼ 1Þ; the entropy is

mathematically defined

H xið Þ ¼ �p xið Þ log p xið Þð Þ: ð5Þ

The entropy is defined in terms of probability density

in Eq. 5. Nonparametric approaches do not need the

Macro-evolutionary 

Initialize population 

Evaluate Abs 

Stopping Criterion 
Satisfied?

Clonal selection 

Mating pool 
filled?

Crossover/Mutation 

Selection 

Colonization 

Output Archive 

Yes 

Yes 

No 

No 

Define antigen 

Generate memory set / 
Archive Update 

Fig. 1 The flowchart of MEMOIA
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assumption that the density belongs to a mixture from a

parametric set (Mukherjee and Vapnik 2000). The most

popular approach is Parzen’s method, in which the

probability can be estimated by Eq. 6 based on the

observed antibodies.

P xð Þ ¼ 1

narchive

Xnarchive

i¼1

K x� xið Þ ð6Þ

where K(x - xi) is a smooth function. The multivariate

Gaussian with covariance matrix
P

and one free parameter

r (the width) is used and it can be described by

K x� xið Þ ¼ 1

2pð Þm=2 Pj j1=2

� exp � 1

2
x� xið ÞT

X� ��1

x� xið Þ
� � ð7Þ

Here, T is the transpose operator, m is the number of

objectives and the kernel width is defined by r (r =
P1/2).

The Parzen window is sensitive to the kernel width r setting,

therefore, r is adapted along the optimization process,

rj ¼
uppbdj � lowbdj

narchive
; ð8Þ

where uppbdj and lowbdj denote the maximum and mini-

mum values along the jth dimension of the feature space

found in the archive, respectively.

Note that an antibody with a higher H will have a better

contribution to the overall information content of the

archive. When the memory cells are uniformly distributed

along the Pareto frontier, H is maximized. In particular, a

new memory cell with a higher H will replace the most

ineffective memory cell with the least H when the prede-

termined archive size is reached. This will allow the

archive to retain a set of uniformly distributed memory

cells in the archive (Tan et al. 2008).

2.5 Clonal selection

The clonal selection principle (Khilwani et al. 2008) is one

of the inspiring methodologies employed in AIS for opti-

mization problems. Based on the clonal selection principle,

the selection of non-dominated solutions or memory cells

from the archive can result in fast convergence speeds. In

order to provide a better indication of the less explored

regions in the search space, a clonal selection scheme

whose selection and clonal rate of memory cells are based

on the degree of their representation (dr) is developed as

following steps (Tan et al. 2008).

Step 1 Determine representative memory cells

Since we are only interested in guiding search towards

better and less explored regions in the search space, only

a subset of the evolving population denoted as S�
*

is

considered, with yk
* 2 S�

*

being only dominated by

memory cells. An antibody, yk
* 2 S�

*

is representative of

a particular memory cell xi
*

along the jth dimension if

yk;j 2 Ri;j iff xi;j; yk;j

�� ��� ki;j ð9Þ

where ki,j is the range of similarity and Ri,j denotes the

set of antibodies that are representative of xi
*

along the

jth dimension. For simplicity, ki,j is adapted along the

optimization process as 0.15 (uppbdj - lowbdj) where

uppbdj and lowbdj denotes the maximum and minimum

values along the jth dimension of the objective space

found in the archive, respectively (see Tan et al. 2008).

Step 2 Calculate the degree of representation (dr) of each

memory cell xi
*

in S�
*

by

dr x
*

i

� �
¼
Xm

j¼1

min
yk2S�

xi;j; yk;j

�� �� � E xi;j; yk;j

� �
ð10Þ

E xi;j; yk;j

� �
¼

1 if yk;j 2 Ri;j

0 otherwise

(

ð11Þ

Step 3 Perform cloning

A higher value of dr implies a lower degree of

similarity between the memory cell and its representa-

tives and, hence denotes a lower level of representation

in the evolving population. To explore and exploit the

less populated regions, memory cells with higher dr

will be assigned higher cloning rates. After ranking the

memory cells in terms of dr, the actual distribution of

the clonal rates across the different ranks shown in the

following pseudocode (Fig. 2) is empirically deter-

mined according to exhaustive experimentation (Tan

et al. 2008).

