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Abstract The existence of interdependence among envi-

ronmental variables has been qualitatively known for cen-

turies. Recent studies have shown that copula modelling can

provide a simple, yet powerful framework for modelling

interdependence among hydrological data; however, still

there are several studies which use outdated and superficial

methods to perform this task. By considering the current state

of knowledge, this study tries to introduce a pragmatic pro-

cedure to perform copula modelling in real-world problems.

Our study uses copula modelling to find a notion for condi-

tional quantities of the maximum annual water deficit with

respect to the annual cumulative evapotranspiration.

Therefore, by having an estimate for the annual cumulative

evapotranspiration, the hydrological performance of the

reconstructed watershed can be assessed even in nearby

ungauged reconstructed watersheds with similar physical

characteristics and reclamation strategy. Several competi-

tive models are developed for joint description of these

variables in a prototype reclaimed oil-sands mining site in

northern Alberta, Canada. The developed joint models are

compared and analyzed according to their convergence

feasibility, overall accuracy, tail behaviour and a goodness-

of-fit test. Our study concludes that copula modelling can be

considered as a powerful option in practitioners’ toolkit. For

the case under consideration, the Gumbel–Houguaard

structure provides the most credible model of dependence.

Moreover, our study provides some initial supports for the

application of minimum distance methods for copula

parameter estimation.

Keywords Reconstructed watersheds � Interdependence �
Copulas � Parameter estimation � Falsification framework

1 Introduction

It has been widely warned that implementing simple uni-

variate statistical approach in the case of dependence

among variables may result in severe under/over estima-

tions. Traditionally, classical multivariate distributions are

used as the main tool for such considerations. If so, the

marginal variables (or their transformations) must be

described using identical parametric families. Copula

modelling provides an alternative for overcoming such

limitations based on a theorem given by Sklar in 1959. In

its bivariate form, if x and y are two continuous random

variables with continuous marginal cumulative distribu-

tions of F(x) and G(y), Sklar’s theorem implies that the

joint cumulative distribution of H(x,y) can be described as:

Hðx; yÞ ¼ Cðu; vÞ x; y 2 < and u ¼ FðxÞ; v ¼ GðyÞ ð1Þ

In this case, C: [0,1]2 ? [0,1] is the copula function,

which couples the cumulative marginal distributions and

form the cumulative joint distribution. It can be proved that

if H is known, then C, F, and G are uniquely determined

(Genest and Favre 2007). So technically, the copula

approach divides the problem into two mutually

independent steps concerning fitting the marginal

distributions and finding the dependence structure among
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the margins (Wang et al. 2009). This ability can provide a

powerful modelling scheme even ‘‘when no common

probability space can be found for a given set of random

variables’’ (Sklar 1996). Furthermore, Genest and MacKay

(1986) showed how copulas can discover dependencies that

traditional dependence measures, such as Pearson’s

correlation coefficient, cannot capture.

In the most recent decade, the rate of publications in

copula modelling and its applications has increased expo-

nentially in various fields. The application of copula

modelling in hydrology and environmental modelling was

initialized by De Michele and Salvadori (2003) and was

followed by Favre et al. (2004), who discussed the

advantages of copula modelling in characterizing complex

hydrological variables. This recognition was amplified by

dedication of a special issue of the ASCE Journal of

Hydrologic Engineering (2007) to copula modelling and its

application in hydrology. So far, the application of copula

modelling in hydrology has been mainly cited in the

extreme events modelling, such as flood frequency analysis

(e.g. Zhang and Singh, 2006; Bénard and Lang 2007;

Genest et al. 2007; Karmakar and Simonovic 2008, 2009;

Wang et al. 2009; Chebana and Ouarda 2009), flood

retention measures (Nijssen et al. 2009), designing flood

control systems (e.g. Klein et al. 2008; Osorio et al. 2009;

Muhaisen et al. 2009), inland flooding analysis (e.g. Sunyer

Pinya et al. 2009), flood damage calculation (e.g. Gartsman

et al. 2009), and characterization of drought or low flow

conditions (e.g. Shiau et al. 2006, 2007; Dupuis 2007;

Serinaldi et al. 2009; Kao and Govindaraju 2010).

Recently, the application of copula modelling has been

extended to new areas. For example, Bárdossy (2006)

discussed the applicability of copula as a geostatistical

model for deriving the groundwater quality parameters.

Salvadori and De Michele (2007) used copulas for finding

the temporal structure of the sequential storms. Chowdhary

and Singh (2008) used copula for rainfall frequency anal-

ysis. Serinaldi (2008) used copulas for unfolding the

dependencies among the rainfall fields. In more advanced

examples, Serinaldi (2009a) used copulas as a module

embedded in rainfall simulators. Haberlandt et al. (2008)

implemented copulas for space–time hybrid hourly rainfall

models. Leonard et al. (2008) applied copula for consid-

ering the seasonal/annual dependencies among rainfall and

streamflow. Maity and Kumar (2008) reported the appli-

cation of copulas for analyzing the dependencies among

the teleconnected hydroclimatic variables. Bárdossy and

Pegram (2009) implemented copulas to model the spatial

interdependence structure of the rainfall amounts together

with the rainfall occurrences. Karamouz et al. (2009) used

copulas for deriving the joint probability of supplying both

water demand and water quality in a complex reservoir

operation system. In a regionalization context, Gargouri-

Ellouze and Bargaoui (2009) showed that the copula

parameters derived for describing infiltration can be further

linked to the actual physical properties of the watershed. In

the same context, Samaniego et al. (2010) performed

streamflow prediction in ungauged catchments using cop-

ula-based dissimilarity measures. More recently, van den

Berg et al. (2010) used copulas for spatial downscaling of

rainfall fields. The applications are still growing rapidly

(www.stahy.org/Topics/CopulaFunction/tabid/67/Defult.

aspx).

Nonetheless, it should be noted that copula modelling

has received some strong criticism. In a landmark discus-

sion, Mikosch (2006) argued that the use of copula mod-

elling might not be scientifically legitimate and can suffer

from lack of rationale in many circumstances (see also the

reply by Genest and Rémillard 2006). Regardless of the

theoretical/philosophical discussions, it has been also

warned by copula practitioners that the method might be

still far from a universal tool (Bénard and Lang 2007) and

could result in disappointing results in some occasions

(Genest et al. 2007). Maity and Kumar (2008) concluded

that even though Sklar’s theorem is mathematically

coherent, this does not imply that one of the classical

copulas can certainly describe the dependence among all

possible datasets. As a result, it has been argued by Ashkar

(2008) that practitioners should be very careful not to

consider copula modelling as the only approach to tackle

the statistical dependence. Therefore, copulas should be

considered in conjunction with other models of dependence

and should only remain as a potential candidate for

describing the dependence in a given dataset.

