
ORIGINAL PAPER

Geostatistics for radiological evaluation: study of structuring
of extreme values

Y. Desnoyers • J.-P. Chilès • D. Dubot •

N. Jeannée • J.-M. Idasiak

Published online: 28 April 2011

� Springer-Verlag 2011

Abstract Geostatistics applied to radiological evaluation

of nuclear premises provides sound methods to estimate

radiological activities, together with their uncertainty.

Quantification and risk analysis of contaminated areas are

initially performed by applying geostatistical methods

relying on the multi-Gaussian assumption. However, the

application of the classical bi-Gaussian model for dis-

junctive kriging proves sub-optimal due to the spatial

structuring of high and low values. The beta model which

pertains to the class of Hermitian isofactorial models is

potentially better suited to radiological evaluation as it

allows a continuous evolution from a mosaic to a pure

diffusive model. In the test case, disjunctive kriging esti-

mates are obtained by applying in turn the beta model and

the pure diffusive model. The comparison of estimation

outcomes shows rather limited differences, primarily

located in and around the homogeneous contaminated

areas.

Keywords Radiological characterization � Isofactorial

model � Disjunctive kriging � Structuring of extreme values

1 Introduction

For more than a century, the development of the French

nuclear industry has led to the construction and exploita-

tion of hundreds of facilities to produce nuclear fuel, burn

it in experimental reactors or nuclear power plants, and

eventually recycle it. Dozens of these facilities are now

under decommissioning.

The complete decontamination of nuclear facilities

requires the radiological assessment of residual activity

levels of building structures. As stated by the International

Atomic Energy Agency (2001): ‘‘Segregation and charac-

terization of contaminated materials are the key elements

of waste minimization.’’

In this framework, the relevance of the geostatistical

methodology relies on the presence of a spatial continuity

for radiological contamination, characterized through the

variographic analysis. Geostatistics then provides reliable

methods for activity estimation, uncertainty quantification

and risk analysis (Goovaerts 1997), which are essential

decision-making tools for decommissioning and disman-

tling projects of nuclear installations. For less than a dec-

ade, geostatistics has successfully been used for the

radiological evaluation of contaminated sites (Dubot et al.

2010) but nothing exists, to the best of the authors’

knowledge, for its application to nuclear facilities.

The paper first summarizes the geostatistical method-

ology applied to a former nuclear facility and its added

value for waste categorization. Then it focuses on a more

theoretical issue which lies in the implementation of
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isofactorial models to deal with the observed spatial

structuring of high and low values, which contradicts the

convenient multi-Gaussian hypothesis prompting the use of

alternative geostatistical models.

2 Categorization of radiological waste

For confidentiality reasons, all data presented in the paper

have been multiplied by a constant value in order to con-

ceal the real radiological levels. However, this modification

does not change the spatial structure analysis.

2.1 Evaluation methodology

Decommissioning and dismantling projects are largely

affected by the quality of the investigation phase, which

has significant impacts on the estimated risk levels and

waste segregation optimization. The quality and the num-

ber of data can strongly improve or deteriorate the risk

analyses, affecting global remediation costs (Desnoyers

et al. 2009).

The proposed methodology for the radiological charac-

terization of contaminated premises is divided into three

steps according to the three available levels of information:

1. First, the most exhaustive facility analysis provides

historical and qualitative information: functional anal-

ysis, incidents, isotopy;

2. Then, a systematic (exhaustive or not) control of the

radiation signal is performed by means of in situ

measurement methods such as surface control device

combined with in situ gamma spectrometry; and

3. Finally, in order to assess the contamination depth,

samples are collected at several locations within the

premises and analyzed.

Combined with historical information and radiation

maps, the analysis of activity levels improves and rein-

forces the preliminary waste zoning required by the French

Nuclear Safety Authority (Autorité de Sûreté Nucléaire

2010).

2.2 Investigated area

The ‘‘Atelier D’’ is one of the four workshops of the ATUE

facility, Cadarache CEA Centre (Lisbonne and Seisson

2008). For 30 years, it was used for the recycling of ura-

nium contained in different non irradiated scraps so as to

transform it into nuclear purity products (mainly oxides) by

liquid processes. The 235U enrichment was less than 10%.