2.6 Macro-evolutionary algorithm

As mentioned in Sect. 2.2, the macro-evolutionary algo-

rithm is used to fill up the mating pool. Let 0.5�narchive

be the number of evolutionary memory cells. The rela-

tionship between these evolutionary memory cells is

represented by a connectivity matrix W, in which each

item W i;j tð Þ i; j 2 1; 2; . . .; 0:5 � narchivef gð Þ measures the

influence of memory cells j on memory cells i at gener-

ation t with a continuous value. The algorithm is descri-

bed below.

(1) Connection matrix:

Each individual gathers information about the rest of

the population through the strength and sign of its

couplings Wi,j as

Stoch Environ Res Risk Assess (2012) 26:491–507 495

123



Wi;j ¼
f xið Þ � f xj

� �

dis xi; xj

� � ; ð12Þ

where xi are the input parameters of the ith individual, f (xi)

are the objective values of xi, and dis(xi, xj) is the Euclidean

distance between xi and xj.

The relation of each memory cells to the rest of the pop-

ulation determines its survival coefficient h defined as

hi tð Þ ¼
X0:5�narchive

j¼1

Wi;j tð Þ ð13Þ

Individuals with higher hi inputs will be favored in the

sense of being able to out-compete other less-fit solutions.

(2) Selection operator:

Selection operator is used to determine surviving

individuals based on their relations as a sum of

penalties and benefits. The state of a memory cell in

the next generation is updated synchronously as

Si t þ 1ð Þ ¼
1 if hi tð Þ� 0; alive

0 otherwise, extinct

(

ð14Þ

(3) Colonization operator:

The colonization operator allows the filling of vacant

sites that are freed by extinct individuals (that is, those

with Si = 0). This operator is applied to each extinct

individual in two ways. With a probability s, a totally

new solution xnew will be generated. Otherwise,

exploitation of surviving solutions takes place

through colonization. For a given extinct solution xi

and a surviving solutions xb, the extinct solution will

be ‘‘attracted’’ toward xb. Mathematically, a possible

(but not unique) choice for this colonization of extinct

solutions can be expressed as

xi t þ 1ð Þ ¼
xb tð Þ þ q � k xb tð Þ � xi tð Þ½ � if n[ s

xnew if n� s

(

ð15Þ

where n [ [0,1] is a random number, k [ [-1,1]

(both with uniform distribution), and q and s are

given constants of the algorithm. It can be seen that

q describes a maximum radius around surviving

solutions and s acts as a ‘‘temperature’’. Parameter s
can be set in the same as in simulated annealing and

be described by the linear relation

Fig. 2 Pseudocode of clonal

selection
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s t;Gð Þ ¼ 1� t

T
: ð16Þ

MA randomly chooses only one objective to optimize at

each generation and therefore, cannot guarantee the

convergence of Pareto-optimal solutions during the

optimization procedure (Vink and Schot 2002). How-

ever, many of the memory cells are diversified and non-

inferior, and only a few solutions need to be deleted at a

time. We can use a simple method, which is based on

Edgeworth-Pareto optimality (Edgeworth 1881; Pareto

1896) and takes only O(0.25�narchive2) computing time,

to discard the inferior solutions. Therefore, MA is a very

promising method for solving engineering multi-objec-

tive optimization problems.

3 Evaluation of our MEMOIA using a test problem

3.1 Performance measures

In order to quantitatively assess the performance of a multi-

objective optimization algorithm, the following three

metrics were adopted from references (Bosman and Thie-

rens 2003; Scott 1995; Zitzler et al. 2000).

(1) Reverse Generational Distance (RGD)

For the purpose of estimating the departure of the

elements in the Pareto front (PF) produced by the

proposed algorithm from the true Pareto front of

the problem with consideration of diversity, Bosman

and Thierens (Bosman and Thierens 2003) proposed

the metric RGD to compute the distance edj to the

closest solution in the PFknown set for each j solution

in the PFtrue, based on the Generational Distance

(GD) metric introduced by Van Veldhuizen and

Lamont (1999). The RGD is defined as

RGD ¼ 1

ntrue

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xntrue

j¼1

edj
2

vuut ð17Þ

where ntrue is the cardinality (number of elements) of the

PFtrue set. A smaller value of RGD implies better

convergence.