This paper aims at providing a pragmatic framework to

perform copula modelling in real-world practical contexts

and to present the application of copula modelling in a new

practical context—assessing the long-term behaviour of

reconstructed watersheds. Long-term behaviour of recon-

structed watersheds can be assessed by the aid of maximum

annual water deficit, which is a measure of available water

for evapotranspiration (Elshorbagy and Barbour 2007).

However, estimation of maximum annual water deficit

requires the knowledge of soil moisture dynamic within the

watershed, which can be only available in limited water-

sheds with extensive soil moisture monitoring. By recog-

nizing the interdependence between maximum annual soil

moisture deficit and annual cumulative evapotranspiration,

building the joint description of these variables is attemp-

ted. By having the joint model and the estimation for the

annual cumulative evapotranspiration, the cumulative dis-

tribution of maximum annual water deficit can be estimated

even in nearby ungauged reclaimed sites with similar

physical characteristics and reclamation strategy.

Throughout our study, a brief review on the theory of

copula modelling will be presented. Accordingly, three
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research questions would be addressed: (1) how to compare

and to select among several competing models of depen-

dence; (2) how the efficiency of the dependence model can

depend on the method used for parametric estimation; and

finally, (3) how the efficiency of model can be changed by

altering the structure of the dependence model. The outline

of this paper is as follows: Section 2 introduces the con-

sidered application area as well as the case study and the

data used for the experimentations. In Sect. 3, the depen-

dence modelling is viewed as a top-down sequential pro-

cedure, and a brief review of the copula modelling is

provided. Section 4 introduces the applied test space and

proposes a two-step framework to compare/falsify several

competitive models of dependence. In Sect. 5, the results

are reported and discussed from several perspectives, and

finally Sect. 6 summarizes the paper, provides the con-

clusions, and highlights some directions for further

research.

2 Performance assessment of the reconstructed

watersheds

2.1 Context and the problem definition

Oil sands mining industry is one of the main economical

resources in Canada. The extraction process of the oil can

completely disrupt the natural behaviour of the mining

area. Based on Leskiw (2004), the end results of the oil

sands mining can be spatially extended to over 100 km2

from each individual site. An extensive reclamation work,

therefore, is required to reconstruct various functions of the

natural landscape. The main reclamation strategy in these

sites is to cover the tailing sand remaining of the min-

ing process by one or multiple soil layers that enable

the watershed to naturally ‘‘store and release the water’’

(Elshorbagy and Barbour, 2007). This ability can provide

the chance for re-planting the mining site and re-estab-

lishing the natural conditions in the watershed. In order to

evaluate the hydrological efficiency of different options of

soil covers, building some prototype watersheds with an

extensive monitoring program is essential. The acquired

knowledge can result in proposing an optimal cover design

regarding the characteristics of the site and the target

vegetation. Based on Elshorbagy et al. (2006), by gathering

a short-period of data (i.e. few years), a hydrological model

can be calibrated with the short-term observations. Then,

the verified model can be used to simulate the long-term

behaviour of the watershed. Based on the long-term sim-

ulation results, Elshorbagy and Barbour (2007) proposed a

novel methodology for hydrological performance assess-

ment of the reconstructed watersheds. They suggested the

dynamic concept of maximum annual moisture deficit as a

measure to assess the performance of the soil cover.

Assuming that the averaged daily soil moisture content (Si),

interflow (Ii), and percolation below the cover depth (Pi)

are available through long-term simulation, the daily

moisture deficit (Di) that contributes to evapotranspiration

can be calculated as (Elshorbagy and Barbour 2007):

Di ¼ Si � Siþ1 � Ii þ Pið Þ ð2Þ

By accumulating the annual daily series of Di, it would

be possible to retrieve the maximum annual soil moisture

deficit. The daily values of Di should be accumulated only

over the growing season. The maximum value of the

cumulative Di in each year can be marked as the maximum

annual soil moisture deficit. By having a long-term series

of maximum Di values, it would be possible to tackle the

long-term behaviour of the reconstructed catchment in a

statistical manner.

Although the concept of maximum annual moisture

deficit can provide a reliable dynamic notion of the

watershed performance, the calculation of this measure is

based on the soil moisture content, which can be only

available in limited prototype watersheds with extensive

soil moisture measurement scheme. However, given a

unique physical characteristics and reclamation strategy,

the difference in the maximum annual water deficit

between two nearby reconstructed watersheds stems from

the difference between their annual cumulative evapo-

transpiration quantities. Therefore, if the model of depen-

dence between annual cumulative evapotranspiration and

maximum annual moisture deficit is known, the cumulative

distribution of maximum annual water deficit can be esti-

mated based on the measurements or estimations of annual

cumulative evapotranspiration.

2.2 Case study

Located in a continental boreal climate regime, Young Jack

Pine (YJP) is a 15-year old planted forest on a recon-

structed site on Mildred Lake mine (57�03.80N,

111�39.80W, elev. *310 m). The mine is about 40 km

NNW of Fort McMurray, Alberta. The average daily

temperature ranges from -18.8 to 16.8�C (Jan.–Jul.), with

average annual precipitation of 456 mm. The growing

season falls between mid May to early October with 60–70

frost-free days. Most of the precipitation falls within this

interval as 313 mm typically falls during day 139–282 of

each year. The reconstructed cover is composed of glacial

till down to an average depth of 40 cm, placed over a deep

layer of sandy soil from the oil sands extraction process.

The gathered data from the site includes the daily on-site

meteorological data (the micrometeorological data includ-

ing AET is only available during the growing seasons) as

well as 4-h measurements of the soil moisture contents, soil
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temperature and soil suctions at five different depths. Three

measurements were made in the upper till layer (depths 50,

150 and 300 mm) and the other two in the underlying

tailing sand base (depths 500 and 800 mm). In order to

measure the turbulent fluxes at the site, an open-path eddy

covariance system was used, mounted approximately 4 m

above the canopy at height of 8.8 m. Radiant fluxes were

measured with instrumentation mounted at a height of

6.3 m. Ground heat flux was obtained using a soil heat flux

plate at 5 cm. Precipitation data were measured using a

tipping-bucket rain gauge located less than 1 km west of

the tower. In total, two years (2007–2008) of daily climate

and soil data were available for YJP. Keshta et al. (2009)

proposed a Generic System Dynamic Watershed model

(GSDW) for hydrological modelling in reconstructed

watersheds with similar set of data. GSDW, therefore, has

been used for further hydrological modelling in this paper.

