
ORIGINAL PAPER

Assessing environmental risks through fuzzy parameterized
probabilistic analysis

X. S. Qin

Published online: 6 January 2011

� Springer-Verlag 2011

Abstract A fuzzy parameterized probabilistic analysis

(FPPA) method was developed in this study to assess risks

associated with environmental pollution-control problems.

FPPA integrated environmental transport modeling, fuzzy

transformation, probabilistic risk assessment, fuzzy risk

quantification into a general risk assessment framework,

and was capable of handling uncertainties expressed as

fuzzy-parameterized stochastic distributions. The proposed

method was applied to two environmental pollution prob-

lems, with one being about the point-source pollution in a

river system with uncertain water quality parameters and

the other being concerned with groundwater contaminant

plume from waste landfill site with poorly known con-

taminant physical properties. The study results indicated

that the complex uncertain features had significant impacts

on modeling and risk-assessment outputs; the degree of

impacts of modeling parameters were highly dependent on

the level of imprecision of these parameters. The results

also implied that FPPA was capable of addressing vague-

ness or imprecision associated with probabilistic risk

evaluation, and help generate risk outputs that could be

elucidated under different possibilistic levels. The pro-

posed method could be used by environmental managers to

evaluate trade-offs involving risks and costs, as well as

identify management solutions that sufficiently hedge

against dual uncertainties.

Keywords Environmental risk assessment � Fuzzy

transformation �Monte Carlo simulation � Dual uncertainty

1 Introduction

As an important step in pollution-control management

procedures, risk assessment is used to determine the

quantitative or qualitative value of risk related to a concrete

pollution situation and a recognized environmental threat.

The general formulation of an environmental risk assess-

ment includes identification of sources of risk agents and

their fate and transport through a specific environmental

media (i.e. water, air, or soil), comparison with the related

environmental standards, and conversion of the related

pollution levels into risk information (Liu et al. 2004).

Many previous studies have indicated that risk assessment

is inherently linked with uncertainties which may be

derived from the randomness inherent in nature, biased

human judgment, or the lack of sufficient information

(Li et al. 2007). Negligence of such uncertainties in the

assessment procedures would bring biased or even false

information to the related environmental managers and

eventually harm the appropriateness of the final pollution-

control decisions. It is thus desired that effective approa-

ches be developed for supporting environmental risk

assessment under uncertainties.

The general approaches in tackling uncertainties in risk

assessment can be divided into two broad categories:

probabilistic and possibilistic (Blair et al. 2001; Baudrit

et al. 2007). Each group is based on a unique algorithm and

has its own advantages and limitations. Stochastic tech-

niques are useful in dealing with the probabilistic type of

uncertainties, which are normally derived from natural

randomness or variability (Seuntjens 2002). Fuzzy tech-

niques are more suitable to express the possibilistic

uncertainties, which are originated from incomplete or

imprecise information (Kentel and Aral 2005). Previously,

extensive studies in applying either group of methods were
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reported (Terracini 1996; Mylopoulos et al. 1999; Chen

2000; Maqsood et al. 2003; Kentel and Aral 2004; Mckone

and Deshpande 2005; Kentel and Aral 2007; Li et al. 2007;

Qin et al. 2008; Chu and Chang 2009; Gutiérrez et al.

2009). In recent years, it has been demonstrated by many

researchers that the integrated fuzzy stochastic methods are

more useful in compensating the limitations of each group

of methods and have a better applicability in addressing

risk assessment problems involving different kinds of

uncertainties (Ferson and Ginzburg 1996).

Guyonnet et al. (2003) proposed a hybrid approach

which combined Monte Carlo random sampling of proba-

bility distribution functions with fuzzy calculus, and

applied it to a real case of estimation of human exposure

via vegetable consumption to cadmium presented in the

surficial soils of an industrial site located in the north of

France. Chen et al. (2003) developed a hybrid fuzzy-sto-

chastic risk assessment (FUSRA) approach for examining

uncertainties associated with both source/media conditions

and evaluation criteria in a groundwater quality manage-

ment system. Liu et al. (2004) developed an integrated

simulation-assessment modeling approach for analyzing

environmental risks from a landfill leakage through incor-

porating an analytical groundwater solute transport model,

an exposure dose model, and a fuzzy risk assessment model

within a general framework. Kentel and Aral (2004) pro-

posed a risk assessment approach through coupling prob-

ability theory and fuzzy set theory to treating cancer

potency factors associated with ingestion, inhalation and

dermal contact together with the contaminant concentration

in tap water; the coupled approach combined utilization of

fuzzy and random variables which produced membership

functions of risk to individuals at different fractiles of risk

as well as probability distributions of risk for various

alpha-cut levels of the membership function. Later on,

Kentel and Aral (2005) proposed a 2D Fuzzy Monte Carlo

Analysis (2D FMCA) method to integrate fuzzy set theory

into probabilistic risk assessment, and proved that the

proposed method was more realistic than the pure 2D

Monte Carlo Analysis (2D MCA) in health risk assessment

applications where both probabilistic and imprecise infor-

mation might exist. Baudrit et al. (2007) discussed two

joint-propagation methods for groundwater contamination

risk assessment and compared them to both interval anal-

ysis and the Monte Carlo method. Li et al. (2007) advanced

an integrated fuzzy-stochastic risk assessment (IFSRA)

approach to systematically quantify both probabilistic and

fuzzy uncertainties associated with site conditions, envi-

ronmental guidelines, and health impact criteria. Yang

et al. (2010) developed an integrated simulation-assess-

ment approach (ISAA) to systematically tackle multiple

uncertainties associated with Benzene transport in subsur-

face and assessment of carcinogenic health risk, where a

fuzzy-Latin hypercube sampling (FLHS) simulation model

and a fuzzy-rule-based risk assessment (FRRA) method

were included.