(2) Spacing (S)

The metric of spacing (S) is first introduced by Scott

(1995) and measures how well the solutions through-

out the PFknown are distributed. Its mathematical

definition is

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

i¼1

d � di

� �2

s

; ð18Þ

where di ¼ min
j

Pm
k¼1 f i

k xð Þ � f j
k xð Þ



 

 and d ¼ 1
n

Pn
i¼1

di. A value of zero for metric S indicates that all the

solutions on the PFknown are equally spaced from one

another.

(3) Error Ratio (ER)

Veldhuizen and Lamont (1999) presented the metric

of the Error Ratio (ER) measuring the number of non-

dominated vectors of the PFknown that are not

members of the PFtrue. In order to normalize the

metric, ER is represented as

ER ¼
Pn

i¼1 ei

n
; ð19Þ

where n is the number of members in the discovered

Pareto frontier PFknown, ei = 1 if solution i is not on

the PFtrue, ei = 0 otherwise.

3.2 A test problem

Veldhuizen (1999) cited a number of test problems that

have been used in the past to test multi-objective algo-

rithms. We present only a Viennet benchmark problem

(Viennet et al. 1996) to evaluate the performance of

MEMOIA, which is characterized by a objective space, a

discontinuous Pareto optimal set, and several local minima

in the objective functions, as follows:

F ¼ Minimize f1 x; yð Þ; f2 x; yð Þ; f3 x; yð Þf g

f1ðx; yÞ ¼
1

2
ðx2 þ y2Þ þ sinðx2 þ y2Þ

f2ðx; yÞ ¼
ð3x� 2yþ 4Þ2

8
þ ðx� yþ 1Þ2

27
þ 15;

With x; y 2 �3; 3½ �:

f3ðx; yÞ ¼
1

x2 þ y2 þ 1
� 1:1 expð�x2 � y2Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð20Þ

The proposed MEMOIA algorithm is compared to The

Non-dominated Sorting Genetic Algorithm (NSGAII) and

Improving the Strength Pareto Evolutionary Algorithm

(SPEA2) (Zitzler et al. 2002). Thirty independent runs of

the three algorithms are performed for the test problem in

order to obtain the statistical information. The various

parameter settings for each algorithm are listed in

Table 2. The true Pareto frontier (PFtrue) of the Viennet

benchmark problem and the Pareto frontier produced by

MEMOIA are shown in Figs. 3 and 4 plots their Pareto

optimal solutions. It can be seen that MEMOIA has a very

good representation of the PFtrue. The values of the three

metrics for each algorithm, presented in Table 3, also

proved the comparative effectiveness of MEMOIA for the

Viennet benchmark problem. And the values generated by

using t test technique (Coello Coello et al. 2007) are

smaller than the largest acceptable one with significance

level a = 0.01 (the last row in Table 3). It means that
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the differences between the MEMOIA and SPEA2, the

MEMOIA and NSGAII are very small with not

statistically significant. Based on the proven efficiency

of MA (Vink and Schot 2002; Marin and Solé 1999;

Zhang and Xu 2005), we use MA to improve the EMOIA

(Evolutionary Multi-Objective Immune Algorithm) whose

effectiveness has also been validated by Tan et al. (2008)

in MEMOIA. Specifically, the EDAS in EMOIA and MA

have the ability of maintaining the diverse solution set

and avoiding premature convergence, which are the most

fundamental requirements of multi-objective techniques.

