
ORIGINAL PAPER

A recourse-based nonlinear programming model for stream water
quality management

Y. P. Li • G. H. Huang

Published online: 27 April 2011

� Springer-Verlag 2011

Abstract A recourse-based nonlinear programming (RBNP)

method is developed for stream water quality management

under uncertainty. It can not only reflect uncertainties

expressed as interval values and probability distributions

but also address nonlinearity in the objective function. A

0-1 piecewise linearization approach and an interactive

algorithm are advanced for solving the RBNP model. The

RBNP is applied to a case of planning stream water quality

management. The RBNP modeling system can provide an

effective linkage between environmental regulations and

economic implications expressed as penalties or opportu-

nity losses caused by improper policies. The solutions can

be used for generating a variety of alternatives under dif-

ferent combinations of pre-regulated targets, which are also

associated with different water-quality-violation risk levels

and varied potential economic penalty or loss values.

Keywords Nonlinear programming � 0-1 piecewise �
Planning � Stochastic with recourse � Water quality �
Uncertainty

1 Introduction

Effective planning of water quality management is impor-

tant for facilitating socio-economic development and

eco-environmental sustainability in watershed systems.

Over the past decades, a wide range of mathematical

techniques have been developed to examine the temporal

and spatial economic, environmental and ecological

impacts of alternative pollution-control actions, and thus

aid the planners or decision-makers in formulating and

adopting cost–effective water-quality management plans

and policies (Lung et al. 1999; Bakar and Hossain 2010;

Lv et al. 2010). However, water-quality management

requires not only the reinforcement of established principles

and technologies but also their extension to much wider,

higher and freer scope for the realization of sustainability

(Huang and Xia 2001). The system objectives are often

associated with a number of socio-economic and eco-

environmental factors such as economic return, environ-

mental protection, and ecological sustainability, while the

constraints are related to stream flow, pollutant discharge,

soil loss, resources availability, environmental requirement,

and policy regulation. Furthermore, in water quality man-

agement problems, various uncertainties exist in a number

of system components as well as their interrelationships; the

uncertainties can be further amplified by not only interac-

tions among various uncertain and dynamic impact factors,

but also their associations with economic implications of

satisfied or violated environmental requirements.

In the past decades, a great many efforts were under-

taken in addressing uncertainties in water quality man-

agement through stochastic programming approaches (e.g.,

dynamical programming, chance-constrained program-

ming, and recourse model) (Anderson et al. 2000; Kentel

and Aral 2004; Maqsood et al. 2005; Qin and Huang 2009;

Huang et al. 2010; Sivakumar and Elango 2010). For

example, Fujiwara et al. (1988) proposed a chance-con-

strained programming method for identifying optimal

waste removal strategies that could mitigate the impacts of
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the waste discharges on the dissolved oxygen (DO) con-

centration in a water body, where probability of violating

the DO deficit standard was investigated. Masliev and

Somlyody (1994) advanced a probabilistic method for

uncertainty analysis and parameter estimation for dissolved

oxygen models. Edirisinghe et al. (2000) advanced a

chance-constrained programming model for the capacity

planning of a multipurpose reservoir under random stream

flows. Revelli and Ridolfi (2004) proposed a stochastic

dynamic model for the evolution of the biological oxygen

demand (BOD) probability distribution for a river system.

Chaves and Kojiri (2007) advanced a stochastic fuzzy

neural network model for identification of reservoir oper-

ational strategies through considering water quantity and

water quality objectives. Kerachian and Karamouz (2007)

combined a water quality simulation model and a sto-

chastic GA-based conflict resolution technique to identify

optimal operating rules for water quality management in

reservoir-river systems. Li and Huang (2009) proposed an

inexact two-stage stochastic quadratic programming

method for water-quality management, where uncertainties

expressed as probability distributions and interval values

could be reflected. Stochastic dynamic programming and

chance-constrained programming approaches could reflect

coefficients that are not certainly known but can be rep-

resented as chances or probabilities; however, they were

incapable of examining economic consequences of violat-

ing some overriding policies that were considered out of

the scope of the planning exercise. In comparison, recourse

model is effective for decision problems where analysis of

policy scenarios is desired and the related data are mostly

uncertain. In recourse models, a decision is often first

undertaken before values of random variables are disclosed

and, then, after the random events have occurred and their

values are known, a recourse action is made in order to

minimize ‘‘penalties’’ that may appear due to any infeasi-

bility (Huang and Loucks 2000; Lund 2002; Li et al. 2009).

Generally, although stochastic programming can deal with

uncertainties expressed as random variables with known

probability distributions, the increased data requirements

for specifying the parameters’ probability distributions can

affect their practical applicability.

Another attractive approach for water quality manage-

ment under uncertainty is based on interval analysis tech-

nique, which can tackle uncertainties that generally cannot

be quantified as either distribution functions or member-

ship functions because interval numbers are acceptable as

its uncertain inputs. Previously, a number of applications of

interval (or grey) programming or coupled interval and

other programming methods (e.g. fuzzy or stochastic) in

water-quality management were reported. For example,

Huang (1996) formulated an interval parameter water

quality model for planning water pollution control within

an agricultural system, which allowed uncertain informa-

tion presented as interval numbers to be effectively com-

municated into the optimization processes and resulting

solutions. Karmakar and Mujumdar (2006) developed a

grey fuzzy optimization approach for river-water-quality

management to address uncertainties expressed as interval

grey numbers. Qin et al. (2007) proposed an interval-

parameter programming model for water quality manage-

ment, where the nonlinear objective function was linear-

ized through piecewise conversion technique. Generally,

the above stochastic and interval programming methods

have advantages in their effectiveness in dealing with

uncertainties. However, when applying these approaches to

water quality management problems, difficulties arise due

to system nonlinearities. For example, the economies of

scale may affect the cost coefficients in a mathematical

programming problem and make the relevant objective

function nonlinear (e.g. in water quality management

problems, treatment cost parameters are often presented as

functions of wastewater-discharge levels).

Therefore, the objective of this study is to develop a

recourse-based nonlinear programming (RBNP) method,

where interval-parameter nonlinear programming will be

incorporated within the stochastic recourse modeling

framework. The developed RBNP will be used for handling

uncertainties expressed as probability distributions and

interval values, and also for dealing with nonlinearities in

the objective function. An 0-1 piecewise linearization

approach will be advanced for solving the RBNP model.

Such an approach has advantages in identifying a global

optimum and is associated with a relatively low computa-

tional requirement. Then, the developed RBNP model will

be applied to a case study of stream water quality man-

agement and planning. The results obtained can help

decision makers to not only manage stream water quality

but also gain insight into the tradeoffs between environ-

mental and economic objectives under uncertainty.

2 Methodology

Consider an interval-parameter nonlinear programming

problem without xjxk (j = k) terms as follows:

Max f� ¼
Xn

j¼1

c�j x�j þ d�j x�j

� �hj

� �
ð1aÞ

subject to:

Xn

j¼1

a�ij x�j � b�i ; i ¼ 1; 2; . . .;m ð1bÞ

x�j � 0; j ¼ 1; 2; . . .; n ð1cÞ
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where aij
±, bi

±, cj
±, dj

± and xj
± are interval parameters/vari-

ables; the ‘-’ and ‘?’ superscripts represent lower and

upper bounds of an interval parameter/variable, respec-

tively; hj is exponent index, and hj = 1; f± is referred to as

a nonlinear objective function with interval parameters and

variables. An interval can be defined as a number with

known lower and upper bounds but unknown distribution

information (Huang 1996).

Model (1a–1c) is effective for addressing both nonlin-

earities in objective function and uncertainties presented as

intervals in the modeling parameters. However, it has dif-

ficulties in reflecting uncertainties expressed as probabi-

listic distributions; it is also lack of linkage to economic

consequences of violated policies pre-regulated by the

authorities. For example, assume that bi
± of model (1a–1c)

is not precisely known and only its distribution, with finite

mean E(bi
±), is given. We can then assume that there exists

a penalty for any difference (a random variable) betweenPn
j¼1 a�ij x�j and bi

±.