Generally, the previous studies made viable attempt in

dealing with different types of uncertainties associated

environmental risk assessment. However, most of them

may encounter difficulties when some parameters are

highly uncertain and exhibit dual-uncertain features (Guo

and Huang 2009). The dual uncertainty refers to the type of

uncertainty that is a combination of possibilistic and

probabilistic distributions. For example, when the mean

and standard deviation of a stochastic variable can merely

be expressed as fuzzy sets, the variable is said to have dual-

uncertain feature and can be called fuzzy-parameterized

stochastic (FPS) variable. Similarly, when estimating the

upper and lower boundaries and the most-likely values of

triangular fuzzy sets, different decision makers may have

different judgments, leading to fuzzy sets subject to a

certain type of probabilistic distribution; such uncertain

parameters can be described as stochastic-parameterized

fuzzy (SPF) variables. In fact, in many risk assessment

studies, uncertainties associated with the transport model-

ing inputs are normally described by probability distribu-

tions. In practical applications, it is often difficult to build a

probability distribution due to the lack of data or the high

cost of getting the data; in addition, the temporal or spatial

variations of historical data could lead to different

parameter-estimation results for stochastic variables (Wood

and Antonsson 1990). The related uncertain information is

highly compounded and cannot be described by ordinary

fuzzy or stochastic format, leading to difficulties of trans-

port modeling and risk quantification when effect of such

information on modeling outputs is to be addressed. Pre-

viously, there were very limited studies in such a field.

Thus, the objective of this study is to develop a fuzzy

parameterized probabilistic analysis (FPPA) method for

assessing risks associated with environmental pollution-

control problems. Risk hereafter means the probability of

the contaminant concentration exceeding a specific stan-

dard. Under a fuzzy environment, such a risk is not fixed

and may present as a group of probabilities under various

fuzzy membership degrees. FPPA integrates environmental

transport modeling, fuzzy transformation analysis, proba-

bilistic risk assessment, fuzzy risk quantification into a

general risk assessment framework, and is capable of

handling uncertainties expressed as fuzzy-parameterized

stochastic distributions. The reason this study will focus on

FPS type uncertainty is because the traditional modeling

studies regarding the fate and transport of pollutants in

environmental media under uncertainty mostly relied on

stochastic theory, the FPS type is more commonly

encountered in real world applications than the SPF one.

Two environmental problems are to be investigated in
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order to show the applicability of FPPA. The first problem

is about the point-source pollution in a river system with

uncertain water quality parameters, and the second is

concerned with groundwater contaminant plume from

waste landfill site with poorly known contaminant physical

properties.

2 Methodology

2.1 General framework of FPPA

An environmental transport model that is used to predict

the pollutant fate may involve complex uncertain inputs

(i.e. dual uncertainties) which cannot be used at the first

hand. If there are sufficient historical data, the uncertain

parameters could be presented by probability density

functions (PDFs) and normally handled by Monte Carlo

simulation. In situations when the data quality is poor,

some parameters may have to be estimated based on on-site

survey, expert consultations and round-table meeting (Qin

et al. 2008). The number and the specific meaning of the

distribution parameters normally depend on the type of

stochastic variables such as normal, lognormal, and

gamma. For normal and lognormal ones, we can espouse

the mean and the standard variation as the distribution

parameters; for gamma one, we need to use the scale and

the shape parameters. In this study, we only focus on

normal distributions which can be considered suitable for

many hydrogeological uncertainties (Massmann et al.

1991; Sperling et al. 1992). A stochastic parameter with

fuzzy distributions can be described by:

~Xd ¼ ð~ld; ~rdÞ; d ¼ 1; 2; . . .;D ð1Þ

where ~ldi and ~rdi are fuzzy mean and fuzzy standard

deviation for parameter ~Xd; d is an index ranging from 1 to

D; D is total number of uncertain parameters. Figure 1

shows the illustration of a fuzzy-parameterized stochastic

variable. The shape of the fuzzy sets depends on the

availability of data sources and survey results, and may not

necessarily be triangular. The peak values at membership

degree of 1 means the most likely values of the stochastic

parameters; those at membership degree of 0 fall within the

range from the minimum to maximum possible values.

The proposed FPPA method is based on the integration

of both fuzzy and stochastic algorithms and determined to

be an effective endeavor to tackle the mentioned dual

uncertain problems. Figure 1 shows the general framework

of FPPA. The method basically involves an outer loop,

named fuzzy transformation analysis, and an inner loop,

probabilistic risk assessment. The outer loop discretizes the

fuzzified stochastic inputs into normal stochastic ones and

generates outputs that could be described by fuzzy sets.

Within a single iteration of fuzzy transformation, proba-

bilistic risk assessment will be conducted to generate the

statistical distribution of transport modeling outputs based

on Monte Carlo simulation coupled with environmental

simulation models, as well as the violation risk compared

with the related environmental standards. After all fuzzy

iterations are completed, the obtained violation-risk infor-

mation will present in fuzzy format and be further de-

fuzzified into deterministic index for decision analysis. In

the following sections, individual components of FPPA

will be introduced in detail, and the operating procedures

will be illustrated afterwards (Fig. 2).

2.2 Simulation model for pollutant transport

The migration of contaminants in environment is con-

trolled by a number of physical, chemical, and biological

processes. A critical step in understanding those processes

is the modeling analysis of the flow and transport of the

pollutants in an environmental medium (e.g. soil, water,

and air). The fundamental output produced by the transport

models consists of predicted mass fluxes at specified

locations within the system, or predicted concentrations

within environmental media throughout the system. If

desired, concentrations in environmental media can be

converted to doses and/or health risks by assigning

appropriate conversion factors (Liu et al. 2004; Li et al.

2007). According to the complexity of the problem, the

model could be either numerical or analytical. Let y be a

concerned system output, an environmental pollutant

transport model could be written as:

y ¼ fFðX; nÞ ð2Þ

)~,~(
~

dddX σμ=

dμ~ dσ~

Fig. 1 Illustration of a fuzzy-parameterized stochastic variable
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where X is a vector of deterministic parameters; n is a

vector of uncertain parameters; fF represents the environ-

mental transport model.