So MEMOIA is a very promising approach to engineering

Fig. 3 The true Pareto front (left) and how it is depicted by MEMOIA (right)

Table 3 Results of the metrics for the Viennet benchmark problem

RGD S ER

MEMOIA SPEA2 NSGAII MEMOIA SPEA2 NSGAII MEMOIA SPEA2 NSGAII

Best 0.00007 0.00040 0.00060 0.00267 0.00410 0.00230 0.00000 0.00000 0.00000

Worst 0.00072 0.00053 0.00110 0.00554 0.01720 0.00860 0.03000 0.06000 0.04000

Average 0.00030 0.00045 0.00083 0.00390 0.00706 0.00441 0.00110 0.02567 0.01133

Median 0.00027 0.00043 0.00080 0.00383 0.00645 0.00405 0.01000 0.02000 0.01000

Variance 0.00012 0.00005 0.00013 0.00075 0.00270 0.00156 0.00470 0.01357 0.01252

jtj* – 0.21731 0.50346 – 0.21965 0.05239 – 0.33142 0.15012

jtj* \ ta/2(30 - 1) = 2.7564 (a = 0.01); the smaller values of RGD, S and ER imply better performance

Table 2 Parameter setting for MEMOIA, SPEA2 and NSGAII

Populations Population size 100 in MEMOIA, SPEA2 and

NSGA

Trials 30 independent trials

Crossover rate 0.6 for MEMOIA; 0.8 for NSGAII and SPEA2

Coding Real number coding for MEMOIA;

Binary coding for SPEA2 and NSGAII.

Evaluation number 1,000

Mutation Mutation rate is 0.1 for MEMOIA;

Bit-flip mutation is used in NSGAII

and SPEA2 and the mutation rate is

1/chromosome_length
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498 Stoch Environ Res Risk Assess (2012) 26:491–507

123



optimization problems which are often complex and time-

consuming such as water allocation in river basin.

4 Description of the case study for Dongjiang River

Water allocation problems are very complex, involving

social, economic, environmental, and political factors

(Taghi Sattari et al. 2009). Ideally, the water allocation

should be economically efficient, technically feasible as

well as socially fair (Yang and Yang 2010; Yin et al. 2010).

Consequently, a water allocation model often has to con-

sider multiple objectives. In this section, the MEMOIA is

applied to the water allocation model in order to maximize

the economic interests including hydropower generation

while at the same time to minimize water shortages and the

amount of polluted water. The results reveal the trade-offs

amongst the economic interests, water shortages and the

amount of polluted water.

4.1 System description

The Dongjiang River basin (Fig. 5) is located in southern

China, between 113�520 and 115�520 longitude east and

22�380 and 25�140 latitude north, respectively. The river

basin has a total drainage area of 35,340 km2 and covers

seven administrative cities, namely, Meizhou, Shaoguan,

Heyuan, Huizhou, Guangzhou, Dongguan and Shenzhen in

Guangdong province, southern China. The Dongjiang River

flows from northeast to southwest and discharges into

the Pearl River estuary. The annual rainfall is about

1,500–2,400 mm, 80% of which is concentrated in the rainy

seasons (Apr–Oct). The population in the entire river basin

was 22 million in 2005 (from Guangdong statistical year-

book 2006). Along the river there are three large reservoirs

with a total storage capacity of 17.06 billion m3 (13.90 of

which are in the Xinfengjiang reservoir alone). These are

the Xinfengjiang, Fengshuba and Baipenzhu reservoirs,

each of which serves as a hydroelectric power station, as

well as being the main structures for management of water

flow and salinity and distribution points to serve water

needs, through controlling main and side inflows and return

flow, and water intake for communal needs. Figure 6 shows

a schematic of the water system network.

4.2 Water allocation model

To bring the water allocation problem down to a man-

ageable size, Dongjiang River basin is divided into seven

operational areas according to administrative boundaries.

In each operational area, water supply agents take water

from the river and/or reservoirs. Therefore, it is necessary

Fig. 5 Location of Dongjiang River basin in China
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to integrate river and reservoirs for water allocation

(Fig. 7). If there is enough water in the river for every

consumer sector, the reservoir operation will be standard

(i.e., keeping water level at the upper limit to store as much

water as possible). If the water in the river is not enough for

the total demand or, in an extreme scenario, for the in-

stream ecological water demand, the reservoir operations

should first take water supply into consideration at the

basin level. In summary, the operations of reservoirs can be

described as follows:

(1) When the water level in a reservoir is above the upper

limit, hydropower generation should be increased to

keep the water level at the upper limit.