In brief, the 2007 data of soil moisture and evapotranspi-

ration in YJP were used to calibrate sixteen different

conceptualizations of the GSDW model. These conceptu-

alizations were based on different incorporation of soil

and/or evapotranspiration data in the model structure.

Accordingly, 16 competitive models were calibrated using

four automatic calibration techniques. The performances of

the competitive modelling alternatives were validated

using the 2008 dataset and the most accurate con-

ceptualization/parameterization has been identified. By the

aid of this model and the meteorological data of Fort

McMurray from the beginning of 1944 to the end of 2000,

a notion for long-term behaviour of the watershed was

simulated. According to this long-term simulation, 56 pairs

of maximum annual moisture deficit and annual cumulative

evapotranspiration were produced. This dataset is consid-

ered for further experimentation in this paper. Table 1

shows the statistical characteristics of this dataset.

3 Copula approach to modelling interdependence

3.1 Background

Considering the bivariate case, Fréchet-Hoeffding theorem

proves that the possible forms of dependence are bounded

between two extremes, which can be formulated as the

following inequality (Genest and Favre 2007):

maxð0; uþ v� 1Þ�Cðu; vÞ� minðu; vÞ; u; v 2 ½0; 1�
ð3Þ

The right and left bounds of Eq. 3 imply conditions in

which x and y are deterministically dependent on each other.

In this juncture, the stochastic independence can be verified,

if and only if, C(u,v) = uv, u,v [ [0,1]. This verification

requires setting up both marginal and joint statistical

representation of the data and can be described by a top-

down framework presented in Fig. 1. Here, the task is to

briefly explain the main building blocks of this system.

3.2 Pre-processing and marginal modelling

Nelsen (2006) suggested that the rank-based dependence

measures such as Kendall’s tau and Spearman’s rho can

better capture the existence of dependence compared to

correlation coefficient. The empirical formulations of these

measures can be described respectively as:

s ¼ nc � nd

1
2

nðn� 1Þ
ð4Þ

q ¼ 1� 6
P

d2
i

nðn� 1Þðnþ 1Þ ð5Þ

where nc and nd are the numbers of concordant pairs and

discordant pairs in the data set, respectively; and, di is the

differences between the ranks of each observation of the

two pairs of variables. Genest and Favre (2007) introduced

two hypothetical statistical tests for verifying independence

according to Kendall’s tau and Spearman’s rho.

It is better to keep the number of marginal variables as

low as possible. This can be achieved either by using the

dimension reduction techniques, such as the principal

component analysis or considering the possible functional

relationships among the marginal variables (e.g. Chowdh-

ary 2008). After selecting the non-redundant margins, the

marginal distributions (both empirical and theoretical)

should be identified. The empirical cumulative distribution

function (CDF) for a continuous random variable x can be

calculated as:

FnðxÞ ¼
1

nþ 1

Xn

i¼1

1 Xi� xð Þ ð6Þ

where n is the number of data points. Also, various

continuous statistical distributions can be used for

Table 1 The statistical properties of the long-term simulated annual series of maximum water deficit and the annual cumulative evapotrans-

piration for YJP prototype reclaimed site

Lower bound Mean Median Upper bound Standard deviation Skewness Kurtosis

Annual maximum water deficit 2.28 56.22 49.30 150.29 38.95 0.61 2.49

Annual cumulative evapotranspiration 235.27 295.13 292.09 343.59 31.73 -0.07 1.82
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functional representation of the margins, which are well

documented in the literature and are widely available

through different software packages such as R or

MATLAB. Moreover, Zhang and Singh (2006) reported

that transforming the original data using transformation

techniques, such as Box–Cox transformation, can be also

implemented and might result in better identification of

marginal CDF. This transformation of the hypothetical

variable z can be defined as follows:

z� ¼ zk � 1

k
; k 6¼ 0 or z� ¼ lnðzÞ; k ¼ 0 ð7Þ

where z� is the Box-Cox transformation of z and k is the

Box–Cox parameter. After the selection of the functional

families, and applying the possible transformations, the

parameters of the considered distribution should be

assigned. The well-known maximum likelihood estimation

has been frequently used for this purpose and has been well

incorporated in most of the available statistical packages.

3.3 Copula structures

Copula modelling requires choosing a parametric mathe-

matical structure that can provide the functional equivalent

of H(x,y) through copula C(u,v); u = F(x), v = G(y). The

current available copula structures can be categorized into

four main classes.

Fig. 1 A top-down approach to

static multivariate modelling
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3.3.1 Archimedean copulas

These structures are symmetric and associative and can be

defined by continuous, strictly decreasing convex generators.

One parameter Archimedean copulas have been frequently

used in hydrology (e.g. Shiau et al. 2007; Karmakar and

Simonovic 2009; Sunyer Pinya et al. 2009; Osorio et al. 2009;

Wang et al. 2009). The application of two parameters Ar-

chimedean copulas is also reported (e.g. Nijssen et al. 2009).

3.3.2 Metaelliptical copulas

These structures can be formulated based on elliptically

contoured distributions (Michiels and De Schepper 2008).

Well-known metaelliptical copulas are Gaussian, Student t,

Cauchy and Pearson type II (e.g. Fang et al. 2002; Genest

et al. 2007; Bénard and Lang 2007; Dupuis 2007; Poulin

et al. 2007; Bárdossy and Pegram 2009). These structures

can be further generalized; for instance, Demarta and

McNeil (2004) provided a couple of extensions for t cop-

ula, called Skewed t and Grouped t copula. In practice,

these copulas are more favourable when the joint distri-

bution of three or more variables is concerned.

3.3.3 Extreme value copulas

These structures were initially proposed to deal with the

joint probability of extreme events. Different systems have

been suggested for constructing the extreme value copulas.

Some famous structures such as Gumbel–Hougaard, Gal-

ambos, and Hüsler–Reiss systems, have been frequently

implemented in hydrology (e.g. Genest and Favre 2007;

Chowdhary and Singh 2008; Maity and Kumar 2008).

Salvadori et al. (2007) presented a monograph with several

applications of extreme value copulas in geophysical con-

text. Recently, Salvadori and De Michele (2010) presented

the application of multi-parameter extreme value copulas.

3.3.4 Other copulas

There are other copula families that cannot be classified

according to the three mentioned families. These copulas

include some well-known systems, such as Plackett and Fa-

rile–Gumbel–Mogenstern (e.g. Shiau 2006; Shiau et al. 2007)

as well as some less used copula models, such as Koehler–

Symanowski system (Koehler and Symanowski 1995), vine

copula (Kurowicka and Cooke 2007) and the contamination

families based on Legendre polynomials (Kallenberg 2008).