2.3 Fuzzy Transformation (FT)

Fuzzy sets are defined as the sets with ambiguous objects.

Data can generally be received in terms of linguistic

judgments and beliefs (natural language), which can then

be converted to the form of fuzzy sets in order to provide a

base for logical and mathematical reasoning (Zadeh 1975).

The a-cut (defined as Aa = {x|lA(x) C a}) is a set of ele-

ments that belong to fuzzy set A at a confidence degree

(or the degree of plausibility) of a. In many systems,

because of the inherent limitations of the mechanism of

observation or human-based estimation, the information

becomes suspect below a certain degree of reliability. The

fuzzy transformation (FT) method was firstly proposed by

Hanss (2002). For a simulation model, the related fuzzy

inputs will normally be decomposed into a number of a-cut

levels. At each a-cut level, there will be a discrete fuzzy

interval in which both the interior and end points will be

evaluated by simulation models in order to produce an

output interval. With all possible a-cut levels being eval-

uated, these intervals can then be grouped to generate the

final fuzzy outputs (Li et al. 2003; Qin et al. 2007).

Let a simulation model, fF, be the function of n fuzzy

parameters, denoted as xi (i = 1, 2,…, n). The function

output qF = fF(x1, x2,…, xn) is also fuzzy set. Let xi be

decomposed by m a cuts. Each input parameter will then

become a set Pi containing m ? 1 intervals:

Pi ¼ X
0ð Þ

i ; . . .; X
jð Þ

i ; . . .; X
mð Þ

i

n o
;

i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;m
ð3aÞ

X
jð Þ

i ¼ a j
i ; b j

i

� �
; a j

i � b j
i ð3bÞ

where ai
(j) and bi

(j) represent the lower and upper bound of

the fuzzy interval at the membership degree lj for the ith

uncertain parameter. The intervals can then be transformed

into the following arrays (Hanss 2002):

a jð Þ
i ¼ a

ðjÞ
i ; . . .; a

ðjÞ
i

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

2n�ielements;

bðjÞi ¼ b
ðjÞ
i ; . . .; b

jð Þ
i

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

2n�ielements

ð4aÞ

X̂
ðjÞ
i ¼ aðjÞi ; bðjÞi ; aðjÞi ; bðjÞi ; . . .; aðjÞi ; bðjÞi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2i�1 pairs

ð4bÞ

Under each a-cut level (i.e. a single j value), there will

be n arrays with each one containing 2n elements. Each

combination of the elements at the same position of arrays

forms the inputs for the simulation model fF. This helps

generate a series of results which form the lower and upper

limits at different membership degrees. The fuzzy output

qF can be obtained using recursive approximation (Kumar

et al. 2009).

2.4 Probabilistic Risk Assessment (PRA)

Probabilistic risk assessment is a technique that utilizes the

entire range of input data to develop a probability distribu-

tion of exposure or risk rather than a single point value. The

input data can be measured values and/or estimated distri-

butions. Values for these input parameters are sampled

thousands of times through a modeling or simulation process

to develop a distribution of likely exposure or risk. Proba-

bilistic risk assessment can be used to evaluate the impact of

variability and uncertainty in the various input parameters,

such as environmental exposure levels, fate and transport

processes (Maxwell and Kastenberg 1999a, b; Maxwell et al.

1999; Tartakovsky 2007; Bolster et al. 2009). PRA consists

of the following elements: (a) risk or hazard identification;

(b) assessment of pollutant emission and environmental

loading capacities; (c) uncertainty analysis; and (d) risk

quantification. In a given system, the probabilistic risk

associated with industrial activities could be expressed as the

probability of a pollutant’s concentration exceeding envi-

ronmental standards (Chen et al. 2003; Bolster et al. 2009):

PF ¼ P C [ Lð Þ ¼
Z1

0

ZC

0

fCL C; Lð ÞdL

8<
:

9=
;dC ð5Þ

Fig. 2 System framework of FPMC Risk Assessment
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where PF denotes probability or risk level; C denotes

pollutant emission (random variable), [M/L3]; L is

environmental loading capacity (random variable), [M/L3];

fCL is the probabilistic density function (PDF). If L could be

defined by environmental guidelines (i.e. if L = L0), the risk

level can be quantified as:

PF ¼ P C [ L0ð Þ ¼
Z1

L0

fC Cð ÞdC ð6Þ

In practical application, Monte Carlo simulation (MCS) is

widely used to handle stochastic uncertainties by generating

a large quantity of random realizations of the inputs. It then

utilizes repeated executions of environmental models to

simulate stochastic processes of contaminant transport (Hu

and Huang 2002). Each execution of the model produces a

sample output of pseudo-values. As a result, the sampling

outputs can then be examined distributed in PDFs or

cumulative distribution functions (CDFs) (Fishman 1995;

Rubinstein and Kroese 2007). The environmental loading

capacity or environmental guideline will be used as a cutting

point for obtaining the related violation risk level.

2.5 Fuzzy Risk Quantification (FRQ)

The results from fuzzy transformation are expressed as

fuzzy sets where the x-axis is the violation risk levels from

probabilistic risk assessment and the y-axis is the fuzzy

membership degree. The decision making process in risk

management studies requires that the fuzzy risk could be

effectively quantified (defuzzified) and a meaningful cri-

terion could be established. As proposed by Guyonnet et al.