Thus, when uncertainties of the model’s right-hand sides

are expressed as random variables and decisions need to be

made periodically over time, the problem can be formu-

lated as a stochastic recourse model. A two-stage stochastic

recourse model can be formulated as follows:

Max f ¼ cx� E Q x;xð Þ½ � ð2aÞ

subject to:

Ax� b ð2bÞ
x� 0 ð2cÞ

where x is the first-stage anticipated decisions made before

the random variables are observed, and Q(x, x) is the

optimal value (for any given X) of the following nonlinear

program:

min q y; xð Þ ð3aÞ

subject to:

W xð Þy ¼ h xð Þ � T xð Þx ð3bÞ
y� 0 ð3cÞ

where y is the second-stage decision variables (i.e. recourse

variables) that depends on the realization of the first-stage

random vector; q(y, x) denotes the second-stage cost

function; TðxÞ; WðxÞ; hðxÞjx 2 Xf g are model param-

eters with reasonable dimensions, and are functions of the

random vector (x). For given values of the first-stage

variables (x), the second-stage problem can be decomposed

into independent linear sub-problems, with one sub-

problem for each realization of the uncertain parameters.

Assume that the random vector x has a discrete and finite

distribution, with support X ¼ x1;x2; . . .;xvf g. Denote ph

as the probability of realization of scenario xh, with ph [ 0

and
Pv

h¼1 ph ¼ 1: The expected value of the second-stage

optimization problem can be expressed as:

E Q x; xð Þ½ � ¼
Xv

h¼1

phQ x; xhð Þ ð4Þ

Then, based on the assumption of discrete distributions

for the uncertain parameters, model (2a–2c) can be

equivalently formulated as a linear program as follows:

Max f ¼ cx�
Xv

h¼1

phq yh; nhð Þ ð5aÞ

subject to:

Ax� b ð5bÞ
T xhð ÞxþW xhð Þyxh

¼ h xhð Þ; nh 2 X ð5cÞ
x� 0 ð5dÞ
yh� 0 ð5eÞ

Obviously, stochastic programming with recourse model

can effectively deal with uncertainties presented as random

variables with known probability distributions. However, in

real-world optimization problems, the quality of available

information about the uncertainties is often not satisfactory

enough for establishing probability distributions; Even if the

probability distributions are available, it could be difficult to

reflect them in large-scale stochastic models (Li et al. 2006).

Thus, one potential approach for handling such uncertainties

presented as different formats is to couple the interval-

parameter nonlinear programming with the stochastic

programming, leading to a recourse-based nonlinear

programming (RBNP) model as follows:

Max f� ¼
Xn1

j¼1

c�j x�j þ d�j x�j

� �hj

� �

�
Xn2

j¼1

Xv

h¼1

ph e�j y�jh þ g�j y�jh

� �dj

� �
ð6aÞ

subject to:

Xn1

j¼1

a�rj x
�
j � b�r ; r ¼ 1; 2; . . .;m1 ð6bÞ

Xn1

j¼1

a�tj x�j þ
Xn2

j¼1

a�tjhy�jh� fw�h ;

t ¼ 1; 2; . . .;m2; h ¼ 1; 2; . . .; v

ð6cÞ

x�j � 0; j ¼ 1; 2; . . .; n1 ð6dÞ

y�jh� 0; j ¼ 1; 2; . . .; n2; h ¼ 1; 2; . . .; v ð6eÞ

where hj and dj are exponent index (hj, dj = 1); fw�h is

defined as interval-random variable, which is expressed in

terms of random variables but, at the same time, some
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random events can only be quantified as discrete intervals,

leading to dual uncertainties. An interval-stochastic linear

programming model can be directly transformed into two

deterministic submodels, which correspond to the lower

and upper bounds of the objective function value.

Since nonlinearity exists in the objective function, one

of the main challenges in solving model (6a–6e) is the

identification of uncertain relationships between the

objective function and the related decision variables

during the transform processes (Chen and Huang 2001).

Even if model (6a–6e) can be transformed into two

deterministic nonlinear programming submodels, there are

still difficulties in identifying global optimal solution,

particularly for highly nonlinear and uncertain problems.

Therefore, when problems strictly require globally opti-

mal solutions, enhanced techniques (i.e. global optimiza-

tion methods) should be employed. Linearization of a

nonlinear problem into a piecewise linear one is a useful

approach for handling nonlinearities in the objective

function. The basic idea of the linearization is to cut the

nonlinear function into several segments, and then use

linear formulations to approximate them. Therefore, a 0-1

piecewise linearization approach is proposed to identify a

global optimal solution for such a nonlinear program,

where a number of binary variables will be introduced

into model (6a–6e). Thus, the RBNP model can be con-

verted into a linear one as follows:

Max f� ¼
Xn1

j¼1

c�j x�j þ
Xsj

k¼1

c�jkx0�jk þ u�jkx�jk

� �" #

�
Xn2

j¼1

Xv

h¼1

ph e�j y�jh þ
Xsj

k¼1

a�jky0�jhk þ b�jky�jhk

� �" #

ð7aÞ

subject to:

Xn1

j¼1

a�rj x
�
j þ

Xn1

j¼1

a0�rj

Xsj

k¼1

x�jk

 !
� b�r ; r ¼ 1; 2; . . .;m1

ð7bÞ

Xn1

j¼1

a�tj x�j þ
Xn1

j¼1

a0�tj
Xsj

k¼1

x�jk

 !
þ
Xn2

j¼1

a�tjhy�jh

þ
Xn2

j¼1

a0�tjh
Xsj

k¼1

y�jhk

 !
� fw�h ;

t ¼ 1; 2; . . .;m2; h ¼ 1; 2; . . .; v ð7cÞ

x0�jk ¼
1; if Mk\x�jk � �Mk

0; if otherwise

�
; j ¼ 1; 2; . . .; n1; 8k

ð7dÞ
Xsj

k¼1

x0�jk ¼ 1; j ¼ 1; 2; . . .; n1; 8k ð7eÞ

x�jk �Mkx0�jk � 0; j ¼ 1; 2; . . .; n1; 8k ð7fÞ

x�jk � �Mkx0�jk � 0; j ¼ 1; 2; . . .; n1; 8k ð7gÞ

y0�jhk ¼
1; if Nk\y�jhk � �Nk

0; if otherwise

�
; j ¼ 1; 2; . . .; n2; 8h; k

ð7hÞ
Xsj

k¼1

y0�jhk ¼ 1; j ¼ 1; 2; . . .; n2; 8h; k ð7iÞ

y�jhk � Nky0�jhk � 0; j ¼ 1; 2; . . .; n2; 8h; k ð7jÞ

y�jhk � �Nky0�jhk � 0; j ¼ 1; 2; . . .; n2; 8h; k ð7kÞ

x�j � 0; j ¼ 1; 2; . . .; n1 ð7lÞ

y�jh� 0; j ¼ 1; 2; . . .; n2; 8h ð7mÞ

where x0�jk is 0-1 binary variable for identifying which

segment of xjk
±; y0�jhk is 0-1 binary variable for identifying

which segment of yjhk
± ; k denotes segment for nonlinear

decision variables; c�jk and ujk
± are Y-intersect and slope of

the first-stage cost curve in segment k, respectively; ajk
± and

bjk
± are Y-intersect and slope of the second-stage cost curve

in segment k, respectively; Mk and �Mk are lower and upper

bounds of segment k for xjk
±, respectively; Nk and �Nk are

lower and upper bounds of segment k for yjhk
± , respectively.

Obviously, model (7a–7m) is an interval-stochastic mixed

integer linear programming model, where decision vari-

ables can be sorted into two categories: continuous and

binary. Based on the interactive algorithm, model (7a–7m)

can be directly transformed into two deterministic sub-

models that correspond to the lower and upper bounds of

the objective-function value, such that global optimum can

be obtained. The detailed solution method for solving

model (7a–7m) is provided in Appendix to this paper.

3 Application to water quality management

A city discharges wastewater into a nearby stream. One

municipal wastewater treatment plant, three major industrial

units (i.e. a paper mill, a tannery, and a tobacco factory) are

the main pollutant dischargers. Figure 1 shows the sche-

matic diagram of the study system. Uncertainties may exist

in a variety of impact factors and pollution-related processes

such as effluent characteristics, treatment measures, pollu-

tant-discharge levels, deoxygenation and reaeration rates,

and pollution-caused damages. For example, the volume

and concentration of wastewater flows may vary with the

industrial units, the generated products, and product

amounts; the efficiency for mitigating biochemical oxygen

demand (BOD) may also vary with operating conditions

at the wastewater treatment plants (e.g., reagent ratio,
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temperature, pH level, and inlet BOD concentration). Since

multiple wastewater discharge outlets scatter along the

stream with temporal and spatial variations of their pollutant

loadings, dynamic interactions exist between the pollutant

loadings and the receiving water quality. Their activities are

not only responsible for the pollution problems but also

related to each other. Any change in one activity may lead to

a series of environmental effects. Furthermore, from a long-

term planning point of view, population growth and eco-

nomic development within the studied region can result in

increased demands for water resources and industrial

products. These may lead to a continuous increase of

wastewater discharge from each source. Challenges exist in

satisfying the water quality requirement while facilitating

the regional development.