The workshop area is about 800 m2. The different pro-

cesses were located in several rooms distributed along a

central corridor. All the process equipments have already

been dismantled whilst the building structures (mainly

concrete) remain to be characterized and cleaned up.

The functional analysis provides a well-documented

workshop organization (processes, liquid flows…) and

distinguishes two types of processes according to the nature

of the uranium product: liquid phase or solid state. The

historical analysis points out a few contamination incidents

during the industrial exploitation that left a residual

radiological contamination essentially located on the floor.

2.3 Experimental data

In 2008, an extensive non-intrusive measurement campaign

was carried out using surface detection systems and in situ

gamma spectrometry. This is the second step of the char-

acterization methodology, which is a key element for the

analysis of the contamination extension and also for the

optimization of destructive investigations.

Surface measurements are realized with thin-layer plastic

scintillation detectors for a and bc-radiation. Measurement

values are proportional to gross counting rates (cps). The

paper focuses on bc-radiation as the presence of varnish

makes the a-radiation values inaccurate. Uranium is the only

radioactive element within the building and is therefore

characterized using the bc-radiation of its decay products.

A regular 66 cm mesh leads to the realization of 1,617

measurement points on the floor (Fig. 1). The investiga-

tions carried out on the workshop walls and on specific

areas are not presented here.

The statistical distribution (Fig. 2) of bc-radiation shows

a strong dissymmetry with a few very high values and a lot

of values around the background noise where there is no

contamination. The distribution is presented using a log

scale in order to better capture the range of radiation

measurements.

In order to complete the radiological evaluation of the

workshop, 1-cm depth concrete samples have been col-

lected in 2009 from scabbling performed at 56 locations

within the premises, determined on bc-radiation maps.

2.4 Radiological evaluation using geostatistics

Quantification of contaminated surfaces is performed by

applying activity thresholds on conditional geostatistical

cosimulations between uranium activity levels of sparsely

collected concrete samples (principal variable) and radia-

tion levels of the more numerous surface measurements

(auxiliary variable). The adherence to the multi-Gaussian

hypothesis which underlies the generation of these cosi-

mulations is specifically challenged in paragraph 3.

The remediation support constraint is taken into account

by considering the different workstation areas as effec-

tive remediation supports. Using the simulations, the
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probability of exceeding a given activity threshold within

each area is computed (Fig. 3) leading to an effective cost-

benefit analysis.

Desnoyers et al. (2009) described in details the appli-

cation of the geostatistical methodology with this dataset

with a particular emphasis on sampling optimization

according to spatial structure and historical information

(liquid phase or solid state).

3 Structuring of extreme values

3.1 Isofactorial models for disjunctive kriging

Isofactorial models offer an efficient representation of

bivariate distributions that allow the description of a diverse

range of situations. The most commonly used isofactorial

model in geostatistics is the bi-Gaussian model along with

its generalization to the Hermitian model (Chilès and Del-

finer 1999). Both require a Gaussian marginal distribution.

Since the variable Z(x) under study does not conform to that

requirement, a preliminary Gaussian transformation of the

data is performed. This amounts to considering Z(x) in the

functional relationship Z(x) = u[Y(x)] where Y(x) is a var-

iable obeying a standard normal marginal distribution and u
a transform function (anamorphosis). The Gaussian trans-

formation is usually done by identifying quantiles of the

empirical distribution of Z with the corresponding quantiles

Fig. 1 bc-radiation measurements (cps) with a 66 cm mesh in the ‘‘Atelier D’’ of ATUE facility

Fig. 2 Histogram of the raw bc-radiation values using log scale.