(1999, 2003), either possibility measure (PM) or necessity

measure (NM) can be used to determine the acceptability

of a fuzzy risk, ~R, with respect to a compliance criterion

(CC). In this study, we only focus on NM due to its con-

servative view of defuzzification (Kikuchi and Pursula

1998). The NM is defined as follows (Dubois and Prade

1988):

NM ¼ Nec ~R� ~C
� �

¼ inf
x

max 1� l ~R xð Þ; l ~C xð Þ
� �

ð7Þ

where l ~R xð Þ is membership function of ~R for any value of x;

l ~C xð Þ is membership function of the compliance criterion for

any value x. The purpose of the above equation is to measure

the validity of the proposition, ‘‘the fuzzy risk ~R is less than or

equal to CC00. The compliance criteria may not necessarily be

uncertain. Figure 3 illustrates the determination of NM

under various conditions, where ROV means risk of viola-

tion. It is obviously that the range of the NM would fall

between 0 and 1. If the peak value of the fuzzy risk is higher

than CC, NM would be zero; if the entire fuzzy membership

function of ROV is lower than CC, NM would be 1. When the

CC level is within the range of the right wing of fuzzy

membership function, the NM value would vary from 0 to 1

depending on the position of CC.

Risk assessment is used to describe potential impacts of

contaminants. Further decision analysis is needed to help

identify proper site management strategies (Sadiq et al.

2007; Qin et al. 2008). The NM value from FRQ represents

the possibility of a fuzzy event, namely, the degree of

fuzzified stochastic risk meeting the compliance criterion.

The CC level is a subjective index and must be identified

through discussion among various stakeholders. In order to

guide the further decision analysis, an acceptance criterion

(AC) could be used. It is defined as the threshold of NM for

selecting a specific environmental control action. For

example, if NM is higher than AC, it is acceptable to take

actions; if NM is lower, the possibility of satisfying CC

will not be high enough to support the espousal of the

corresponding control action. Generally, a table listing the

Fig. 3 Determination of

necessity measures
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NM values under various site management strategies can

be pre-generated. Then, a proper control action can be

identified based on AC information.

2.6 Procedures of applying FPPA

From above descriptions, FT is effective dealing with uncer-

tainties expressed as fuzzy membership functions and PRA

is useful in predicting violation risks of environmental

guidelines due to stochastic uncertainties. FPPA could

couple the two methods into a general framework and is

capable of handling uncertain parameters exhibiting both

fuzzy and stochastic features (i.e. dual uncertainties). The

detailed procedures of FPPA are described as follows:

1 Identify the fuzzy parameterized stochastic parameters:
~Xd ¼ ~ld; ~rdð Þ; d ¼ 1; 2; . . .;D;

2 Discretize the range of membership grade of [0, 1] into

m a-cut levels which are evenly distributed;

3 Under a-cut level of j, decompose ~ld and ~rd into a

group of fuzzy intervals, i.e. ~l jð Þ
d ¼

	
inf ~lðjÞd

� �
; sup

~lðjÞd

� �

and ~r jð Þ

d ¼ inf ~r jð Þ
d

� �
; sup ~r jð Þ

d

� �h i
;

4 Start the FT analysis (i.e. outer loop iteration) and

identify the arrays containing all possible combinations

of inputs (i.e. the parameters of stochastic parameters)

under each a-cut level;

5 For each combination of input from FT, start the PRA

process based on Monte Carlo simulation and the

related environmental standards to obtain the output of

violation risks (i.e. PF);

6 Repeat steps 4 and 5 until computations under all a-cut

levels are conducted;

7 Formulate the fuzzy outputs base on the obtained fuzzy

intervals under all a-cut levels, which can be expressed

as inf ~l jð Þ
y

� �
; sup ~l jð Þ

y

� �h i
and ~r jð Þ

d ¼ inf ~r jð Þ
y

� �
; sup

hn

~r jð Þ
y

� �
�g; j ¼ 1; 2; . . .;mð Þ;

8 Use NM and CC to quantify the acceptability of the

fuzzy proposition that the fuzzy risk is less than or

equal to a predefined standard under various environ-

mental control scenarios.

9 Based on AC, determine the best control strategy.

3 Case studies

Two environmental problems are investigated in order to

show the applicability of FPPA in dealing with risk

assessment under dual uncertainties. The first problem is

about the point-source pollution in a river system with

uncertain water quality parameters, and the second is

concerned with groundwater contaminant plume from

waste landfill site with poorly known contaminant physical

properties. Both problems firstly deal with fuzzy transfor-

mation operation, followed by probabilistic risk assessment

under each fuzzy discretized scenario; a defuzzification

process based on necessity measure is then used to convert

the fuzzy outputs into measurable index for guiding further

management decisions. Often, in reality, uncertainties may

be associated with many parameters; the two study cases

simplify the problem scales by assuming that only a few

key uncertain parameters are of concern. The management

actions are also simplified into percentage of reductions of

the source strengths. Thus, it is critical that, in real appli-

cations, more specific consideration would be needed to

link the computed control efficiencies and the available

remediation or pollution-control techniques.

3.1 River water pollution problem

The risk assessment of river water pollution problem

considered here is adapted from Qin and Huang (2009). A

river section, with a length of about 25 km, receives

wastewater discharged from six industrial point sources,

including a leatheroid plant, a hospital, a paper mill, a

waste water treatment plant, a textile plant, and a chemical

plant. The system map is provided in Fig. 4. Putting each

discharge source as the cutting point, the river section can

be divided into 6 segments. Before any control actions to

be undertaken, it is desired that a risk assessment be con-

ducted to evaluate the seriousness of water quality pollu-

tion in these river segments in comparison of the Class-II

BOD and DO standards (i.e. 3 and 6 mg/l, respectively) in

the China National Surface Water Quality Standards

(CEPA 2002). A multi-segment BOD-DO simulation

model will be used to address the relationships between the

pollutant loadings and the environmental responses in the

river system. The indicators of dissolved oxygen (DO),

carbonaceous biological oxygen demand (CBOD), nitrog-

enous biological oxygen demand (NBOD), and sediment

oxygen demand (SOD) are variables to be simulated. The

river system is assumed to be in steady-state flow condi-

tion, and each river segment assumes having homogeneous

hydrodynamic and solute-transport characteristics. The

depletion of dissolved oxygen are primarily caused by

assimilation of both the carbonaceous and nitrogenous

waste materials, and offset by the absorption of oxygen

from the atmosphere. The basic BOD-DO relations in a

single-source river segment could be described as follows

(Thomann and Mueller 1987):