This study will focus on both maximization of economic

benefit and mitigation of BOD discharges from multiple

sources to the stream. For the industrial sector, the amount

of wastewater can be defined in terms of units of produc-

tion (e.g., gallons of wastewater per ton of pulp produced)

(Eckenfelder Jr 2000). A returning wastewater flow for

municipality can be estimated based on 1990 USGS water

use data (Viessman and Hammer 1998). In this study, a

minimum DO level for aquatic life throughout the stream

water is required. The Streeter-Phelps model is used for

supporting quantification of water quality constraints rela-

ted to BOD and DO discharges as well as reflecting

deoxygenation and reaeration dynamics within the stream.

Table 1 provides the relationships among the activities

(products), discharge flows, and BOD concentrations at

different sources. There are significant differences in terms

of the amounts and characteristics of wastewater dis-

charged from different sectors. To guarantee water quality,

wastewater treatment measures have to be adopted at point

sources such as industrial discharge outlets. Table 2 shows

the treatment efficiencies at different discharge sources.

1

2

D1

D2

D3

D4

3

4

5              River reach 

Di        Discharge source 

j 

Fig. 1 Schematic diagram of the study system

Table 1 Wastewater discharge

rates and the associated

probabilities

Probability Time period

t = 1 t = 2 t = 3

Wastewater treatment plant (m3/m3 supply)

h = 1 (low) 0.2 [0.62, 0.65] [0.62, 0.65] [0.62, 0.65]

h = 2 (medium) 0.6 [0.65, 0.69] [0.65, 0.69] [0.65, 0.69]

h = 3 (high) 0.2 [0.69, 0.74] [0.69, 0.74] [0.69, 0.74]

Paper mill (m3/tonne)

h = 1 (low) 0.2 [270.1, 283.6] [250.1, 262.6] [230.1, 241.6]

h = 2 (medium) 0.6 [283.6, 297.8] [262.6, 275.7] [241.6, 253.7]

h = 3 (high) 0.2 [297.8, 315.7] [275.7, 292.2] [253.7, 268.9]

Tannery plant (m3/tonne)

h = 1 (low) 0.15 [108.9, 114.3] [100.8, 105.8] [92.7, 97.3]

h = 2 (low-medium) 0.25 [114.3, 120.0] [105.8, 112.2] [97.3, 102.2]

h = 3 (medium) 0.45 [120.0, 126.0] [112.2, 128.1] [102.2, 107.3]

h = 4 (high) 0.15 [126.0, 132.3] [128.1, 134.5] [107.3, 112.7]

Tobacco factory (m3/tonne)

h = 1 (low) 0.15 [185.6, 194.9] [185.6, 194.9] [185.6, 194.9]

h = 2 (low-medium) 0.25 [194.9, 204.6] [194.9, 204.6] [194.9, 204.6]

h = 3 (medium) 0.45 [204.6, 214.8] [204.6, 214.8] [204.6, 214.8]

h = 4 (high) 0.15 [214.8, 225.5] [214.8, 225.5] [214.8, 225.5]
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Table 3 provides the allowable BOD loading level for each

pollution source as regulated by the local authority as well

as the lower- and upper-bound levels of municipal water

supply and industrial productions. The water quality

requirements for BOD and DO deficit are not exceeded 6

and 3 mg/l, respectively (Viessman and Hammer 1998).

When uncertainties of wastewater discharge rates are

presented as intervals, the cost function for wastewater

treatment can be estimated as follows (Loucks et al. 1981;

Haith 1982):

C� ¼ k�1 Q�k2 þ k�3 Q�k4 ð8Þ

where C± is the treatment cost for wastewater under a

specific technology, including construction, operation and

maintenance costs ($103/year); Q± is the average waste-

water flow treated by the process (103 m3/day), k1
± and k3

±

are the cost-function coefficients (k1
±, k3

± [ 0); k2 and k4

are the economies of scale indexes for the capital and

treatment costs (0 \ k2 and k4 \ 1), and different waste-

water treatment processes (with different efficiencies) may

lead to varied k2 and k4 values. Table 4 presents the related

economic data of net benefits and costs. The costs are

expressed as nonlinear functions of wastewater flows; they

may vary along with the economy-of-scale indexes.

In the study problem, the associated complexities

include that (i) uncertainties present in terms of random

variables and/or interval values, (ii) nonlinearities exist in

the wastewater treatment cost, and (iii) dynamic interac-

tions exist among pollutant loadings, stream conditions,

and water quality. The proposed RBNP method is suit-

able for tackling these complexities. Figure 2 presents the

general framework of RBNP for water quality manage-

ment. The objective is to maximize the system benefit

subject to water quality requirements under various

stream conditions. The decision variables are related to

municipal water supply, industrial production, and rec-

reation land use. The constraints include BOD loading

allowance for each discharge source and allowable BOD

and DO-deficit levels at each stream reach. Thus, we

have

Objective:

Max f� ¼ Lt

X4

i¼1

X3

t¼1

NB�it Titþ

Lt

X4

i¼1

X3

t¼1

Xv

h¼1

pihNB�it X�ith � Tit

� �

� L0t
X4

i¼1

X3

t¼1

Xv

h¼1

pih k�1;i Q�ith
� �k2;iþk�3;i Q�ith

� �k4;i
h i

ð9aÞ

where X�ith ¼ Q�ith=w�ith; 8i; t; h.

Constraints:

(1) BOD discharge constraints:

1� g�i
� �

X�ithw�ithC�it � S�it ; 8i; t; h ð9bÞ

(2) Maximum allowable BOD discharge constraints:

U1 þ 1� g�1
� �

X�1thw�1thC�1t

	
Qr �RB�jt ; 8t; h; j ¼ 1 ð9cÞ

U2 þ m12 1� g�1
� �

X�1thw�1thC�1t

	
Qr þ 1� g�2

� �

� X�2thw�2thC�2t

	
Qr �RB�jt ; 8t; h; j ¼ 2

ð9dÞ

Table 2 BOD concentrations

and treatment efficiencies
Wastewater treatment

plant

Paper

mill

Tannery

plant

Tobacco

factory

Efficiency (%) [87, 91] [82, 86] [79, 83] [89, 94]

BOD concentration (kg/m3) [0.20, 0.22] [0.31, 0.34] [1.1, 1.2] [2.1, 2.3]

Table 3 Allowable BOD

loading and market demand
Time period

t = 1 t = 2 t = 3

Allowable BOD loading (kg/day)

Wastewater treatment plant [820, 870] [900, 950] [970, 1030]

Paper mill [320, 365] [315, 360] [305, 350]

Tannery plant [300, 345] [270, 315] [240, 285]

Tobacco factory [100, 125] [85, 110] [80, 100]

Lower-and upper-bound market demand for each product:

Water supply (m3/day) [65000, 70000] [69000, 75000] [72000, 78000]

Paper (tonne/day) [22, 24] [25, 28] [27, 30]

Leather (tonne/day) [13.0, 14.5] [13.6, 15.2] [14.0, 16.1]

Tobacco (tonne/day) [3.6, 4.5] [3.3, 4.1] [3.1, 3.8]
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U3 þ m13 1� g�1t

� �
X�1thw�1thC�1t

	
Qr þ m23 1� g�2

� �

X�2thw�2thC�2t

	
Qr þ 1� g�3

� �
X�3thw�3thC�3t

	
Qr �RB�jt ;

8t; h; j ¼ 3 ð9eÞ

U4 þ m14 1� g�1
� �

X�1thw�1thC�1t

	
Qr þ m24 1� g�2

� �

X�2thw�2thC�2t

	
Qr þ m34 1� g�3

� �
X�3thw�3thC�3t

	
Qr

þ 1� g�4
� �

X�4thw�4thC�4t

	
Qr �RB�jt ; 8t; h; j ¼ 4

ð9fÞ

(3) Maximum allowable DO-deficit constraints:

V2 þ n12 1� g�1
� �

X�1thw�1thC�1t

	
Qr �RD�jt ; 8t; h; j ¼ 2

ð9gÞ

V3 þ n13 1� g�1
� �

X�1thw�1thC�1t

	
Qr þ n23 1� g�2

� �

X�2thw�2thC�2t

	
Qr �RD�jt ; 8t; h; j ¼ 3

ð9hÞ

V4 þ n14 1� g�1
� �

X�1thw�1thC�1t

	
Qr þ n24 1� g�2

� �

X�2thw�2thC�2t

	
Qr þ n34 1� g�3t

� �
X�3thw�3thC�3t

	
Qr �RD�jt ;

8t; h; j ¼ 4 ð9iÞ

V5 þ n15 1� g�1
� �

X�1thw�1thC�1t

	
Qr þ n25 1� g�2t

� �

X�2thw�2thC�2t

	
Qr þ n35 1� g�3

� �
X�3thw�3thC�3t

	
Qr

þ n45 1� g�4
� �

X�4thw�4thC�4t

	
Qr �RD�jt ; 8t; h; j ¼ 5

ð9jÞ

(4) Product demand constraints:

TL
it � Tit � TU

it ; 8i; t ð9kÞ

(5) Non-negative constraints:

X�ith� 0; 8i; t; h ð9lÞ

where j is name of reach (j = 1, 2, …, 5), where j = 1 for

the upstream end, and j = 5 for the downstream end; i

denotes wastewater discharge source (i.e., municipal

wastewater treatment plant, paper mill, tannery plant, and

tobacco facility); wastewater from these sources would

enter into the stream at the beginnings of reaches 2 to 5; f± is

net system benefit over the planning horizon ($);

Lt = length of period t (day); L0t = length of period t

(year); pih denotes probability of random wastewater-

discharge rate at discharger i with level h (%); h denotes

level of wastewater discharge rate at each source; t is

planning period; NBit
± is net benefit per unit product from

source i ($/unit product); Cit
± is BOD concentration of raw

wastewater generated at source i in period k (kg/m3); k1,i
± and

k3,i
± are the cost-function coefficients for source i; k2,i and k4,i

are the economies of scale indexes for the capital and

treatment costs (0 \ k2,i and k4,i \ 1); Qith
± is the amount of

discharged wastewater from source i during period t with

Table 4 Benefits and costs

Note: Q = 103 m3/day; i = 1

denotes the wastewater

treatment plant, i = 2 for paper

mill, i = 3 for tannery plant,

and i = 4 for tobacco factory

Time period

t = 1 t = 2 t = 3

Net benefits from different products

Water supply ($/m3) [4.2, 5.1] [4.6, 5.6] [5.1, 6.2]

Paper ($/tonne) [366.3, 439.6] [402.9, 483.6] [443.2, 532.0]

Leather ($/tonne) [1104, 1536] [1159.2, 1612.8] [1182.4, 1645.1]

Tobacco ($/tonne) [11000, 14000] [10500, 13500] [10000, 13000]

Costs for wastewater treatment (103 $/year)

Lower bound (i = 1) 14Q0.85 ? 32Q0.5 15Q0.85 ? 33Q0.5 16Q0.85 ? 34Q0.5

Upper bound (i = 1) 16Q0.85 ? 35Q0.5 17Q0.85 ? 36Q0.5 18Q0.85 ? 37Q0.5

Lower bound (i = 2) 9Q0.8 ? 29Q0.4 10Q0.8 ? 30Q0.4 11Q0.8 ? 31Q0.4

Upper bound (i = 2) 11Q0.8 ? 32Q0.4 12Q0.8 ? 33Q0.4 13Q0.8 ? 34Q0.4

Lower bound (i = 3) 7Q0.65 ? 26Q0.35 8Q0.65 ? 27Q0.35 9Q0.65 ? 28Q0.35

Upper bound (i = 3) 10Q0.65 ? 30Q0.35 11Q0.65 ? 31Q0.35 12Q0.65 ? 32Q0.35

Lower bound (i = 4) 16Q0.9 ? 35Q0.45 17Q0.9 ? 36Q0.45 18Q0.9 ? 37Q0.45

Upper bound (i = 4) 19Q0.9 ? 40Q0.45 20Q0.9 ? 41Q0.45 21Q0.9 ? 42Q0.45

Uncertainties in water-quality 
parameters (intervals) 

Uncertainties in benefit/cost 
coefficients (intervals) 

Uncertainties in discharge rates 
(probability distributions) 

Nonlinearities in cost function of 
wastewater treatment 

Uncertainties in treatment 
efficiencies (intervals) 

Policy analyses in economic 
activity targets  

Limitations for pollutant loading 
capacities of stream 

Recourse-based nonlinear 
programming (RBNP) 

Recourse-based interval-stochastic 
integer linear programming 

0-1 piecewise 
linearization approach 

Interactive algorithm

Upper-bound 
submodel 

Lower-bound 
submodel 

Interval-parameter nonlinear 
programming 

Stochastic programming with 
recourse

Generate optimal solution

Fig. 2 Framework of RBNP for water quality management
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level h (103 m3/day); Qr is stream flow (103 m3/day), with

Qr 	
P5

i¼1 Q�ith; g�i is BOD treatment efficiency at source i

(%); RBjt
± is designated BOD concentration at the beginning

of reach j (mg/l); RDjt
± is allowable DO deficit at the end of

reach j (mg/l); Sit
± is BOD discharge allowance for source i

during period t (tonne/day); Tit
L and Tit

U are lower- and upper-

bound demands for product i during period t (unit/day),

respectively; Tit is product target pre-regulated by source i

during period k (the first-stage decision variable) (m3/day or

tonne/day); with
± is random wastewater discharge rate at

source i in period t with level h (m3/unit product); Xith
± means

production level of source i during period t with level h,

which is affected by the random BOD generation rates and

the environmental requirements (the second-stage decision

variable) (m3/day or tonne/day).

In model (9a–9l), mij is transfer factor of BOD from

source i to reach j; Uj is relational constant of BOD (mg/l),

and j = 1, 2, …, 4; nij is transfer factor of DO from source i

to reach j; Vj is relational constant of DO (mg/l), and j = 2,

3, …, 5. In this study, the Streeter-Phelps model is used for

supporting quantification of water quality constraints rela-

ted to BOD and DO discharges as well as reflecting

deoxygenation and reaeration dynamics within the stream.

The total BOD loading and DO deficit at the beginning of

each reach can be calculated as follows (Viessman and

Hammer 1998):

Lj ¼ Lj�1e�kdtj�1 þ 1� gið ÞBODi ð10aÞ

Dj ¼
kdLj�1

ka � kd
e�kdtj�1 � e�katj�1
� �

þ Dj�1e�katj�1 ð10bÞ

where Lj-1 and Lj are respectively BOD loads at the

beginnings of reaches j - 1 and j; Dj is the oxygen deficit at

the beginning of reach j; tj-1 is the length of reach j - 1

expressed in time units; gi is the wastewater treatment

efficiency at source i; kd is the first-order deoxygenation rate

constant (day-1); ka is the first-order reaeration rate

constant (day-1); BODi is the total amount of BOD to be

disposed of at source i (kg/day). Let aj ¼ e�kdtj ; bj ¼ e�katj ;,

and c ¼ kd= ka � kdð Þ. Substituting the related items in

Eqs. 10a and 10b with aj-1 and bj-1, the BOD load and DO

deficit at the beginning of reach j can be calculated:

Lj ¼ aj�1Lj�1 þ 1� gið ÞBODi ð11aÞ

Dj ¼ cLj�1 aj�1 � bj�1

� �
þ Dj�1bj�1 ð11bÞ

The BOD load and DO deficit at the downstream

associated with m wastewater discharge sources can be

formulated as follows:

Ln ¼
Yn

j¼1

ajL0 þ
Yn

j¼2

aj 1� g1ð ÞBOD1 þ � � � þ an 1� gm�1ð Þ

BODm�1 þ 1� gmð ÞBODm ð12aÞ

Dn ¼ cLn�1 an�1 � bn�1ð Þ þ Dn�1bn�1 ð12bÞ

When uncertainties expressed as interval values that

exist in the BOD discharge level and removal efficiency,

Eqs. 12a and 12b can be converted into:

L�n ¼
Yn

j¼1

e�kdtj L�0 þ
Yn

j¼2

e�kdtj 1� g�1
� �

BOD�1 þ � � �

þ e�kdtn 1� g�m�1

� �
BOD�m�1 þ 1� g�m

� �
BOD�m

ð13aÞ

D�n ¼
kd

ka � kd
L�n�1 e�kdtn�1 � e�katn�1

� �
þ D�n�1e�katn�1

ð13bÞ

According to the descriptions in Sect. 2, an 0-1

piecewise linearization approach is used to convert model

(9a–9l) into a linear one. Through using a number of binary

variables (i.e. 0-1 variables), the piecewise linearization

can cut the nonlinear treatment cost function into several

segments. Thus, we have:

Max f� ¼ 1825�
X4

i¼1

X3

t¼1

NB�it Tit þ 1825

�
X4

i¼1

X3

t¼1

Xv

h¼1

pihNB�it X�ith � Tit

� �
� 5

�
X4

i¼1

X3

t¼1

Xv

h¼1

Xsi

k¼1

pih b�itkz�ithk þ a�itkq�ithk

� �
ð14aÞ

where Q�ith ¼
Psi

k¼1 q�ithk and X�ith ¼
Psi

k¼1 q�ithk=w�ith

subject to:

Xsi

k¼1

q�ithk 1� g�i
� �

C�it � S�it ; 8i; t; h
ð14bÞ

1:558þ
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr �R�jtBOD; 8t; h; j ¼ 1

ð14cÞ

1:252þ 0:803
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr

þ
Xs2

k¼1

q�2thk 1� g�2
� �

C�2t

	
Qr �R�jtBOD; 8t; h; j ¼ 2

ð14dÞ

1:105þ 0:709
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr

þ 0:883
Xs2

k¼1

q�2thk 1� g�2
� �

C�2t

	
Qr

þ
Xs3

k¼1

q�3thk 1� g�3
� �

C�3t

	
Qr �R�jtBOD;

8t; h; j ¼ 3

ð14eÞ
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0:975þ 0:626
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr

þ 0:779
Xs2

k¼1

q�2thk 1� g�2
� �

C�2t

	
Qr

þ 0:883
Xs3

k¼1

q�3thk 1� g�3
� �

C�3t

	
Qr

þ
Xs4

k¼1

q�4thk 1� g�4
� �

C�4t

	
Qr �R�jtBOD;

8t; h; j ¼ 4

ð14fÞ

0:552þ 0:171
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr �R�jtD;

8t; h; j ¼ 2

ð14gÞ

0:607þ 0:233
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr

þ 0:108
Xs2

k¼1

q�2thk 1� g�2
� �

C�2t

	
Qr �R�jtD;

8t; h; j ¼ 3

ð14hÞ

0:638þ 0:276
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr

þ 0:188
Xs2

k¼1

q�2thk 1� g�2
� �

C�2t

	
Qr

þ 0:108
Xs3

k¼1

q�3thk 1� g�3
� �

C�3t

	
Qr �R�jtD;

8t; h; j ¼ 4

ð14iÞ

0:647þ 0:322
Xs1

k¼1

q�1thk 1� g�1
� �

C�1t

	
Qr

þ 0:291
Xs2

k¼1

q�2thk 1� g�2
� �

C�2t

	
Qr

þ 0:256
Xs3

k¼1

q�3thk 1� g�3
� �

C�3t

	
Qr

þ 0:205
Xs4

k¼1

q�4thk 1� g�4
� �

C�4t

	
Qr �R�jtD;

8t; h; j ¼ 5

ð14jÞ

TL
it � Tit � TU

it ; 8i; t ð14kÞ

z�ithk ¼
1; if Mik\q�ithk � �Mik

0; if otherwise

�
; 8i; t; h; k ð14lÞ

Xsi

k¼1

z�ithk ¼ 1; 8i; t; h; k ð14mÞ

Mikz�ithk� q�ithk � �Mikz�ithk 8i; t; h; k ð14nÞ

q�ithk � 0; 8i; t; h; k ð14oÞ

where k is the segment for decision variables, where k = 1,

2, …, si for wastewater flow generated in source i; aitk
± is

the slope of treatment-cost curve for wastewater flow at

source i during period t in segment k ($/103 m3 year),

bitk
± = Y-intersect of transportation-cost curve for waste-

water flow at source i during period t in segment k ($/year);

Mk is the lower bound of segment k for wastewater flow

(103 m3); �Mkis the upper bound of segment k for waste-

water flow (103 m3); qithk
± is wastewater amount at source i

during period t in segment k (103 m3/day) (continuous

variable), and
Psi

k¼1 q�ithk ¼ Q�ith; zithk
± is binary variable for

identifying which segment is for treatment cost of waste-

water flows.

Obviously, model (14a–14o) is an interval-stochastic

two-stage mixed integer linear programming model, where

decision variables can be sorted into two categories: con-

tinuous and binary. The continuous variables represent

wastewater flows discharged by source i, while the binary

ones help identify correct segments for treatment costs of

different wastewater amounts. Through solving two deter-

ministic submodels that correspond to the lower and

upper bounds of the objective-function value [of model

(14a–14o)], the final solutions can be obtained as follows:

X�ith opt ¼ X�ith opt;X
þ
ith opt

h i
; 8i; t; h ð15aÞ

with X�ith ¼
Psi

k¼1

q�ithk=wþith and Xþith ¼
Psi

k¼1

qþithk=w�ith

PD�ith opt=PS�ith opt ¼ X�ith opt � Tit opt 8i; t; h ð15bÞ

f�opt ¼ f�opt; f
þ
opt

h i
ð15cÞ

The PDith
± or PSith

± means the probabilistic deficit or

surplus under different BOD-generation levels. Probabilistic

deficit or surplus will occur if the pre-regulated targets are

different from the planned levels (i.e. probabilistic deficit/

surplus = planned level - pre-regulated target). When the

pre-regulated target exceeds the planned level, a prob-

abilistic deficit (with negative sign) may exist; conversely, a

surplus (with positive sign) will occur when the target is

lower than the planned level. Correspondingly, the

probabilistic deficit can lead to excess wastewater dis-

charge and economic penalty due to violating environmental

requirements; in comparison, the probabilistic surplus

corresponds to a low target value and a low wastewater

discharge level, and thus could result in opportunity loss due

to a too conservative strategy for economic activities.

4 Result analysis

Figure 3 presents the targeted and planned values for the

municipal wastewater treatment plant over the planning

horizon. The optimized target value would be 70,000 m3/

day in period 1. The planned levels would be [46.2,

78.0] 9 103 m3/day if the wastewater-discharge rate is low
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with a probability of 20%, [44.1, 74.5] 9 103 m3/day

under medium discharge rate (probability = 60%), and

[41.6, 70.0] 9 103 m3/day under high discharge rate

(probability = 20%). In period 2, the optimized target

would be 75,000 m3/day, and the planned values would be

[50.8, 85.1] 9 103, [48.4, 81.2] 9 103 and [45.6, 81.2] 9

103 m3/day under the low, medium and high discharge

rates, respectively. In period 3, the optimized target would

be 72,000 m3/day, and the planned values would be [54.7,

91.5] 9 103, [52.2, 87.3] 9 103 and [49.2, 82.2] 9 103

m3/day under the low, medium and high discharge rates,

respectively. The solutions for the planned level are pre-

sented as combinations of interval and distributional

information. Their upper bounds correspond to a higher

system benefit under advantageous conditions, while their

lower bounds are related to a more conservative strategy

under demanding conditions.

Probabilistic deficit or surplus would occur if the pre-

regulated targets are different from the planned levels (i.e.

probabilistic deficit/surplus = planned level - regulated

target). Figure 4 provides the probabilistic deficit and

surplus for the wastewater treatment plant over the plan-

ning horizon. Under low discharge rate, the probabilistic

deficit (or surplus) levels would be [-23.8, 8.0] 9 103,

[-24.2, 10.1] 9 103 and [-17.3, 19.5] 9 103 m3/day in

periods 1, 2 and 3; under medium discharge rate, the

probabilistic deficit (or surplus) levels would be [-25.9,

4.4] 9 103, [-26.6, 6.2] 9 103 and [-19.8, 15.3] 9

103 m3/day in periods 1, 2 and 3; when discharge rate is

high, the probabilistic deficit (or surplus) levels would be

[-28.4, 0.05] 9 103, [-29.4, 1.5] 9 103 and [-22.8,

10.2] 9 103 m3/day in periods 1, 2 and 3, respectively. The

negative values represent probabilistic deficits under

demanding conditions. They imply that, if the actual

wastewater treatment activities are planned based on the

target levels, untreated wastewater would then be

28.4 9 103 m3/day (in period 1), 29.4 9 103 m3/day (in

period 2) and 22.8 9 103 m3/day (in period 3) under high

discharge rate. The untreated wastewater (i.e. deficit)

would be subject to penalties (i.e. a reduced system bene-

fit). In comparison, the positive values denote probabilistic

surpluses. For example, when wastewater discharge rate is

low over the planning horizon, there would be 8.0 9 103,

10.1 9 103 and 19.5 9 103 m3/day of surplus flows can be

treated within the environmental requirement. The results

indicate that, under advantageous conditions, opportunity

losses would occur due to a too conservative strategy (i.e.

with a low target value).