3.4 Copula parameter estimation

All copula structures contain one or more parameters that

should be assigned based on the data under consideration.

The calibration of copula parameters can be classified

mainly into five different methods.

3.4.1 Method of moments

In some copula structures, there are mathematical rela-

tionships between the copulas’ free parameter and the

measures of dependence, such as Kendall’s tau, Spear-

man’s rho or correlation coefficient. This method of esti-

mation is quite popular in metaelliptical copulas (e.g.

Bénard and Lang 2007; Genest et al. 2007) and one-

parameter Archimedean families (e.g. Zhang and Singh

2006; Maity and Kumar 2008; Sunyer Pinya et al. 2009;

Osorio et al. 2009; Chebana and Ouarda 2009). The main

limitation of this method is the fact that the closed-form

formulas linking the copula parameters to measures of

dependence do not exist for all copulas.

3.4.2 The maximum pseudolikelihood estimator

This method, also known as canonical maximum likeli-

hood, is probably the most favourable method for assigning

the copula parameters when identifying the model for joint

dependence is the main aim of copula modelling. This

method is based on maximizing the log-likelihood function

of the copula model, which can be described for the

bivariate case as follows:

lðhÞ ¼
Xn

i¼1

log ch F Xið Þ;G Yið Þf g½ � ð8Þ

In maximum pseudolikelihood estimator, the marginal

distributions F(Xi) and G(Yi) are replaced by their

empirical representation within the sample (Eq. 6). This

method can provide a general rule for estimating the copula

parameters and mainly requires implementing a numerical

procedure. The maximum pseudolikelihood formulation

has been used frequently in hydrology (e.g. Dupuis 2007;

Poulin et al. 2007; Wang et al. 2009).

3.4.3 Inference from margins (IFM)

In practical circumstances, it might be preferred to use the

full likelihood estimator (e.g. Joe 1997; Shiau 2006; Shiau

et al. 2006, 2007; Chowdhary and Singh 2008; Karamouz

et al. 2009). As a result, the empirical distributions are

substituted by the parametric distribution of the marginal

variables. Kim et al. (2007) argued that the success of IFM

is closely related to the goodness of marginal distributions.

Therefore, the estimated copula parameters have the risk of

being misidentified because of inappropriate choice of the

marginal distributions or their parameters.
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3.4.4 Minimum distance method

Recently, some authors proposed new procedures by min-

imizing the distance between the copula and the empirical

joint distribution. The objective function in the bivariate

case can be described as (Foscolo et al. 2008):

LðhÞ ¼
Xn

i¼1

ch F̂n xið Þ; Ĝn yið Þ
� �

� C
_

n xi; yið Þ
h i2

ð9Þ

where F̂n xið Þ and G
_

n yið Þ are the marginal distributions

(either empirical or theoretical) and C
_

n xi; yið Þ denotes the

rank-based empirical copula (Genest and Favre 2007):

C
_

nðu; vÞ ¼
1

n

Xn

i¼1

1
Ri

nþ 1
� u;

Si

nþ 1
� v

� �

ð10Þ

where (Ri,Si) are the pair of observations’ rank within the

sample. According to the authors’ knowledge, there is still

no application of this estimation method in the context of

hydrology. Genest and Favre (2007) argued that this

method results in sub-optimal solutions compared to the

pseudolikelihood estimator. In contrast, Foscolo et al.

(2008) concluded that when the copula structure is not

specified correctly, the minimum distance estimator can

provide a better parameterization. These arguments will be

further explored in this paper.

3.4.5 Other estimation methods

There are other estimation methods reported in the litera-

ture. As an illustration, for the Student metaelliptical

copula, Demarta and McNeil (2004) proposed a two-stage

approach in which the scale matrix is first estimated by

using the relationship with Kendall’s tau, and then the

pseudo-likelihood function is maximized with respect to

the degree-of-freedom using the estimate of the scale

matrix. Tsukahara (2005) used the estimating-equation

approach to find the copula parameters. Some authors have

used Bayesian approach to estimate copula parameters (e.g.

Huard et al. 2006; Silva and Lopes 2008). There is also a

growing body of literature that implements kernel methods

to estimate a smooth representation of a copula without

assuming any specific parametric family (e.g. Fermanian

and Scaillet 2003).

4 Experimental study

4.1 Rationale and computational platform

Considering that the true model of dependence is unknown

prior to the experiment, here the aim is to identify the most

credible model of dependence for our dataset based on the

top-down system presented in Fig. 1. In each modelling

step, several competitive options should be examined in a

rigorous falsification framework and the non-falsified

options should pass to the next modelling step. The final

delivery of this procedure would be a model of dependence

that can be used for deriving the conditional probability of

maximum annual water deficit based on the given values of

annual cumulative evapotranspiration.

Computational platforms for copula modelling are

gradually appearing (e.g. Yan 2007). In this study, MAT-

LAB modelling environment (MATLAB 2010) is used.

MATLAB Statistics Toolbox contains 20 statistical distri-

butions for continuous univariate description of marginal

variables. Also by applying Box–Cox transformation, the

Normal distribution can be further extended to the trans-

formed data. The parameters of marginal distributions are

estimated using the maximum likelihood estimation.

MATLAB also contains several multivariate distributions

as well as copula-based model of dependence. By coding

more copula-based multivariate descriptions, optimization-

based parametric estimation methods, graphical inspections

and goodness-of-fit tests, a unified computational package

was assembled to conduct the experiments in this study.

4.2 Test space

Michiels and De Schepper (2008) discussed that the

functional structure for describing multivariate data should

be diverse and relevant. Table 2 shows different modelling

options used in this study. Both methods of maximum

likelihood and minimum distance are implemented in their

full (considering theoretical marginal distributions) and

pseudo (with the empirical marginal distributions) forms

for identifying the models’ parameters. The method of

moments was also used for the structures in which the

model parameters have direct relationship with the mea-

sures of dependence.

4.3 Initial ranking of the dependence models

Assume that the parametric copula structure Ch is fitted to

the bivariate data X1; Y1ð Þ; . . .; Xn; Ynð Þ with the marginal

distribution of FX(x) and GY(y) and the empirical copula Ĉ.

In this juncture, the goodness-of-fit measures can be cal-

culated in two different fashions. In the pseudo measures,

the empirical marginal distributions are considered, there-

fore, the task is to check the ability of the model of

dependence in coupling the marginal variables. On the

other hand, in the full goodness-of-fit assignment, the

marginal variables are considered with their fitted theo-

retical distributions FX(x) and GY(y). So, the task is to
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check the complete goodness-of-fit for the parametric

structure describing the dataset. Intuitively, copula models

can be ranked based on their overall goodness-of-fit and

the error contribution from their marginal quantification.