(2) When the water level is between the upper and critical

limit, the reservoir operation should take the eco-

nomic interests including hydropower generation,

water shortages and the amount of polluted water

into consideration. This may be possible through

optimal water allocation.

According to the functional nature of water utilization,

water use sectors in the seven operational areas in the

basin are divided into four groups: industrial water,

agricultural water, domestic water, and ecological water

(Tang 1995). Previously, and in the conceptual framework

of optimal water allocation in Fig. 7, the water allocation

model distributes water among these four sectors by

considering the following three objectives: to maximize

economic interest (OF1), to minimize water shortages

(OF2) and to minimize the amount of organic pollutants

in water (OF3). The allocation model is formulated for

monthly operation; details of the objective functions are

provided below.

4.2.1 Objective functions

The objective functions are OF1, OF2 and OF3 as follows:

(i) To maximize economic interest (OF1): this objective

function is defined as the total economic value,
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Fig. 6 System description and

river network of the Dongjiang

River basin
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including hydropower generation of the whole basin.

It can be estimated as

OF1 Xð Þ ¼
X12

t¼1

X7

i¼1

X4

j¼1

xt
ij � NERij

� �
" #(

þ
X3

k¼1

KAk � RPt
k � Ht

k

� �
� Pr

" #) ð21Þ

Here, OF1 is the objective function 1; NERij is the net

economic return per unit volume of water from sector

j in the ith operational zone (US$/m3); xij is the

decision variable which means the water allocated to

sector j in the ith operational zone; 4 is the number of

sectors; 7 is the number of operational zones; KAk is

the power coefficient for reservoir k; RPk is the

amount of water released to turbines of the kth

reservoir; Hk is the average head available of the kth

reservoir during period t and is expressed as a non-

linear function of the average storage during that

period (shown in Eq. 22); Pr is the price of power

(US$/kWh); 3 is the number of reservoirs in the

Dongjiang River basin.

Ht
k ¼ Ht

k

� ���ak � RPt
k

� �2 ð22Þ

Ht
k

� ��
is the water height for reservoir k at time period t

(measured from turbine level) and will be obtained as

a function of the average storage volume (at the

beginning and end of the time interval, shown in

Eq. 23) in this article; ak is the average head loss

coefficient for reservoir k;

Htð Þ�¼ H
St þ Stþ1

2

� �
ð23Þ

(ii) To minimize water shortages (OF2): To ensure equal

sharing of water resources in every operational zone,

the shortage of water supply can be defined as

OF2 Xð Þ¼
X12

t¼1

1

7

X7

i¼1

P4
j¼1 DWt

ij� xt
ij

� �

NPOi

2

4

3

5

8
<

:

9
=

;
; ð24Þ

where OF2 is the objective function 2; DWij is the

water demand of sector j in the ith operational zone

(determined externally); NPOi is the number of pop-

ulation in the ith operational zone.

(iii) To minimize the amount of organic pollutants in

water (OF3): the objective function 3 is defined as

the total amount of organic pollutants (represented as

chemical oxygen demand, COD) in water of the

whole basin and is given as

OF3 Xð Þ ¼
X12

t¼1

X7

i¼1

X4

j¼1

xt
ij � PPij

� �
; ð25Þ

where OF3 is objective function 3; PPij is the parameter

which can be determined using the Eq. 26.

PPij ¼
PWij

SWij
; ð26Þ

where PWij is the amount of releasing organic pollu-

tants and SWij is the volume of supplied water from

sector j in the ith operational zone in a typical year.

Inputs 
Inflows, Reservoir characteristics, 
Water demand, etc. 

AWR>total water 
demand? 

Allocated water 
= Water demand

OF1 OF2 OF3

MEMOIA

Allocated water Reservoirs operation 

OF1

OF2

OF3

Objective function1 of maximizing
the economic interests

Objective function2 of minimizing
water shortages 

Objective function3 of minimizing
the amount of polluted water

AWR Available water from river 

Fig. 7 Conceptual framework

of optimal allocation of water

resources
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4.2.2 System constraints

The water balance of each node, and in each reservoir in

the whole basin, is considered in the system constraints.