Figures 5 and 6 show the optimized production plan and

the probabilistic deficit (or surplus) for the paper mill over

the planning horizon. The results indicate that, in period 1,

the production target would be 22.0 tonne/day, and the

planned production levels would be [19.4, 31.1], [18.4,

29.7] and [17.6, 28.2] tonne/day when the wastewater

discharge rates are low, medium and high; correspond-

ingly, the probabilistic deficit (or surplus) would be [-2.6,

9.1], [-3.6, 7.7] and [-4.4, 6.2] tonne/day with probabil-

ities of 20, 60 and 20%, respectively. In period 2, the target

value would be 25.0 tonne/day, and the planned levels

would be [20.6, 33.2], [19.6, 31.6] and [18.7, 30.1] tonne/
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day under low, medium and high discharge rates; the

probabilistic deficit (or surplus) would thus be [-4.4, 8.2],

[-5.4, 6.6] and [-6.3, 5.1] tonne/day, respectively. In

period 3, the targeted value would be 27.0 tonne/day, and

the planned levels would be [21.7, 35.0], [20.6, 33.3] and

[19.6, 31.7] tonne/day under low, medium and high dis-

charge rates; the probabilistic deficit (or surplus) would

thus be [-5.3, 8.0], [-6.4, 6.3] and [-7.4, 4.7] tonne/day,

respectively.

Figures 7 and 8 show the targeted and planned values

as well as the probabilistic deficit and surplus for the

tannery plant over the planning horizon. For example, in

period 1, the targeted value would be 14.5 tonne/day; the

planned values would be [10.9, 16.9], [10.4, 16.1], [9.9,

15.4] and [9.4, 14.6] tonne/day when the wastewater dis-

charge rates are low, low-medium, medium and high;

correspondingly, the probabilistic deficit (or surplus)

would be [-3.6, 2.4], [-4.1, 1.6], [-4.6, 0.9] and [-5.1,

0.1] tonne/day (with probabilities of 15, 25, 45 and 15%

respectively). Figures 9 and 10 provide the results for the

tobacco factory. For the tobacco factory, in period 1, the

optimized target would be 4.5 tonne/day, and the planned

values would be [2.1, 5.3], [2.0, 5.1], [1.9, 4.8], and [1.8,

4.6] tonne/day under low, low-medium, medium and high

discharge rates; correspondingly, the probabilistic deficit

(or surplus) would be [-2.4, 0.8], [-2.5, 0.6], [-2.6, 0.3]

and [-2.7, 0.1] tonne/day, respectively. The results for the

tannery plant and tobacco factory in periods 2 and 3 can
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be similarly interpreted based on the results presented in

Fig. 7, 8, 9, and 10.

5 Discussion and conclusion

Various alternatives could be generated through adjustment

of the decision variables between their lower and upper

bounds (i.e. Xith
± ). The intervals for Xith

± are also useful for

decision makers to justify the generated alternatives

directly, or to adjust the planned activity levels when the

stream water quality is violated under uncertainty. Table 5

presents sixteen decision alternatives generated under dif-

ferent combinations of planned levels (Xith
± ) at lower and

upper levels through a 24 (i.e. two-level with four vari-

ables) factorial design approach (Box et al. 1978). The

results indicate the economic impacts of variations in

planned level (i.e. probabilistic deficit or surplus). The

alternatives were produced by adjusting the planned levels

and thus probabilistic deficit or surplus values between

lower and upper bounds of Xith
± . The results indicate that

alternatives 2, 4, 6, 8, 10, 12, 14 and 16 (where X1th
± = X1th

? )

would lead to significantly higher system benefits than

alternatives 1, 3, 5, 7, 9, 11, 13 and 15 (where X1th
± = X1th

- ).

The effects of X1th
± , X2th

± , X3th
± and X4th

± on the system benefit

are 918.5, 28.9, 39.9 and 167.6, respectively; the positive

values mean that the system benefit would increase as the

planned level increases. The interaction effects of

X1th
± X2th

± X4th
± and X1th

± X3th
± X4th

± were 0.11 and -0.06,

respectively, implying that the effects of X2th
± and X3th

± were

mainly from interactions of X1th
± and X4th

± where X1th
± had a

high effect level. Furthermore, the difference between the

interaction effect of X1th
± X4th

± (i.e. -0.04) and the main

effect of X1th
± (i.e. 918.5) was large, implying that the effect

of X4th
± might be mainly due to itself. In summary, (i) X1th

±

(i.e. the planned level for municipal wastewater treatment

plant) has the most significant effect on the expected sys-

tem benefit; (ii) X4th
± (the planned level for tobacco factory)
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has the second largest effect on the system benefit; (iii) X2th
±

and X3th
± (the planned levels for paper mill and tannery

plant) has considerable effects. Therefore, effective plan-

ning for municipal wastewater treatment plant under

varying discharge rates is more important for improving

the system’s performance than that of the industrial sector.

Among the industrial dischargers, planning for the tobacco

facility is more important than planning for the paper mill

and tannery plant. Similar post-optimality analyses can also

be conducted for solutions under other scenarios of eco-

nomic targets.

The expected net system benefit over the planning

horizon would be $[1431.5, 3037.0] 9 106 under the

optimized target levels, where the lower-bound value (i.e.

$1431.5 9 106) corresponds to demanding conditions

while the upper-bound value (i.e. $3037.0 9 106) is asso-

ciated with advantageous conditions. Under demanding

conditions, the first-stage benefit would be $2225.6 9 106;

the expected second-stage benefit would be -$783.7

9 106; the probabilistic cost for wastewater treatment

would be $10.4 9 106. The negative second-stage benefit

denotes penalties due to excess wastewater discharges

under demanding conditions. In comparison, under

advantageous conditions, the first-stage benefit would be

$2738.5 9 106; the expected second-stage benefit would

be $311.7 9 106; the probabilistic cost for wastewater

treatment would be $13.3 9 106. The positive second-

stage benefit denotes opportunity losses would generate

due to a too conservative strategy. Generally, solutions of

the objective function value (i.e. $[1431.5, 3037.0] 9 106)

provide two extremes of the expected net system benefit

over the planning horizon, which correspond to conserva-

tive and optimistic strategies. As the actual value of each

decision variable varies within its lower and upper bounds,

the system benefit would change correspondingly between

fopt
- and fopt

? with varying reliability levels. The lower-bound

system benefit would range from $1431.5 9 106 to

$2466.3 9 106 while the upper-bound system benefit

would vary from $1761.8 9 106 to $3037.0 9 106 (as

shown in Fig. 11). Planning with a lower system benefit

represents a risk-averse attitude, which is associated with a

higher system reliability. Conversely, a strong desire to

acquire a higher system benefit is associated with a raised

risk for violating the environmental criteria (particularly

under demanding conditions).

The RBNP modeling formulation can provide a linkage

between the pre-regulated targets and the associated eco-

nomic penalties caused by improper policies. Different

policies in regulating the municipal and industrial activities

are associated with different options in handling the

tradeoffs among system benefit and environment-violation

risk. For example, when the regulated target (Titopt) reaches

the lower-bound demand for each source (i.e. Titopt = Tit
L),

the expected net system benefit would be $[1428.7,

3033.3] 9 106. Under demanding conditions, the first-

stage benefit and second-stage probabilistic penalty would

respectively be $2079.8 9 106 and -$640.7 9 106, both

lower than values under the optimized target (i.e.