The overall goodness-of-fit measure can be simply

defined as the average value of the full and pseudo

goodness-of-fit measures. The difference between the

corresponding full and pseudo goodness-of-fit measures

shows how much of the total error is contributed by the

error in the theoretical marginal distributions. In this

study, the BIC measure has been chosen for such analysis.

BIC provides better distinction between modelling options

and puts an emphasis on the parametric parsimony by

considering the number of model parameters. BIC can be

formulated as follows:

BIC ¼ n logðMSEÞ þ ½ðno of fitted parametersÞ � logðnÞ�
ð11Þ

where n is the number of observations and MSE is the

mean square of error of the copula model. By applying this

procedure to an ensemble of copula models, the potential

candidates can be pruned by eliminating the highly domi-

nated options, i.e., the models that strictly result in poorer

goodness-of-fit measures compared to the other competing

options.

4.4 Secondary goodness-of-fit test and tail analysis

There is a recent trend in the literature trying to propose

formal (also known as blanket or omnibus) hypothetical

Table 2 The multivariate test space implemented in this study

Family Structure Reference Platform Estimation

Classical multivariate Normal MATLAB (2010) MATLAB built-in Maximum likelihood (full)

Minimum distance (full)

t MATLAB (2010) MATLAB built-in Maximum likelihood (full)

Minimum distance (full)

Metaelliptical copulas Gaussian Bénard and Lang (2007) MATLAB built-in Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Method of moment

t-Student Demarta and McNeil (2004) MATLAB built-in Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Method of moment

Archimedean copulas Clayton Shiau (2006) MATLAB built-in Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Method of moment

Ali-Mikhail-Haq Shiau (2006) Coded function Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Frank Shiau (2006) MATLAB built-in Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Method of moment

BB1 Genest and Favre (2007) Coded function Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Extreme-value copulas Gumbel–Houguaard Genest and Favre (2007) MATLAB built-in Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Method of moment

Galambos Genest and Favre (2007) Coded function Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Hüsler–Reiss Genest and Favre (2007) Coded function Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Other copulas Farlie–Gumbel–Morgenstern Shiau (2006) Coded function Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)

Plackett Shiau (2006) Coded function Maximum likelihood (full, pseudo)

Minimum distance (full, pseudo)
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tests for goodness-of-fit evaluation of copula models

(Fermaninan 2005). The goodness-of-fit tests can be further

extended and used as a way to test the equality between

two copulas (e.g. Rémillard and Scaillet 2009). The main

formal approach is to compute the proper p-values through

bootstrapping procedures (Genest et al. 2006). These tests

are either based on the Rosenblatt transformation (e.g. Berg

2009) to convert the multivariate problem into a univariate

hypothetical test or the use of empirical copula (e.g. Genest

et al. 2009) to calculate Cramér–von Mises and Kolmo-

grov–Smirnov statistics. Tests based on Rosenblatt

transformation often require double bootstrapping and

high-level computational resources, which might not be

widely available in practice. Genest et al. (2009) argued

that the tests based on empirical copula are more objective

and only require parametric bootstrapping if the analytic

expression of the copula structure exists. Here, we imple-

ment the formal test introduced by Genest et al. (2009)

based on the distance between the empirical and the null

hypothesis copula. The Cramér–von Mises statistics for

bivariate case can be described as the following:

T̂n ¼ n

Z

½0;1�2

Ĉðu; vÞ � Chðu; vÞ
� �2

dĈðu; vÞ

¼
Xn

j¼1

Ĉ uj; vj

� �
� Ch uj; vj

� �� �2 ð12Þ

For the complete bootstrapping algorithm refer to

Genest et al. (2009) or Berg (2009). Acceptance or

rejection of the copula models are based on the p-values

estimated through bootstrapping: Small values suggest

discarding the model whereas large values supporting its

suitability (e.g. Mesfioui et al. 2009; Durante and Salvadori

2010). However, as argued by Serinaldi (2009b), there

might be circumstances where several models of

dependence cannot be falsified through goodness-of-fit

tests. In these circumstances, exploring the tail dependence

of non-rejected copulas can be useful. Tail dependence is a

measure for describing the dependence in the upper tail or

the lower tail joint space. These values for copula C(u,v)

can be defined as follows (Joe 1997; Poulin et al. 2007):

kU ¼ lim
t!1�

1� 2t þ Cðt; tÞ
1� t

kL ¼ lim
t!0þ

Cðt; tÞ
t

ð13Þ

where kU and kL represent the upper and the lower tail

dependence, respectively. Several authors have come with

empirical tail dependence estimators (e.g. Schmidt 2005;

Schmidt and Stadtmuller 2006; Serinaldi 2008). One of the

most frequently used empirical measures of the upper tail

has been suggested by Capéraà et al. (1997) and can be

expressed as:

k̂CFG
U ¼ 2� 2 exp

1

n

Xn

i¼1

log

ffiffiffiffiffiffiffiffiffiffiffiffi
log 1

ui
log 1

vi

r

log 1

max ui;við Þ2

8
>><

>>:

9
>>=

>>;

2

6
6
4

3

7
7
5 ð14Þ

The comparison between copula based upper tail (kU)

and the empirical measure (Eq. 14) can also provide a

means to investigate the performance of the applied

parametric copula (e.g. Demarta and McNeil 2004;

Bénard and Lang 2007; Charpentier and Segers 2009).

5 Results and discussion

Figure 2 shows the scatter and scatter-rank plots for the 56

pairs of maximum annual moisture deficit and annual

cumulative evapotranspiration produced for YJP site. The

measures of dependence for the site are 0.60, 0.42, and 0.60

for the correlation coefficient, Kendall’s tau, and Spear-

man’s rho, respectively. Both hypothetical tests based on

Kendall’s tau and Spearman’s rho measures have con-

firmed that the assumption of independence can be rejected

at 5% level.

5.1 Marginal quantification

Twenty one different univariate distributions were con-

sidered for marginal quantification of the annual maximum

water deficit and the annual cumulative evapotranspiration.

For the former variable, the Box–Cox transformed Normal

distribution has been selected as the theoretical description

of the data. This distribution was the only distribution that

passed both chi-squared and KS tests at 5% level. For the

latter variable however, both Beta distribution and Box–

Cox transformed Normal distribution could satisfy one of

the applied hypothetical tests. Table 3 shows the charac-

teristics of the fitted marginal distributions and their cor-

responding goodness-of-fit measures. Figure 3 shows the

fitted and empirical marginal distributions.