(i) Water balance equation in the ith operational zone

Qi;t ¼ Qi�1;t þ
X3

k¼1

RRk;i � Ok;t þ RPt
k

� �
þ Ri;t

þ
X4

j¼1

xi;j � reti;j

� �
� Ui;t �

X4

j¼1

xi;j

� �
� TWi;t;

ð27Þ

where Qi,t is the discharge of the ith operational

zone in the tth month; Qi-1,t is the discharge from

the (i - 1)th zone; Ok,t is the release during time

period t from the kth reservoir; RRk,i is the water

connection between the ith operational zone and the

kth reservoir; Ri,t is the sum of the water yield

produced in the watersheds located up to the ith

zone; reti,j is the return flow coefficient (dimension-

less), 0 B reti,j B 1; Ui,t is the water loss including

evaporation, seepage loss and conveyances loss; TWi,t

is the amount of water transferred out of the basin.

(ii) Environmental and ecological water requirement of

river system

Some water flows should be retained in the rivers to

maintain ecological and environmental conditions.

That is,

Qi;t �DEEi;t ð28Þ

where DEEi,t is the environmental and ecological water

requirement of river system which can be calculated

with Tennant method (Tennant 1976), IFIM (instream

flow incremental methodology) (Reiser et al. 1989),

flow duration exceedance percentiles (Smakhtin 2001),

the wetted perimeter method (Gippel and Stewardson

1998), among others.

(iii) Reservoir constraints

(a) The continuity equation for the reservoirs can

be written as the following:

Stþ1 ¼ St þ It � Ot � RPt � Et ð29Þ

(b) Storage constraints based on physical limits

Smin;t � St� Smax;t ð30Þ

(c) Constraints on the power generation

CPOWmin� KA � RP � Hð Þ�CPOWmax ð31Þ

(d) Constraints on the releases for energy

production

RPmin�RPt�RPmax; ð32Þ

where St is the beginning storage; St?1 is the

ending storage; It is the inflow into reservoir

during time period t; Ot is the spilled water from

the reservoir during time period t; Et is the

evaporation loss during time period t; Smin,t is the

minimum storage; Smax,t is the maximum storage;

CPOWmin and CPOWmax are the minimum power

generation and the installed power generation

capacity for the reservoir; RPmin and RPmax are

the minimum and maximum releases for the

reservoir (Table 4); obviously RPmax is related to

the installed power generation capacity CPOW

while RPmin is related to the minimum required

release downstream determined by Eq. 27.

(iv) Water demand and non-negativity constraints

0� xt
i;j�DWij ð33Þ

4.3 Input data

Data required to run the water allocation model include the

available water resource, the reservoir and power plant

properties, the operational rules of reservoirs, water loss of

reservoirs, and water demand. These data types are mixed,

including experimental, field observations, statistical, and

empirically estimated.

The population and the volume of water demand in

every operation zone, according to the Dongjiang River

water allocation scheme plan for 2010, are shown in

Table 5. The historic inflow data from 1956 to 2005 in all

operational zones and reservoirs were available. The

environmental and ecological water requirements of river

system at Boluo, Heyuan and Qilinzui gauging stations

were determined by the average value from the results of

Table 4 The basic characteristics of the reservoir and power plant in water system

Reservoirs Drainage

area (km2)

Installed power

CPOW (MW)

Maximum releases

RPmax (m3/s)

Power

coefficient KA
Minimum

storage Smin (106 m3)

Baipenzhu 856 27 84.78 8.31 190

Fengshuba 5,150 180 327 7.7 286

Xinfengjiang 5,734 334.5 531 7.42 4,307
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Tennant, IFIM, flow duration exceedance percentiles and

the wetted perimeter methods (shown in Table 6).