Lc ¼ Lc0e� kdþksð Þx=ux ð8aÞ
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LN ¼ LN0e�kNx=ux ð8bÞ

O ¼ Os � Os � O0ð Þe�kax=ux

� kdLc0

ka � kd � ks
e� kdþksð Þx=ux � e�kax=ux

h i

� kNLN0

ka � kN
e�kN x=ux � e�kax=ux

h i
ð8cÞ

where Lc is the ultimate CBOD concentration, [M/L3]; LN

is the ultimate NBOD concentration, [M/L3]; kd is the

CBOD decay rate in river streams, [T-1]; ks is the CBOD

decay rate due to sedimentation, [T-1]; O is the DO con-

centration, [M/L3]; Os is the saturated DO concentration,

[ML-3]; kN is the nitrification rate (NBOD decay rate in

river), [ML-3]; kais the reaeration rate, [ML-3]; ux is the

average stream flow rate, [L/T]; x is the flow distance along

the x axis, [L].

For multiple segments with more than one wastewater

discharge outlets scattering along the river, the water

quality at each segment is affected by various sources from

the upper stream. The related relations should be derived

based on equations of mass balance, flow continuity, and

BOD-DO equilibrium under a steady-state flow condition.

Detailed description of the related equations can be refer-

red to Qin and Huang (2009). The source intensity data is

shown in Fig. 4. Uncertainties are assumed to be associated

with the BOD deoxygenation and decay rates (kdt, kNt and

kst) and reaeration rate (kat); they are expressed as fuzzy

parameterized stochastic parameters shown in Table 1. The

stochastic parameters are assumed to have normal distri-

butions and described by means and standard deviations

(Qin and Huang 2009). The related means and stan-

dard deviations are further described by triangular fuzzy

membership functions. The fuzzy inputs will be discretized

into six a-cut levels (i.e. 0, 0.2, 0.4, 0.6, 0.8 and 1); the

number of realization for Monte Carlo simulation is set as

200. The proposed FPPA method will be used to evaluate

water quality violation risk at each river segment. To help

decide a proper control action, the risk information under

various source-control scenarios is also analyzed.

Figures 5 and 6 present the calculated fuzzy outputs of

the violation risks for BOD and DO under various control

efficiencies, respectively. Instead of a single value, the

results are shown as fuzzy sets where the level of uncer-

tainties would increase with the decrease of fuzzy mem-

bership degrees. For example, in Fig. 5a for segment 2, the

BOD violation risk would be 0 when the membership

degree is greater than 0.8; however, when system becomes

vaguer, say 0.2, the violation risk would vary within the

range of [0, 0.62]; at an extreme condition when the

membership degree is 0 (i.e. highest vagueness), the range

of variation would be [0, 1]. This demonstrates that the

fuzziness of the input parameters would lead to imprecision

of risk predictions; the higher the fuzziness, the wider the

fuzzy interval of the result would be. Moreover, it is found

that some fuzzy membership functions would converge

into crisp values of either 0 or 1, such as segments 1, 4, and

5 in Fig. 5a and segment 1 in Fig. 6. The violation risk of 1

means that the environmental standard would be com-

pletely violated regardless of uncertainty impacts; on the

other hand, a risk of 0 means the river segment is suffi-

ciently safe.

A direct observation on the fuzzy membership functions

in Figs. 5 and 6 can help generate a rough picture of what

the pollution levels are at different segments and how

violation risks vary with control efficiencies. Obviously,

the violation risk in terms of BOD is highest at segment 4,

followed by segment 5; segments 2, 3, and 6 rank in the

middle and segment 1 is the lowest. With regard to DO

standard, segment 6 is most risky, followed by segments 4,

3, 2, and 5; segment 1 is the safest. In addition, the control

efficiency seems to increase with the decrease of risk lev-

els. For example, when the intensity of discharge sources

changes from 25 to 50%, the BOD violation risk at segment

5 would drop from 0.98 to 0.60 under the most uncertain

1. Leatheroid plant
Q = 0.4 m3/s             CBOD = 960 mg/L
NBOD = 640 mg/L    DO = 0.86 mg/L

2 Hospital
Q = 0.45 m3/s            CBOD = 450 mg/L
NBOD = 350 mg/L     DO = 1.01 mg/L

I

II

III

IV

V

VI

3 Paper mill
Q = 0.15 m3/s
CBOD = 735 mg/L
NBOD = 1015 mg/L
DO = 0.32 mg/L

4 Wastewater treatment plant
Q = 2.0 m3/s            CBOD = 100 mg/L
NBOD = 180 mg/L   DO = 1.32 mg/L

5 Textile plant
Q = 0.6 m3/s            CBOD = 860 mg/L
NBOD = 540 mg/L   DO = 0.64 mg/L

6 Chemical plant
Q = 0.14 m3/s            CBOD = 420 mg/L
NBOD = 580 mg/L     DO = 0.96 mg/L

Fig. 4 System map of the study river system

Table 1 Fuzzy-parameterized stochastic inputs for river water

quality prediction

Mean Standard deviation

kdt (d-1) (0.33, 0.71, 0.87)* (0.02, 0.06, 0.09)

kst (d-1) (0.15, 0.31, 0.37) (0.02, 0.06, 0.09)

kNt (d-1) (0.26, 0.58, 0.64) (0.03, 0.09, 0.12)

kat (d-1) (0.42, 0.56, 0.92) (0.05, 0.10, 0.14)

* (a, b, c) represents the lower, most-likely and upper bound values of

a triangular fuzzy set
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condition (i.e. with the fuzzy membership degree being 0);

when it goes up to 75%, the risk would become negligible

(\10-6). The above-mentioned facts can be observed

directly. However, due to fuzzy representations of the risk

outputs, it is normally difficult to clearly differentiate the

distinctions among those middle-level risks where the

Fig. 5 Predicted fuzzy

violation risks of BOD under

various control efficiencies

Fig. 6 Predicted fuzzy

violation risks of DO under

various control efficiencies
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fuzzy membership functions are overlapped to some extent.