Classical statistics

Fig. 3 Probability map of exceeding a given uranium activity level for each workstation
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of the standard normal distribution. The function u is then

classically expressed by its expansion into Hermite poly-

nomials Hp, using the up expansion coefficients:

u YðxÞ½ � ¼
X

p

upHp YðxÞ½ � ð1Þ

Since the Hermite polynomials are orthogonal with

respect to the standard normal probability density function,

they simplify the use of the Hermitian model. Indeed, the

disjuncstive kriging (DK) of u[Y(x)] in Eq. 1 amounts to

the simple kriging (SK) of each factor (Rivoirard 1994):

uDK Y xð Þ½ � ¼
X

p

upHSK
p Y xð Þ½ � ð2Þ

3.2 Spatial structuring of extreme values

The Hermitian model comprises a range of bivariate dis-

tributions going from the mosaic to the pure diffusive

model (Chilès and Delfiner 1999). The isofactorial model is

specified once the covariances Tp(h) of the factors Hp are

known. In fact, with q(h), the correlogram of the Gaussian

Y(x), we already have T0(h) : 1 as H0[Y(x)] : 1 and

T1(h) : q(h) as H1[Y(x)] = –Y(x).

In the case of a bi-Gaussian (pure diffusion) model,

Tp(h) = qp(h). The covariances of the factors tend to a pure

nugget effect when p increases. The high and low values

are totally spatially destructured.

On the contrary with the mosaic model (random parti-

tion), all factors have the same covariance Tp(h) = q(h).

There is no spatial destructuring of extreme values.

Between these two limiting cases, the beta model is a

mixture of the pure models associated with a positive

correlation coefficient. More precisely, the correlation q(h)

between Y(x) and Y(x ? h) is obtained by a mixture of

Gaussian bivariate distributions whose correlation r

follows a beta distribution with parameters bq(h) and

b(1-q(h)), where b is a positive parameter. Thus, given C
the gamma function, the covariances Tp(h) are:

TpðhÞ ¼
CðbÞ

Cðbþ pÞ
CðbqðhÞ þ pÞ

CðbqðhÞÞ ð3Þ

Figure 4 shows the covariance of the tenth factor when

q(h) follows an exponential model with unit sill and a

range of 8 m; the mosaic model corresponds to b = 0, and

the pure diffusive model is obtained when b tends to

infinity. An intermediate situation for b = 2.5 is also

presented. Thus, the beta model allows a continuous

evolution from the pure diffusive to the mosaic model.

This modeling of the spatial structuring of extreme

values with isofactorial models within the geostatistical

framework differs from the classical terminology used in

spatial statistics for extreme events having a very low

probability of occurrence (see Sang and Gelfand 2009 for

example). In our case, it refers to the ‘‘destructuring’’ effect

mentioned in Emery (2005) whereby low values and high

values tend to be better correlated than intermediate values.

Taking this phenomenon into account is the main goal of

the (isofactorial) beta model.

3.3 Bivariate distribution and b parameter

In practice the infinite series of factors in the development

of the transform u shall be truncated to some order. Cal-

culations are based on the decimal logarithm of the raw

data. Since its distribution is not so far from a Gaussian

one, only a few polynomials are required: the up coeffi-

cients from Eq. 1 become rapidly negligible when

p increases (Table 1).

The choice of the isofactorial model can be guided by

the study of the variogram of order 1 (or madogram)

defined as follows:

c1ðhÞ ¼
1

2
E Yðxþ hÞ � YðxÞj j ð4Þ

In the case of a bi-Gaussian model, the madogram and

the variogram are linked through the formula:
ffiffiffi
p
p

c1ðhÞ ¼ffiffiffiffiffiffiffiffiffi
cðhÞ

p
(Lajaunie 1993). As shown on the left part of Fig. 5,

this relationship is not satisfied. Within the mosaic model,

Fig. 4 Covariances of the tenth factor according to different values

for the b parameter. The bounds correspond to the pure diffusive

model (b??) and to the mosaic model (b = 0)

Table 1 up coefficients for factor of order p in the Hermite poly-

nomials expansion of the decimal logarithm of bc-radiation

Order p 0 1 2 3 4

up 1.9 100 -3.6 10-1 1.1 10-1 -4.0 10-2 -3.6 10-3

Order p 5 6 7 8 9

up 2.0 10-2 -6.0 10-3 -2.7 10-3 2.5 10-4 1.9 10-4
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the madogram and the variogram are proportional, which is

not the case either.

Thus the beta model is required and the experimental

points of the Gaussian transformation of bc-radiation val-

ues perfectly fit with a b parameter equal to 2.5 (right part

of Fig. 5). Through this graph, the inference of the b
parameter is quite easy to perform.