The net economic return (NER) per water unit from

agriculture or industry was calculated as water use benefit

divided by the volume of water demand. As domestic water

use is the most important sector, its NER was taken as the

maximum of NERs of agriculture and industry. The NER

from ecology sector was difficult to quantify. In our pro-

posed model, the environmental and ecological water

requirement of river system needs to be satisfied first

before the other water allocations. Following some

researches and water resources administrators works (see,

for example, Babel et al. 2005; Liu et al. 2010), we use the

average of all other sectors as the NER from ecology sector

in this article for the illustration (shown in Table 7).

In the implementation of MEMOIA for our water allo-

cation model, narchive was set to be 150 and q 0.5.

5 Results and discussions

Figure 8 presents the trade-off curves among the economic

interest (OF1), water shortage (OF2) and the amount of

Table 8 Maximum and

minimum values (with the

significance of bold) on the

Pareto frontier for each

objective in water allocation

model from MEMOIA and

CMOIA

Results of scenario A, B and C

are from MEMOIA. Results of

scenario A0, B0 and C0 are from

CMOIA

Scenarios OF1

(billion US $)

OF2

(m3/capita year)

OF3

(104 tons/year)

Hydropower generation

(million kilowatt/h)

Baipenzhu

Reservoir

Fengshuba

Reservoir

Xinfengjiang

Reservoir

(Max. value of OF1)

A 401.54 80.21 13.09 56 406 819

A0 (400.01) (89.11) (12.21) (60) (462) (797)

(Min. value of OF2)

B 400.37 70.9 13.02 68 406 794

B0 (397.67) (77.21) (12.94) (69) (372) (838)

(Min. value of OF3)

C 375.9 113.34 8.71 42 389 764

C0 (367.73) (112.33) (9.86) (56) (379) (780)

Table 5 Population and water

demand by sectors in Dongjiang

River basin

Zone Population NPOi

(million)

Water demand by sectors DWij (million m3)

Agriculture Industry Domestic Ecology Total

Dongguan 7.75 228.90 1,174.45 705.50 20.95 2,129.80

Guangzhou 0.98 486.40 330.85 54.50 4.03 875.78

Heyuan 2.81 1,364.01 399.01 154.51 5.62 1,923.15

Huizhou 3.40 1,575.45 686.74 190.89 11.06 2,464.14

Meizhou 0.04 23.08 3.50 2.52 0.05 29.15

Shaoguan 0.14 98.31 16.09 7.67 0.41 122.48

Shenzhen 8.43 39.35 915.38 681.11 51.58 1,687.42

Table 7 The net economic return per unit volume of water NERij

(US$/m3)

Zone Agriculture Industry Domesticity Ecology

Dongguan 2.56 49.44 49.44 33.81

Guangzhou 0.92 21.17 21.17 14.42

Heyuan 0.50 12.64 12.64 8.60

Huizhou 0.77 27.67 27.67 18.70

Meizhou 0.44 14.24 14.24 9.64

Shaoguan 0.24 8.11 8.11 5.49

Shenzhen 6.71 143.88 143.88 98.15

U.S. Dollar to Chinese Yuan Exchange Rate is 6.82 in this study

Table 6 The environmental and ecological water requirement of river system DEEit (m3/s)

Gauging station Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Boluo 267 348 365 325 330 314 230 205 213 208 208 200

Heyuan 186 219 204 170 174 169 141 128 147 142 146 139

Qilinzui 77 119 136 110 95 74 55 43 39 38 39 44
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COD (OF3) objectives obtained with MEMOIA. The

Pareto frontier was populated with Pareto optimal points

which were obtained after 5,000 generations. Table 8 lis-

ted the minimum or maximum values on the Pareto

frontier for objectives and the hydropower generation from

every reservoir. The maximum economic interest was

approximately US $401.54 billion when water shortages

were 80.21 m3/capita year and the amount of COD were

13.09 9 104 tons per year (Scenario A). The minimum

water shortages value was approximately 70.9 m3/capita

year when the economic interest was US $400.37 billion

and the amount of COD were 13.02 9 104 tons/year

(Scenario B). But when the minimum amount of COD

were approximately 9.0 9 104 tons/year, the maximum

economic interest was not more than US $376 billion

and water shortages was more than 110 m3/capita year

(Scenario C). The results of water allocation of each sce-

nario from MEMOIA were shown in Table 9. From the

water allocation results, we can see that Huizhou would

lose the most quantity water in every Scenario. However,

if the quantity of water demand in every zone was con-

sidered, the biggest proportional water shortage would

happen in Heyuan no matter which Scenario was adopted.