This brings difficulties to further decision making or

management.

Table 2 shows the necessity measures (NM) for the risk

outputs. Three levels of compliance criteria (CCs) are used.

They are 0.2, 0.4, and 0.6, corresponding to strict, mod-

erate, and loose criteria, respectively. The compliance

criterion (CC) represents the preference standard of the

decision makers to the violation risks obtained from sto-

chastic risk quantification. For example, 0.2 means that the

acceptable probability of violating the environmental

standard should be lower than 0.2. The NM means the

possibility of satisfying the CCs. A level of 1 means a CC

is completely met, and a level of 0 means a 100% violation.

From Table 2, the NM values would vary with the strict-

ness of CCs as well as the control efficiency. Taking seg-

ment 6 as an example, when the control efficiency changes

from 0 to 75%, NM for BOD risks would increase from

0.59 to 1; when the CC levels are 0.2, 0.4, and 0.6, the NM

values for DO risks under 25% control efficiency would

become 0.02, 0.20, and 0.47, respectively. These results

indicate that the lower the level of CC, the stricter the need

for river water quality control; conversely, the more

allowable the risk of environmental damage (i.e. higher

level of compliance criteria), the lower the requirement for

protection. A tradeoff based on acceptance criterion (AC)

can be analyzed to help identify cost-effective control

schemes. AC is the threshold of a NM value for accepting a

management action. The higher an AC level, the more

difficult a control strategy would be considered. From

Table 2, if AC is 0.50, a 75% control effort could guar-

antee a 100% possibility of meeting all CCs; however, the

related treatment cost is also the highest. A 25% control

efficiency would not be acceptable as the CCs at segments

4 and 5 could not be satisfied in most cases. A control level

at 50% may be suitable since both NM values and

treatment costs are well balanced; however, if a strict CC

level is to be used, a 75% source mitigation effort would be

needed since a 50% control cannot guarantee a satisfactory

NM value at segment 4.

For this study case, the pollution control efforts are

based on the evaluation of risks for all segments. The

control efficiency is assumed to be identical for all dis-

charge sources. In real applications, the control efficiencies

could vary with different sources in order to achieve better

cost efficiencies. It is thus desired that more scenarios of

pollution-control strategies be designed for supporting

decision making of river water quality management. Nev-

ertheless, the proposed risk assessment method could

effectively address the complex uncertainties in the water

quality parameters and project their influences to the final

risk-assessment outputs; it could help generate useful

information for guiding implementation of further pollu-

tion-control actions.

3.2 Groundwater contamination problem

As a second example of FPPA, consider the problem of

groundwater contamination due to landfill leakage, where a

number of aquifer parameters are uncertain. The study case,

involving a waste landfill located in Western Canada, has

been thoroughly investigated by Liu et al. (2004). This

landfill site, as shown in Fig. 7, has been operated over

40 years, and the groundwater contamination was detected

about 20 years ago. The closest water supply well is located

about 5 km down-gradient of the groundwater flow direc-

tion. According to site monitoring results, the major con-

taminants in groundwater are Benzene, Toluene, and Xylene

(BTX). Upon release to the environment, BTX contained in

waste landfill leachate will migrate downward under the

force of gravity, till they encounter a physical barrier or are

affected by buoyancy forces near the groundwater table.

Table 2 Necessity measures

under various control

efficiencies for river water

quality management

* (a1, a2, a3, a4, a5, a6)

represents the necessity measure

values for river segments 1 to 6

Compliance criteria Control

efficiency (%)

Necessity measures

for BOD risks

Necessity measures for DO risks

Strict (0.20) 0 (1, 0.51, 0.67, 0, 0, 0.59)* (1, 0.69, 0.35, 0.18, 0.95, 0)

25 (1, 1, 1, 0, 0, 0.84) (1, 0.95, 0.68, 0.57, 1, 0.02)

50 (1, 1, 1, 0.42, 0.58, 1) (1, 1, 1, 1, 1, 0.62)

75 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)

Moderate (0.40) 0 (1, 0.66, 0.80, 0, 0, 0.72) (1, 1, 0.65, 0.39, 1, 0)

25 (1, 1, 1, 0, 0, 0.98) (1, 1, 1, 0.80, 1, 0.20)

50 (1, 1, 1, 0.53, 0.75, 1) (1, 1, 1, 1, 1, 0.98)

75 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)

Loose (0.60) 0 (1, 0.78, 0.91, 0, 0, 0.84) (1, 1, 1, 0.75, 1, 0)

25 (1, 1, 1, 0, 0, 1) (1, 1, 1, 1, 1, 0.47)

50 (1, 1, 1, 0.62, 1, 1) (1, 1, 1, 1, 1, 1)

75 (1, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1)
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Once the capillary zone is reached, the contaminants may be

dissolved in groundwater and transport down gradient (Liu

et al. 2004). After reaching the water table, BTX could be

attenuated by dispersion, adsorption, and further degrada-

tion. The aquifer is considered homogenous, isotropic and of

constant thickness; the groundwater flow is steady and uni-

form, and the velocity is in the positive x-direction. The

sorption is assumed in equilibrium and behaves linearly and

the mass degradation of contaminants is first-order. Based on

these settings, the solute transport process could be well

addressed by a three-dimensional analytical model proposed

by Yeh (1981):