3.4 Comparison of isofactorial models

In Fig. 5 the beta model with b = 2.5 does not look very

different from the bi-Gaussian model (infinite b value). The

following analysis bears on the comparison of disjunctive

kriging estimates obtained in turn for a beta model with

b = 2.5 and then for a bi-Gaussian model.

In order to compare the estimation results, 4 partial

sampling patterns are extracted from the complete

bc-radiation dataset assuming that 1 measure out of 4 is

unknown. For each subset, the hidden points are regularly

spaced and are re-estimated as validation points using the

remaining data (3/4). Results are presented by gathering

together the 4 quarters of re-estimated values.

The linear regression between factors of the same order

is particularly significant: the regression coefficients lie

between 0.994 and 1. The main difference between the bi-

Gaussian model and the beta model is the slope of the

linear regression of the SK of each factor (Table 2). The

beta model (b = 2.5) systematically re-estimates wider

ranges of values.

The simple kriging estimates Hp
SK of the factors Hp at the

validation point x are combined according to relation (1) to

give the disjunctive estimate of the decimal logarithm of

bc-radiation levels. Estimation errors are very similar in

both models: the linear correlation is almost perfect with a

regression coefficient equals to 0.99991. The standard

deviation of the difference between the two disjunctive

kriging estimates is 42.5 times smaller than the standard

deviation of the difference between one of the disjunctive

estimates and the true value (Fig. 6). Note that it is also

possible to perform the disjunctive estimate of the

bc-radiation level rather than its logarithm, or of any

function of it, for example the indicator associated with a

given threshold: the Hp
SK remain and only the up of Table 1

have to be adapted.

Figure 7 illustrates the spatial repartition of the difference

between the two DK estimates. Beta model DK estimates

seem to systematically lie above the bi-Gaussian model DK

estimates in areas with elevated bc-radiation levels.

4 Conclusions

In the case of radiological characterization, the spatial

continuity of extreme values may bias the estimation of

Fig. 5 Test for bi-Gaussian distribution (left) the square root of the

variogram divided by the madogram is expected to be equal to
ffiffiffi
p
p

whatever the distance. Relationship between the variogram and the

madogram with a beta model (right). The extremes correspond to the

pure diffusive model (parabola) and to the mosaic model (straight
line)

Table 2 Slope of the linear regression of the SK of factors

(bi-Gaussian against beta model)

Order p 0 1 2 3 4

Slope – 1 0.99 0.96 0.90

Order p 5 6 7 8 9

Slope 0.80 0.70 0.58 0.46 0.37
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high values in particular, which is a relevant issue for

decommissioning purposes.

Conventional geostatistical calculations are usually

performed relying on the traditional and rather convenient

multi-Gaussian model. In this work, the structuring of

extreme values, which clearly contradicts the multi-

Gaussian hypothesis, is taken into account in a coherent

manner by the use of the more general class of Hermitian

isofactorial models, in particular the beta model. In our test

case, the b parameter, which models the structuring effect,

leads to a practical modeling not too dissimilar with the

modeling offered by the classical bi-Gaussian model. The

comparison between the two competing disjunctive kriging

estimates further supports this finding by showing very

minor differences. In that way, the multi-Gaussian model

can still be considered as a reasonable approximation

leading to robust estimates as long as the structuring effect

(of high or low values) remains limited (i.e. when the

departure from optimal conditions for the multi-Gaussian

hypothesis is not pronounced).

The final interest of such isofactorial models is their

ability to deal with change-of-support problems, in the

framework of their extensions: the discrete Gaussian (or

gamma) change-of-support models. The impact of the

structuring effect of extreme values on estimations of the

probability of having an activity level exceeding a

threshold shall be investigated taking both a punctual and a

block support into account.

Finally, the indicator variograms present an asymmetry

with respect to the median threshold, indicating a different

structuring effect for high values and for low values. A

transformation to a gamma distribution should therefore be

more suited than the Gaussian one (Emery 2005). This

point shall also be investigated.

Fig. 6 Histogram of the difference between DK in the beta model and the true logarithmic value of the bc-radiation (left hand side). Histogram

of the difference between the two DK (right hand side)

Fig. 7 Bi-Gaussian model estimates lower than beta model estimates (crosses) and higher (squares)
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