From the aspects of sectoral water demand, agriculture

sector in Huizhou lose the maximum water quantity in

Scenario A, B and C. The reason might be that the agri-

culture sectors demand more water in these two zones, and

the NER in agriculture sectors was lower.

In the problem of water optimal allocation, weighting

technique or simultaneous compromise constraint tech-

nique is often used to convert the multi-objective decision-

making problem into a single objective function (Babel

et al. 2005), but it produces only a single Pareto optimum.

In order to obtain a group of Pareto optimal solutions and

compare with the results from MEMOIA, the constrained
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Fig. 8 The Pareto frontier for the three-objective water allocation

model from MEMOIA
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multi-objective optimization immune algorithm (CMOIA)

proposed by Zhang (2007) is employed to solve the water

allocation model. And the results, which are signed with

the superscript and parenthesis, list in Table 8. MEMOIA

takes more time at the same 5,000 generations, but the

performance of MEMOIA is better than CMOIA’s within

the reasonable amount of time.

In general, the less the water shortage is, the more the

economic interest will be. However, the hydropower

generation controlled by reservoirs affects the water

shortage and economic interest. If more water is used to

produce hydropower in flood periods, there could be a

water shortage in dry seasons. Moreover, the net eco-

nomic return per unit volume of water from each sector is

different. Furthermore, the amounts of COD (OF3) are

affected by water supply. If the water shortage is low, a

large amount of COD will be discharged into environ-

ment. Therefore, OF1, OF2 and OF3 are interrelated and

conflict with each other. Figure 9 has shown the relation

of every pair of objectives on the Pareto frontier. Fig-

ure 9a shows that the relation between the economic

interest (OF1) and the water shortages (OF2) is negative,

indicating that economic interests and social concerns can

be satisfied together if the water allocation and reservoir

operations are optimal. Figure 9b shows the relation

between the economic interest (OF1) and the amount of

COD (OF3) is positive. Figure 9c shows that the relation

between the water shortages (OF2) and the amount of

COD (OF3) is negative. It can be seen that although

increasing water supply could increase the economic

interest and reduce water shortages, it could result in more

pollutant input to the river, with the parameter PPij being

non-negligible. So the results of water allocation can

provide the quantificable benefits or costs among different

objectives, which are highly useful for water managers

and professional in making decisions for allocating water

among use sectors and different areas.

In practice, water managements should make their own

final decision based on the scientific advices. For example,

if water managers have preference to economy, the water

shortages or the amounts of organic pollutants will be

suffered as a trade-off, and vice versa, as shown by Sce-

nario A. If water managers want to know how the objec-

tives affect each other when they make a decision, the

results of water allocation can provide the quantitative

relationship amongst them. So it can provide some flexible

options for water managers.

6 Conclusions

In order to overcome the limitations of the conventional

multi-objective optimization algorithm, a MEMOIA is

developed by integrating features of the MA and immune

systems. The proposed MEMOIA can reach a better

diverse solution set and avoid premature convergence,

which are the most fundamental requirements of multi-

objective techniques. By using the benchmarking function

(the Viennet benchmark problem), its performance is

assessed against other similar algorithms, including

NSGAII and SPEA2.

The proposed algorithm is applied to the problem of

optimal allocation of water resources in Dongjiang Rover

Basin which is highly complex due to the large number of

interacting factors, nonlinearity and often unpredictable

feedback. The results, which take into account interde-

pendence among objectives, can be used to help water

administrators make more appropriate decisions regarding

water supply, hydropower generation and reservoir opera-

tion. The application of MEMOIA in the problem of

optimal allocation of water resources also demonstrates the

effectiveness of the proposed algorithm in solving optimal

water allocation problems, comparing with CMOIA. The

uncertain nature of water allocation model variables, water
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for the water allocation model:
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demand, the value attached to environmental flows and

other parameters will also be taken into consideration in

further research.
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