5.2 Multivariate modelling

Considering the non-falsified marginal distributions, two

different approaches can be taken for building up the

multivariate description of the data. In the first approach,

Box–Cox transformed Normal distribution can be consid-

ered as the univariate description of both marginal vari-

ables. As a result, the classical multivariate distributions

can be also implemented for quantifying the bivariate
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dependence within the data. However, in the second

approach only copula-based models of dependence are

used, since the marginal variables are described using

different theoretical distributions. Based on the possible

options for marginal distributions, multivariate structures,

and parameter estimation methods (Table 2), an ensemble

of 106 parametric structures were developed for describing

the interdependence between the annual maximum water

deficit and the annual cumulative evapotranspiration. The

characteristics of the fitted models should be carefully

investigated before further implementation. Large conver-

gence limits can resemble the lack of parametric robustness

and should be taken as a reason for falsifying the fitted

model. Also, association with poor goodness-of-fit mea-

sures can be interpreted as a sign of model insufficiency.

Based on this logic, 55 models were falsified because of the

lack of appropriate convergence or very poor goodness-of-

fit measures. Tables 4 and 5 show the 51 non-falsified
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(a) (b)Fig. 2 The scatter plot for

maximum annual water deficit

and annual cumulative

evapotransporation; a original

scale, b rank scale

Table 3 The non-falsified marginal distributions for annual maximum water deficit and annual cumulative evapotranspiration along with their

specifications

Box–Cox parameter Distribution parameters RMSE MAE MSE CORR AIC BIC

Annual maximum water deficit

Box–Cox, Normal 1.695 48.80–19.31 0.022 0.018 0.000 0.998 -431.18 -410.92

Annual cumulative evapotranspiration

Beta NA 0.20–1.09 0.040 0.034 0.002 0.993 -363.08 -350.91

Box–Cox, Normal -10.561 0.09–1.3e-6 0.056 0.048 0.003 0.987 -324.18 -303.92
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Fig. 3 Fitted versus empirical

CDFs of marginal variables;

a Annual maximum water

deficit fitted with Box–Cox,

Normal distribution; b annual

cumulative evapotranspiration

fitted with Beta distribution;

c annual cumulative

evapotranspiration fitted with

Box–Cox, Normal distribution
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multivariate models and their associated goodness-of-fit

measures. Table 4 refers to the models in which maximum

annual water deficit and the annual cumulative evapo-

transpiration are described by Box–Cox transformed Nor-

mal and Beta distributions respectively; whereas in

Table 5, both margins are fitted using the Box–Cox trans-

formed Normal distribution.

Considering the BIC goodness-of-fit measures for both

full and pseudo representation of the data, Fig. 4 illustrates

different distinctive clusters of the 51 models. In general,

three clusters can be observed. According to these clusters,

two general arguments can be made. First, considering

Table 5, it can be observed that classical multivariate

options are strictly dominated by copula-based models.

Therefore, they can be further eliminated from the potential

solutions. It is also worthwhile mentioning that the

majority of the feasible options (in particular in the best

cluster) are either estimated through the method of

moments or the minimum distance criterion. Only less than

13% of the feasible options in the best cluster are derived

using maximum likelihood methods, and they are only

related to metaelliptical copulas (t-copula and Gaussian

options reported in rows 2, 4, and 6 of Table 4). This

observation might be a hint for further use of the minimum

distance estimators in copula parameter identification. This

issue will be more investigated in the next section.

5.3 Model selection

39 copula-based models located in the best modelling

cluster (shown in Fig. 4) were considered for initial rank-

ing using the procedure described in Sect. 4.3. Figure 5

shows the locations of the solutions in the surface defined

by efficiency criteria. The Pareto candidates are high-

lighted in Fig. 5 as well as Tables 4 and 5 by the star (*)

sign. These eleven models have been used for secondary

goodness-of-fit test and tail analysis based on the procedure

given in Sect. 4.4. Table 6 provides the name, parameter

value, the method of parameter estimation of the non-

dominated models along with their upper tail limit, Tn

statistics, and p-values resulted from bootstrapping with

10,000 random series with the same length as the original

data. According to the p-values, Gaussian and Gumbel–

Houguaard options stand superior to other options. How-

ever, only Gumbel–Houguaard options can provide close

upper tail limit compared to the empirical tail limit. Based

on Eq. 14, the empirical upper tail limit is 0.50; however,

Gaussian copula theoretically implies tail independence.

Among Gumbel–Houguaard non-dominated options, the

structure calibrated by the method of moment is preferred

based on the estimated p-values and closer upper tail limit

compared to the original sample-based measure. This

copula model is selected for quantifying the conditional

Table 4 The feasible multivariate models developed for describing the maximum annual water deficit (fitted with Box-Cox, Normal distri-

bution) and the annual cumulative evapotranspiration (fitted with Beta distribution)

Structure Estimation method h
_ RMSE AIC BIC

Pseudo Full Pseudo Full Pseudo Full

1 Gaussian Method of moments 0.59 0.026 0.031 -403.6 -370.0 -397.6 -333.7

2 Maximum pseudo likelihood 0.60 0.025 0.031 -409.1 -374.5 -403.1 -344.3*

3 Minimum pseudo distance 0.60 0.025 0.031 -409.1 -374.5 -403.1 -344.3*

4 IFM 0.61 0.025 0.031 -410.9 -374.9 -404.8 -344.6*

5 Minimum full distance 0.61 0.025 0.031 -410.9 -374.9 -404.8 -344.6*

6 t-Student IFM [0.61, 5] 0.025 0.031 -407.3 -369.7 -395.2 -333.4

7 Gumbel–Houguaard Method of moments 1.68 0.024 0.030 -416.4 -376.0 -410.3 -339.7*

8 Minimum pseudo distance 2.06 0.018 0.031 -448.4 -375.2 -442.3 -344.9*

9 Frank Method of moments 4.44 0.024 0.030 -414.9 -373.8 -408.8 -337.5

10 Minimum pseudo distance 5.78 0.021 0.032 -430.7 -370.9 -424.7 -340.7*

11 Clayton Method of moments 0.98 0.040 0.041 -356.9 -338.8 -350.8 -302.5

12 Minimum pseudo distance 2.23 0.032 0.041 -383.8 -342.4 -377.8 -312.2

13 Minimum full distance 1.48 0.034 0.039 -376.1 -348.2 -370.1 -318.0

14 Ali–Mikhail–Haq Maximum pseudo likelihood -1.00 0.107 0.101 -247.5 -241.1 -241.5 -210.9

15 Minimum pseudo distance 1.00 0.040 0.041 -357.9 -342.5 -351.8 -312.2

16 Placket Minimum pseudo distance 11.85 0.021 0.032 -431.2 -369.1 -425.1 -338.8

17 Farlie–Gumbel–

Morgenstern

Maximum pseudo likelihood -1.00 0.113 0.108 -241.0 -234.2 -234.9 -204.0

18 Minimum pseudo distance 1.00 0.047 0.045 -338.8 -333.1 -332.8 -302.9*

19 BB1 Minimum pseudo distance [0.0, 2.06] 0.018 0.031 -445.4 -372.0 -433.3 -335.7

The asterisks indicate the non-dominated models
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probability of maximum annual water deficit with respect

to the annual cumulative evapotranspiration.