R

V

oc

ot
¼ aL

o2c

ox2
þ aT

o2c

oy2
þ az

o2c

oz2
� oc

ox
� kRc

V
ð9Þ

where c is solute concentration [M/L3]; x, y, and z are

Cartesian coordinates in the longitudinal, lateral, and ver-

tical directions, respectively [L]; aL, aT, and az are longi-

tudinal, transverse, and vertical local pore-scale

dispersivity coefficients, respectively [L]; V is groundwater

seepage velocity [L/T]; R is retardation coefficient; t is

time [T]; and k is effective decay coefficient [T-1]. The

retardation coefficient is defined as R = 1 ? qbKd/h,

where h is volumetric water content; Kd is distribution

coefficient [L3/M]; qb is bulk density of the porous med-

ium. As shown in Fig. 7, the study region is semi-infinite in

the x-axis (0 B x \?), infinite in the y-axis (|y| \?),

and finite in the z-axis (0 B z B H). The model treats the

contaminant concentration in the leachate directly below

the land disposal unit as a Gaussian distribution along the

y-axis and a uniform distribution over the penetration depth

(H), [L]. The maximum dissolved concentration of the

contaminant, c0, is assumed to occur at the center of the

Gaussian distribution and vary at a standard deviation (r),

[L]. Under a steady-state condition, it is assumed that the

initial source concentration equal the solubility S [M/L3].

The solution of the analytical model has been thoroughly

discussed by Huyakorn et al. (1987). In this study, only the

concentration distributions along the plume center line (x-

axis) at a steady-state condition will be considered. It can be

described by the following equation (Huyakorn et al. 1987):

cp xð Þ ¼ H

B
cf xð Þ þ ccorr xð Þ ð10aÞ

cf xð Þ ¼ n
Z1

0

exp �r2u2

2
� x
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" #
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þ 1
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n ¼ 2Sr

2pð Þ1=2
exp

x

2aL

� �
ð10dÞ

where cp(x) is concentration of contaminant at distance

x [M/L3] (i.e. the solution of Eq. 9); cf and ccorr are inter-

mediate parameters. B is aquifer thickness;

Since the water supply well is under threat of BTX

contamination, it is desired that a risk assessment be con-

ducted to evaluate the related groundwater quality.

According to the USEPA National Primary Drinking Water

Regulations, the BTX standards are 0.005, 1, and 10 mg/l,

respectively (USEPA 2009). However, due to complex

uncertainties associated with the solute transport process, it

is questionable to judge the contamination impacts based

on deterministic modeling efforts. In this case, the hydro-

geological conditions are relatively simple and the related

physical properties of the aquifer are considered constant.

The fluid properties, including the solubility (S, i.e. source

strength) and effective decay constant (k), are considered

having large variations in both spatial and temporal scales.

A mere probabilistic expression for these factors is insuf-

ficient to reflect system complexities. Thus, a coupled

fuzzy-stochastic expression is considered. The basic input

data are listed in Table 3. Two key inputs, S and k, are

chosen as the fuzzy-parameterized stochastic parameters.

Generally, these two parameters are considered to have

normal distributions (Li et al. 2003; Maqsood et al. 2003).

Due to shortage of sufficient data in addressing stochastic

distributions, the related mean values (M) and standard

deviations (SD) are assumed vaguely defined, and will be

handled by triangular fuzzy membership functions. Con-

sequently, the above two sets of parameters (Ms, SDs), and

(Mk, SDk) are used as inputs for FPPA. Six a-cut levels (i.e.

0, 0.2, 0.4, 0.6, 0.8 and 1) are designed for FT manipula-

tion. The BTX concentrations in the supply well are

Hom
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s 
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uif
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Landfill Plume boundary
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Groundwater flow

Y

X

Z

Leakge

Fig. 7 System diagram of the landfill leakage problem
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predicted in the simulation process. The number of Monte

Carlo simulation is set as 100.

Figure 8 presents the fuzzy violation risks for BTX under

different control efficiencies. If the stochastic variables are

free of uncertainties (i.e. fuzzy membership degree = 1),

Benzene would show higher violation risks than other con-

taminants under the same source-control efforts. However,

when system information goes vaguer, the violation risks

would show larger variations. For example, at fuzzy mem-

bership degree of 0.8, the violation risk for Toluene without

any source control would range from 0.16 to 0.45; when

membership degree reduces to 0.4, the range would extend

from 0 to 0.72. The propagation of fuzziness would lead to

the increase of difficulty in quantifying the probability of

violating the related environmental standards and identify-

ing appropriate control actions. Such a varying trend is

similar to that for the river pollution-control case.

Table 4 lists the calculated NM levels under various

control efficiencies. If 0.5 and 0.2 are considered as AC and

CC levels, the best control efficiencies for Benzene, Toluene,

and Xylene would be 70%, 50%, and 10%, respectively. If

the CC level goes up to 0.5, the efficiencies would reduce to

50%, 10%, and 0%, respectively; if the AC level increases to

0.8, the efficiencies would rise up to 80%, 60%, and 20%,

respectively. These results demonstrate that the magnitude

of efforts for reducing BTX contamination would increase

with the increase of strictness of satisfying the related

environmental standards; this corresponds to the decrease of

CC as well as increase of AC. For better decision making, a

spectrum of NM values under various CC levels could be

generated first (in tabular form or graphical representation);

then the management schemes under various AC levels

could be identified; the final decision can be made based on a

tradeoff analysis on a spectrum of available options.

Generally, the related outputs would be useful for the

decision makers to identify proper control actions in con-

sideration of risks originated from both stochasticity and

fuzziness of input parameters. The control efficiency of

removing contaminants from subsurface largely depends

on the selection of a specific remediation technology. A

source reduction of over 80% would require a costly clean-

up strategy that may take a longer period or a higher

investment of chemical or biological solutions (e.g. biore-

mediation or surfactant-enhanced remediation); for control

efficiency below 20%, cheaper options may be more

desirable (e.g. natural attenuation). In real-world applica-

tions, it would be more flexible that available technologies

are screened out first, and then their treatment cost and

efficiencies are investigated based on specific site condi-

tions; based on the risk information obtained from FPPA, a

cost-effective technology can then be identified.