$2738.5 9 106 and -$783.7 9 106). Under advantageous

conditions, the first-stage benefit would be $2556.1 9 106

Table 5 Alternatives obtained from solutions under the optimized targets

Alternative X1th
± X2th

± X3th
± X4th

± fopt
± ($106) f opt

(mid) ($106) (1) (2) (3) (4) Divisor Effect Identification

1 - - - - [1431.5, 1761.8] 1596.6 4111.8 8281.5 16722.7 34786.1 16 2174.1 Average

2 ? - - - [2260.0, 2770.3] 2515.2 4169.7 8441.2 18063.4 7347.9 8 918.5 X1th
±

3 - ? - - [1457.7, 1793.4] 1625.6 4191.7 8951.8 3674.1 230.9 8 28.9 X2th
±

4 ? ? - - [2286.2, 2801.9] 2544.1 4249.5 9111.6 3673.8 0.7 8 0.09 X1th
± X2th

±

5 - - ? - [1464.9, 1808.3] 1636.6 4447.0 1837.1 115.7 319.5 8 39.9 X3th
±

6 ? - ? - [2293.4, 2816.8] 2555.1 4504.8 1837.0 115.2 -0.7 8 -0.09 X1th
± X3th

±

7 - ? ? - [1491.1, 1839.9] 1665.5 4527.1 1837.2 -0.1 -0.5 8 -0.06 X2th
± X1th

±

8 ? ? ? - [2319.6, 2848.4] 2584.0 4584.5 1836.6 0.8 0.9 8 0.11 X1th
± X2th

± X3th
±

9 - - - ? [1578.2, 1950.3] 1764.2 918.6 57.9 159.7 1340.7 8 167.6 X4th
±

10 ? - - ? [2406.7, 2958.8] 2682.8 918.5 57.8 159.8 -0.3 8 -0.04 X1th
± X4th

±

11 - ? - ? [1604.4, 1981.9] 1793.1 918.5 57.8 -0.1 -0.5 8 -0.06 X2th
± X4th

±

12 ? ? - ? [2432.9, 2990.4] 2711.7 918.5 57.4 -0.6 0.9 8 0.11 X1th
± X2th

± X4th
±

13 - - ? ? [1612.0, 1997.2] 1804.6 918.6 -0.1 -0.1 0.1 8 0.01 X3th
± X4th

±

14 ? - ? ? [2439.9, 3005.2] 2722.5 918.6 0.0 -0.4 -0.5 8 -0.06 X1th
± X3th

± X4th
±

15 - ? ? ? [1637.8, 2027.9] 1832.9 917.9 0.0 0.1 -0.3 8 -0.04 X2th
± X3th

± X4th
±

16 ? ? ? ? [2466.3, 3037.0] 2751.6 918.7 0.8 0.8 0.7 8 0.09 X1th
± X2th

± X3th
± X4th

±

Note: f
ðmidÞ
opt ¼ f�opt þ fþopt

� �
=2
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(lower than that under the optimized target) and second-

stage probabilistic loss would be $490.4 9 106 (higher

than that under the optimized target). Therefore, the results

demonstrated that, when the regulated targets reach their

lower bounds, there would then be less wastewater dis-

charge and thus lower penalty; however, potentially more

economic loss would be generated when wastewater dis-

charge level is low.

In summary, a recourse-based nonlinear programming

(RBNP) method has been developed for stream water

quality management under uncertainty. The RBNP inte-

grates stochastic programming with recourse and interval-

parameter nonlinear programming techniques into a

general framework. It can not only reflect uncertainties

expressed as interval values and probability distributions

but also address nonlinearity in the objective function. An

0-1 piecewise linearization approach and an interactive

algorithm have been proposed for solving the RBNP

model, which have advantages in identifying a global

optimum and are associated with a relatively low compu-

tational requirement. The developed method has been

applied to a case of planning stream water quality man-

agement. The modeling formulation can provide an effec-

tive linkage between environmental regulations and

economic implications expressed as penalties or opportu-

nity losses caused by improper policies. The results have

demonstrated that the RBNP could effectively communi-

cate different form uncertainties into the optimization

process, and generate solutions presented as combinations

of interval and distributional information. Decision alter-

natives could then be obtained by adjusting different

combinations of the decision variables within their solution

intervals. Willingness to accept a lower system benefit will

guarantee a lower risk of violating the environmental reg-

ulations but, at the same time, may result in opportunity

losses under advantageous conditions. A strong desire to

acquire a higher system benefit will be associated with a

raised risk of constraint violation under demanding

conditions.

Although this study is the first attempt for planning a

stream water-quality management system through the

developed RBNP approach, a number of research exten-

sions still exist. Firstly, different linearization levels could

have significant influences on model solutions due to var-

ied exponent. In a certain range, solution errors will

decrease with the rising segmentation numbers. However,

this inevitably results in increased number of decision

variables for the optimization models. Consequently, sys-

tem errors will accumulate due to the increased scale of

calculations. Thus, it is critical that a proper linearization

level be selected. Secondly, the study system was based on

a hypothetical case of stream water-quality management,

where BOD and DO were considered as the main water

quality indicators. This situation is suitable to point-source

pollution controls for water bodies in the vicinity of urban

area with both residential sewage and industrial wastewater

being the main pollution sources. Nutrients and pesticides

from agricultural land are becoming water quality concerns

when they move off target to surface water. Future work is

desired to further account for non-point sources pollutions

from agricultural sectors.
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Appendix: Solution method

A two-step method is proposed for solving the RBNP

model (i.e. model 7a–7l). The submodel corresponding to

f? can be formulated in the first step when the system

objective is to be maximized; the second submodel (cor-

responding to f-) can then be formulated based on the

solution of the first submodel. Thus, the first submodel can

be formulated (assume that B± [ 0 and f± [ 0) as

follows:

1432
1578

1465
1612

1458
1604

1491
1638

2260
2407

2293
2440

2286
2433

2320
2466

1762
1950

1808
1997

1793
1982

1840
2028

2770
2959

2817

3005

2802
2990

2848
3037

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Combination of decision variables
S

ys
te

m
 b

en
ef

it 
($

10
6 )

Lower-bound value Upper-bound valueFig. 11 System benefits under

different combinations of

decision variables

220 Stoch Environ Res Risk Assess (2012) 26:207–223

123



Max fþ ¼
Xj1

j¼1

cþj xþj þ
Xsj

k¼1

cþj x0þjk þ uþj xþjk

� �" #

þ
Xn1

j¼j1þ1

cþj x�j þ
Xsj

k¼1

cþj x0�jk þ uþj x�jk

� �" #

�
Xj2

j¼1

Xv

h¼1

ph e�j y�jh þ
Xsj

k¼1

a�j y0�jhk þ b�j y�jhk

� �" #

�
Xn2

j¼j2þ1

Xv

h¼1

ph e�j yþjh þ
Xsj

k¼1

a�j y0þjhk þ b�j yþjhk

� �" #
ð16Þ

subject to:

Xj1

j¼1

arj



 

�Sign a�rj

� �
xþj þ a0rj









�

Sign a0�rj

� �Xsj

k¼1

xþjk

" #

þ
Xn1

j¼j1þ1

arj



 

þSign aþrj

� �
x�j þ a0rj









þ

Sign a0þrj

� �Xsj

k¼1

x�jk

" #

� bþr ; 8r ð17Þ

Xj1

j¼1

atj



 

�Sign a�tj

� �
xþj þ a0tj









�

Sign a0�tj

� �Xsj

k¼1

xþjk

" #

þ
Xj1

j¼k1þ1

atj



 

þSign aþtj

� �
x�j þ a0tj









þ

Sign a0þtj

� �Xsj

k¼1

x�jk

" #

þ
Xj2

j¼1

atjh



 

þSign aþtjh

� �
y�jhk þ a0tjh









þ

Sign a0þtjh

� �Xsj

k¼1

y�jhk

" #

þ
Xn2

j¼j2þ1

atjh



 