Figure 6 compares the empirical cumulative bivariate

distribution (Eq. 10) with the selected copula-based dis-

tribution in both pseudo and full representations. Com-

parison between pseudo and full subfigures can explicitly

show the error contribution initiating by the misspecifica-

tion in the marginal theoretical distributions.

Before extracting further information from the fitted

joint model, it is worthwhile to compare the performance

of different estimation methods. In order to perform this

task, a bootstrapping study has been conducted to compare

the robustness of the three Gumbel–Houguaard models

calibrated using method of moment, minimum distance and

the maximum likelihood, respectively. The specifications

of the first two models have been reported in Table 6. The

third model has the same margins as the first two models;

however, it has been calibrated using the maximum like-

lihood. This model has been falsified in our preliminary

inspection, due to the wide distance between the lower/

upper bounds of parametric convergence. For each model,

1000 bivariate samples have been extracted using the fitted

structure and the model parameters have been re-estimated

using the generated samples and each of the estimation

methods. Figure 7 shows the results of this experimenta-

tion. The horizontal line shows the Gumbel–Houguaard

Table 5 The feasible multivariate models developed for describing the maximum annual water deficit and the annual cumulative evapo-

transpiration when both marginal variables are fitted with Box–Cox, Normal distribution

Structure Estimation method h
_ RMSE AIC BIC

Pseudo Full Pseudo Full Pseudo Full

1 Gaussian Method of moments 0.59 0.03 0.04 -403.6 -340.8 -397.6 -298.5

2 Maximum pseudo likelihood 0.60 0.03 0.04 -409.1 -348.5 -403.1 -318.3

3 Minimum pseudo distance 0.60 0.03 0.04 -409.1 -348.5 -403.1 -318.3

4 IFM 0.61 0.03 0.04 -410.0 -348.7 -403.9 -318.5

5 Minimum pseudo distance 0.61 0.03 0.04 -410.0 -348.7 -403.9 -318.5

6 Normal Maximum pseudo likelihood [11.36, 686.3, 26.9,

267.6, 7525]

0.03 0.04 -256.2 -148.9 -248.7 -132.4

7 Minimum pseudo distance 0.03 0.04 -256.2 -148.9 -248.7 -132.4

8 IFM 0.03 0.04 -256.2 -148.9 -248.7 -132.4

9 Minimum full distance 0.03 0.04 -256.2 -148.9 -248.7 -132.4

10 t Minimum pseudo distance [0.6, 2] 0.37 0.37 -106.3 -94.0 -94.2 -57.7

11 Minimum full distance [0.6, 2] 0.37 0.37 -106.3 -94.0 -94.2 -57.7

12 Gumbel–Houguaard Method of moments 1.68 0.02 0.04 -416.4 -329.5 -410.3 -287.2

13 Minimum pseudo distance 2.06 0.02 0.04 -448.4 -338.7 -442.3 -308.4

14 Minimum full distance 1.95 0.02 0.04 -445.7 -339.0 -439.7 -308.8

15 Frank Method of moments 4.44 0.02 0.04 -414.9 -347.3 -408.8 -304.9

16 Minimum pseudo distance 5.78 0.02 0.04 -430.7 -356.0 -424.7 -325.7

17 Minimum full distance 5.39 0.02 0.04 -429.4 -356.4 -423.4 -326.1

18 Clayton Method of moments 0.98 0.04 0.04 -356.9 -337.1 -350.8 -294.7

19 Minimum pseudo distance 2.23 0.03 0.04 -383.8 -358.9 -377.8 -328.6*

20 Minimum full distance 1.88 0.03 0.04 -382.5 -360.2 -376.4 -329.9*

21 Ali–Mikhail–Haq Maximum pseudo likelihood -1.00 0.11 0.10 -247.5 -243.3 -241.5 -213.1

22 Minimum pseudo distance 1.00 0.04 0.04 -357.9 -344.2 -351.8 -313.9

23 IFM -1.00 0.11 0.10 -247.5 -243.3 -241.5 -213.1

24 Minimum full distance 1.00 0.04 0.04 -357.9 -344.2 -351.8 -313.9

25 Plackett Minimum pseudo distance 11.85 0.02 0.04 -431.2 -349.6 -425.1 -319.3

26 Minimum full distance 9.52 0.02 0.04 -427.6 -350.6 -421.6 -320.3

27 Farlie–Gumbel–

Morgenstern

Maximum pseudo likelihood -1.00 0.11 0.11 -241.0 -236.5 -234.9 -206.2

28 Minimum pseudo distance 1.00 0.05 0.05 -338.8 -318.0 -332.8 -287.7

29 IFM -1.00 0.11 0.11 -241.0 -236.5 -234.9 -206.2

30 Minimum full distance 1.00 0.05 0.05 -338.8 -318.0 -332.8 -287.7

31 BB1 Minimum pseudo distance 0.00 0.02 0.04 -445.4 -335.5 -433.3 -299.2

32 Minimum full distance 2.48 0.04 0.03 -369.0 -357.9 -356.9 -321.6*

The asterisks indicate the non-dominated models

200 Stoch Environ Res Risk Assess (2012) 26:189–205

123



parameter estimated using the original data set and Ken-

dall’s tau. As can be easily investigated, the method of

maximum likelihood considerably suffers from lack of

robustness comparing with both method of moment and

minimum distance.

Based on the Gumbel–Houguaard copula fitted using the

method of moment, the conditional probability can be

estimated based on the following equation:

Cu
hðvÞ ¼ P V � vjU ¼ uf g ¼ o

ou
Cðu; vÞ ð15Þ

Figure 8 provides graphical presentation of the

conditional probabilities. Based on this figure, and given

a value for annual cumulative evapotranspiration, the

possible quantities and the corresponding CDF for

maximum annual water deficit can be identified. Figure 9

compares the CDF of maximum annual water deficit when

annual cumulative evapotranspiration estimations are at 10,

50 and 90 percentiles. The joint model not only capture the

uncertainties in maximum annual water deficit with respect

to the estimations of annual cumulative evapotranspiration;

but also, can be further used in nearby reconstructed

watersheds with similar physical characteristics and soil

cover, in which the soil-moisture measurements are not

available to directly assess the performance of the

reclamation soil cover.

6 Summary and conclusion

Majority of hydrologic variables are interdependent. Con-

sidering the joint characteristic in the case of dependence

-450 -400 -350 -300 -250 -200 -150 -100 -50
-350

-300

-250

-200

-150

-100

-50

BIC (pseudo)

B
IC

 (
fu

ll)

Fig. 4 Different clusters of the

feasible models in terms of their

pseudo and full BIC goodness-

of-fit measures. The dots and

triangles represent the feasible

solutions reported in Tables 4

and 5, respectively

-400 -390 -380 -370 -360 -350 -340 -330 -320 -310
20

40

60

80

100

120

140

Overall accuracy (BIC-based)

E
rr

or
 c

on
tr

ib
ut

io
n 

fr
om

 m
ar

gi
na

l d
is

tr
ib

ut
io

ns
 (

B
IC

-b
as

ed
)Fig. 5 The location of solutions

within the best modelling

cluster (Fig. 4) in the surface

defined by measures introduced

for overall accuracy and the

error contribution from

marginal variables. The stars
refer to the non-dominated

solutions

Stoch Environ Res Risk Assess (2012) 26:189–205 201

123



not only provides more realistic representation of the

involved variables, but also offers the means of quantifying

one variable with respect to the others. In this study, the

interdependence between annual cumulative evapotrans-

piration and the maximum annual water deficit in recon-

structed watersheds was studied. Assigning the maximum

annual water deficit requires extensive measurements of

soil moisture in different depths, which can be only

available in very few prototype watersheds. On the other

hand, estimating the annual cumulative evapotranspiration

can be much easier in practice. Therefore, if the joint

model of interdependence is known, the maximum annual

water deficit can be approximated based on the estimated

annual cumulative evapotranspiration. The current study

has applied the copula framework for such a problem. A

diverse test space has been considered for setting up the

marginal distributions, describing the multivariate joint

model and estimating the models’ parameters. A simple

framework for initial ranking of the copula models was

proposed. A goodness-of-fit test and tail analysis was

Table 6 The upper tail dependence and the goodness-of-fit test results for the Pareto candidates shown in Fig. 5; p-values are extracted by

10,000 bootstrap samples

Structure Estimation method h
_ kU Tn p-value (%)

Gaussian Maximum pseudo likelihood 0.60 0 0.015 57.7

Gaussian Minimum pseudo distance 0.60 0 0.015 57.7

Gaussian IFM 0.61 0 0.015 59.6

Gaussian Minimum full distance 0.61 0 0.015 59.6

Gumbel–Houguaard Method of moments 1.68 0.49 0.014 69.5

Gumbel–Houguaard Minimum pseudo distance 2.06 0.60 0.017 26.7

Frank Minimum pseudo distance 5.78 0 0.019 19.3

Farlie–Gumbel–Morgenstern Minimum pseudo distance 1.00 0 0.043 1.2

Clayton Minimum pseudo distance 2.23 0 0.038 2.9

Clayton Minimum full distance 1.88 0 0.034 4.7

BB1 Minimum full distance 2.48 -0.29 0.037 3.3

Fig. 6 The empirical (empty
dots) versus fitted joint

cumulative distribution (lines)

for maximum annual water

deficit and annual cumulative

evapotranspiration in both

pseudo and full representation

based on the selected Gumbel–

Houguaard model
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applied to select the most credible copula model among an

ensemble of potential candidates. It has been concluded

that Gumbel–Houguaard copula provides the most credible

model of dependence for the considered dataset. Moreover,

it seems that the method of moments can provide the most

reliable way for adjusting the copula parameters. However,

this requires a direct relationship between the measures of

dependence and the model parameters, which is not

available for many copula structures. Comparing the gen-

eral rules of copula parameter estimation, i.e. maximum

likelihood versus minimum distance, the results of this

study supported the superiority of the latter technique;

however, by no means this can be extended to other

problems and/or datasets. Further research in this direction

is suggested.

The application of copula modelling can be potentially

capable in various fields within the scope of hydrology and

environmental modelling. However it should be noted that

copula modelling is valid, if and only if, the considered

variables and their margins are continuous random vari-

ables as Embrechts (2009) warned that discrete margins

can cause severe problems. The works of Genest and Ne-

slehova (2007) as well as Meisar and Komornı́ková (2009)

on discrete copulas and copulas based on partial knowledge

can be promising. Also copula modelling, at least in the

field of hydrology and environmental modelling, has been

mainly considered for constructing static stochastic distri-

butions rather than describing multivariate stochastic pro-

cesses. Describing the dependence within dynamic datasets

is still fairly untouched in the field and, indeed, is a very

interesting topic for future investigations. Regarding the

application context reported in this paper, one can question

the uncertainties propagated into the copula modelling

because of the involved uncertainties in the applied field

measurements and/or hydrologic model. This would be the

next step in our investigation.
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Mesiar R, Komornı́ková M (2009) Copulas: An approach how to

Model the dependence structure of random vectors. Acta

Polytech Hung 6(1):5–19

Michiels F, De Schepper A (2008) A copula test space model: how to

avoid wrong copula choice. Kybernetika 44(6):864–878

Mikosch T (2006) Copulas: Tales and facts. Extremes 9(1):3–20

Muhaisen OS, Osorio F, Garcı́a PA (2009) Two-copula based

simulation for detention basin design. Civ Eng Environ Syst

26(4):355–366

Nelsen RB (2006) An introduction to copulas. Springer, New York

Nijssen D, Schumann A, Pahlow M, Klein B (2009) Planning of

technical flood retention measures in large river basins under

consideration of imprecise probabilities of multivariate hydro-

logical loads. Nat Hazards Earth Syst Sci 9:1349–1363

Osorio F, Muhaisen O, Garcı́a PA (2009) Copula-based simulation for

the estimation of optimal volume for a detention basin. J Hydrol

Eng. doi:10.1061/(ASCE)HE.1943-5584.0000124

Poulin A, Huard D, Favre A-C, Pugin S (2007) Importance of tail

dependence in bivariate frequency analysis. J Hydrol Eng

12(4):394–403

Rémillard B, Scaillet O (2009) Testing for equality between two

copulas. J Multivar Anal 100:377–386

Salvadori G, De Michele C (2007) On the use of copulas in

hydrology: theory and practice. J Hydrol Eng 12(4):369–380

Salvadori G, De Michele C (2010) Multivariate multiparameter

extreme value models and return periods: a copula approach.

Water Resour Res 46:W10501. doi:10.1029/2009WR009040

Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes

in nature: an approach using copulas. Springer, New York
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