�Sign a�tjh

� �
yþjhk þ a0tjh









�

Sign a0�tjh

� �Xsj

k¼1

yþjhk

" #

� fw�h ; 8t; h; k ð18Þ

x0þjk ¼
1; if Mk\xþjk � �Mk

0; if otherwise

�
; j ¼ 1; 2; . . .; j1; 8k ð19Þ

x0�jk ¼
1; if Mk\x�jk � �Mk

0; if otherwise

�
;

j ¼ j1 þ 1; j1 þ 2; . . .; n1; 8k
ð20Þ

Xsj

k¼1

x0þjk ¼ 1; j ¼ 1; 2; . . .; j1; 8k ð21Þ

Xsj

k¼1

x0�jk ¼ 1; j ¼ j1 þ 1; j1 þ 2; . . .; n1; 8k ð22Þ

Mkx0þjk � xþjk � �Mkx0þjk ; j ¼ 1; 2; . . .; j1; 8k ð23Þ

Mkx�jk � x�jk � �Mkx0�jk ; j ¼ j1 þ 1; j1 þ 2; . . .; n1; 8k ð24Þ

y�jhk ¼
1; if Nk\y�jhk � �Nk

0; if otherwise

�
;

j ¼ 1; 2; . . .; j2; 8h; k ð25Þ

y0þjhk ¼
1; if Nk\yþjhk � �Nk

0; if otherwise

�
;

j ¼ j2 þ 1; j2 þ 2; . . .; n2; 8h; k ð26Þ

Xsj

k¼1

y0�jhk ¼ 1; j ¼ 1; 2; . . .; j2; 8h; k ð27Þ

Xsj

k¼1

y0þjhk ¼ 1; j ¼ j2 þ 1; j2 þ 2; . . .; n2; 8h; k ð28Þ

Nky0�jhk � y�jhk � �Nky0�jhk; j ¼ 1; 2; . . .; j2; 8h; k ð29Þ

Nky0þjhk � yþjhk � �Nky0þjhk; j ¼ j2 þ 1; j2 þ 2; . . .; n2; 8h; k

ð30Þ

xþj ; xþjk � 0; j ¼ 1; 2; . . .; j1 ð31Þ

x�j ; x�jk � 0; j ¼ j1 þ 1; j1 þ 2; . . .; n1 ð32Þ

y�jh; y�jhk � 0; j ¼ 1; 2; . . .; j2 ð33Þ

yþjh; yþjhk � 0; j ¼ j2 þ 1; j2 þ 2; . . .; n2 ð34Þ

where xj
? and xjk

? (j = 1, 2, …, j1) are upper bounds of the

first-stage variables with positive coefficients in the

objective function; xj
- and xjk

- (j = j1 ? 1, j1 ? 2, …, n1)

are lower bounds of the first-stage variables with negative

coefficients; yjh
- and yjhk

- (j = 1, 2, …, j2) are the second-

stage variables with positive coefficients in the objective

function; yjh
? and yjhk

? (j = j2 ? 1, j2 ? 2, …, n2) are the

second-stage variables with negative coefficients. Then,

based on solutions of the first submodel (16–34), the second

submodel (corresponding to f-) can be formulated as:

Max f� ¼
Xj1

j¼1

c�j x�j þ
Xsj

k¼1

c�j x0�jk þ u�j x�jk

� �" #

þ
Xn1

j¼j1þ1

c�j xþj þ
Xsj

k¼1

c�j x0þjk þ u�j xþjk

� �" #

�
Xj2

j¼1

Xv

h¼1

ph eþj yþjh þ
Xsj

k¼1

aþj y0þjhk þ bþj yþjhk

� �" #

�
Xn2

j¼j2þ1

Xv

h¼1

ph eþj y�jh þ
Xsj

k¼1

aþj y0�jhk þ bþj y�jhk

� �" #

ð35Þ

subject to:

Xj1

j¼1

arj



 

þSign aþrj

� �
x�j þ a0rj









þ

Sign a0þrj

� �Xsj

k¼1

x�jk

" #

þ
Xn1

j¼j1þ1

arj



 

�Sign a�rj

� �
xþj þ a0rj









�

Sign a0�rj

� �Xsj

k¼1

xþjk

" #

� b�r ; 8r ð36Þ

Stoch Environ Res Risk Assess (2012) 26:207–223 221

123



Xj1

j¼1

atj



 

þSign aþtj

� �
x�j þ a0tj









þ

Sign a0þtj

� �Xsj

k¼1

x�jk

" #

þ
Xj1

j¼k1þ1

atj



 

�Sign a�tj

� �
xþj þ a0tj









�

Sign a0�tj

� �Xsj

k¼1

xþjk

" #

þ
Xj2

j¼1

atjh



 

�Sign a�tjh

� �
yþjhkþ a0tjh









�

Sign a0�tjh

� �Xsj

k¼1

yþjhk

" #

þ
Xn2

j¼j2þ1

atjh



 

þSign aþtjh

� �
y�jhkþ a0tjh









þ

Sign a0þtjh

� �Xsj

k¼1

y�jhk

" #

�fwþh ; 8t;h;k
ð37Þ

x0�jk ¼
1; if Mk\x�jk � �Mk

0; if otherwise

�
; j ¼ 1; 2; . . .; j1; 8k

ð38Þ

x0þjk ¼
1; if Mk\xþjk � �Mk

0; if otherwise

�
;

j ¼ j1 þ 1; j1 þ 2; . . .; n1; 8k
ð39Þ

Xsj

k¼1

x0�jk ¼ 1; j ¼ 1; 2; . . .; j1; 8k ð40Þ

Xsj

k¼1

x0þjk ¼ 1; j ¼ j1 þ 1; j1 þ 2; . . .; n1; 8k ð41Þ

Mkx0�jk � x�jk � �Mkx0�jk ; j ¼ 1; 2; . . .; j1; 8k ð42Þ

Mkxþjk � xþjk � �Mkx0þjk ; j ¼ j1 þ 1; j1 þ 2; . . .; n1; 8k ð43Þ

yþjhk ¼
1; if Nk\yþjhk � �Nk

0; if otherwise

�
; j ¼ 1; 2; . . .; j2; 8h; k

ð44Þ

y0�jhk ¼
1; if Nk\y�jhk � �Nk

0; if otherwise

�
;

j ¼ j2 þ 1; j2 þ 2; . . .; n2; 8h; k ð45Þ

Xsj

k¼1

y0þjhk ¼ 1; j ¼ 1; 2; . . .; j2; 8h; k ð46Þ

Xsj

k¼1

y0�jhk ¼ 1; j ¼ j2 þ 1; j2 þ 2; . . .; n2; 8h; k ð47Þ

Nky0þjhk � yþjhk � �Nky0þjhk; j ¼ 1; 2; . . .; j2; 8h; k ð48Þ

Nky0�jhk � y�jhk � �Nky0�jhk; j ¼ j2 þ 1; j2 þ 2; . . .; n2; 8h; k

ð49Þ

0� x�j � xþj opt; 0�
Xsj

k¼1

x�jk �
Xsj

k¼1

xþjk opt; j ¼ 1; 2; . . .; j1

ð50Þ

xþj � x�jopt;
Xsj

k¼1

xþjk �
Xsj

k¼1

x�jk opt; j ¼ j1 þ 1; j1 þ 2; . . .; n1

ð51Þ

yþjh� y�jh opt;
Xsj

k¼1

yþjhk �
Xsj

k¼1

y�jhk opt; j ¼ 1; 2; . . .; j2; 8h

ð52Þ

0� y�jh� yþjh opt; 0�
Xsj

k¼1

y�jhk �
Xsj

k¼1

yþjhk opt;

j ¼ j2 þ 1; j2 þ 2; . . .; n2; 8h
ð53Þ

where xj opt
? , xjk opt

? (j = 1, 2, …, j1), xj opt
- , xjk opt

- (j = j1 ?

1, j1 ? 2, …, n1), yjh opt
- , yjhk opt

- (j = 1, 2, …, j2),

yjh opt
? and yjhk opt

? (j = j2 ? 1, j2 ? 2, …, n2) are

solutions of submodel (1). Solutions of xjopt
- , xjk opt

- (j =

1, 2, …, j1), xj opt
? , xjk opt

? (j = j1 ? 1, j1 ? 2, …, n1),

yjh opt
? , yjhkopt

? (j = 1, 2, …, j2), yjh opt
- and yjhk opt

- (j =

j2 ? 1, j2 ? 2, …, n2) can be obtained through solving

submodel (35–53). Then, through integrating solutions of

submodels (16–34) and (35–53), final solutions for the

RBNP model can be obtained as follows:

x�j opt ¼ x�j opt; xþj opt

h i
or

Xsj

k¼1

x�jk opt;
Xsj

k¼1

xþjk opt

" #
;

j ¼ 1; 2; . . .; n1

ð54Þ

y�jh opt ¼ y�jh opt; y
þ
jh opt

h i
or

Xsj

k¼1

y�jhk opt;
Xsj

k¼1

yþjhk opt

" #
; j

¼ 1; 2; . . .; n2; 8h ð55Þ

f�opt ¼ f�opt; fþopt

h i
ð56Þ
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