4 Discussions

The two applications presented in this study demonstrate

the potential of FPPA in assisting environmental managers

to evaluate trade-offs between risk and cost, as well as

Table 3 Parameters for landfill leakage simulation

Parameters Symbol Mean Deviation

Aquifer thickness B 78.6 m N/A

Penetration thickness H 20 m N/A

Seepage velocity of groundwater V 60.2 m/year N/A

Bulk density of the porous media qb 1.5 g/ml N/A

Volumetric water content h 0.30 N/A

Longitudinal dispersivity coefficient aL 10 m N/A

Lateral dispersivity coefficient aT 0.75 m N/A

Vertical dispersivity coefficient az 0.75 m N/A

Standard deviation r 20.8 m N/A

Distribution coefficient for Benzene Kd(B) 0.38 ml/g N/A

Distribution coefficient for Toluene Kd(T) 1.35 ml/g N/A

Distribution coefficient for Xylene Kd(X) 2.40 ml/g N/A

Solubility of Benzene S(B) [1300, 1500, 1600] * mg/l [25, 50, 75] mg/l

Solubility of Toluene S(T) [485, 535, 585] mg/l [40, 50, 60] mg/l

Solubility of Xylene S(X) [117, 168, 218] mg/l [20, 25, 30] mg/l

Effective decay constant of Benzene k(B) [3.5, 4.0, 4.5] 9 10-2 year-1 [0.15, 0.2, 0.25] 9 10-2 year-1

Effective decay constant of Toluene k(T) [5.2, 6.3, 7.4] 9 10-3 year-1 [0.6, 0.7, 0.8] 9 10-3 year-1

Effective decay constant of Xylene k(X) [4.2, 5.1, 6.2] 9 10-4 year-1 [0.4, 0.5, 0.6] 9 10-4 year-1

* (a, b, c) represents the lower, most-likely and upper bound values of a triangular fuzzy set
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identify management solutions that sufficiently hedge

against dual uncertainties. To further evaluate its potential

benefits, FPPA can be compared with pure stochastic risk

assessment methods. Obviously, the results corresponding

to the membership degree of 1 would be identical to the

one that could be obtained if no fuzziness is considered for

Fig. 8 Predicted fuzzy

violation risks for Benzene,

Toluene and Xylene under

various control efficiencies

Table 4 Necessity measures under various remediation efficiencies

Control efficiency (%) CC* = 0.2 CC = 0.5 CC = 0.8

Benzene Toluene Xylene Benzene Toluene Xylene Benzene Toluene Xylene

0 0 0 0.48 0.04 0.30 0.80 0.27 0.86 0.48

10 0 0.05 0.70 0.07 0.48 1 0.35 1 0.70

20 0 0.12 1 0.12 0.79 1 0.50 1 1

30 0 0.19 1 0.27 1 1 0.55 1 1

40 0.12 0.39 1 0.38 1 1 0.65 1 1

50 0.21 0.70 1 0.51 1 1 0.87 1 1

60 0.40 1 1 0.69 1 1 0.95 1 1

70 0.62 1 1 0.95 1 1 1 1 1

80 0.90 1 1 1 1 1 1 1 1

CC compliance criterion
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stochastic risk quantification. For example, in Fig. 6a, the

probability of violating DO standard at segment 6 would be

0.79 if the fuzzy uncertainty is neglected; this lead to a

conclusion that the water quality at this segment, very

likely, cannot meet the Class II standard. Based on FPPA

method, no matter what levels of compliance criteria are to

be used, the NM value would be zero, implying an

impossibility of satisfying the related environmental stan-

dard. In the landfill case, with a pure stochastic risk

assessment, the probability of violating the Benzene stan-

dard would be 0.44 without any control effort; this indi-

cates a slightly low probability of event occurrence.

Through FPPA, the NM values under CC levels of 0.2, 0.5,

and 0.8 would be 0, 0.04, and 0.27, respectively; this means

that if the expected level of compliance is strict, the vio-

lation would not likely to happen; but if it is highly loose,

the event may occur but at a low level of possibility. These

results demonstrate that the results from stochastic risk

quantification are consistent with those from FPPA method

when no fuzzy information is involved.

However, the stochastic risk assessment method can

only deal with the situation when there is no further

uncertainty associated with the input parameters. With the

influence of fuzziness, the stochastic risk outputs may have

large variations. For example, regarding segment 6 in

Fig. 6a, as the stochastic input parameters are associated

with a certain level of fuzziness (e.g. 0.6), the violation risk

would possibly decrease to as low as 0.05 or increase to as

high as 0.98. Such an expansion of output ranges makes it

difficult to understand the related risk information. The

FPPA method could effectively mitigate such a problem

through introducing algorithms of fuzzy measure and rule-

based decision making. For example, in Fig. 8b under 10%

control efficiency, stochastic risk assessment would give a

probability of 0.15 for Toluene’s risk status; this obviously

will lead to the conclusion that the site is very likely safe

from Toluene impact and a serious control effort may not

be needed. However, through FPPA, the results indicate

that even if a moderate concern is taken (i.e. CC = 0.5),

the possibility of compliance (i.e. NM value) could be

relatively low (i.e. 0.48); therefore, a stringent control

strategy may be necessary. These results demonstrate that

the pure stochastic risk assessment is just one of the special

cases in FPPA assessment; the fuzziness associated with

stochastic parameters could easily lead to deviated or even

false conclusions of risk assessment, and in turn, influence

the cost effectiveness of the final decisions of responsive

actions.

In this study, there are totally three standards to be used,

i.e. environmental standard, compliance criterion, and

acceptance criterion. The environmental standards are

normally promulgated by the governmental agencies and

are readily available from literatures or reports. The criteria

of compliance (CC) and acceptance (AC) are essential

indicators in reducing the complexities associated with

impacts of coupled fuzzy stochastic uncertainties on risk

assessment, and guiding the related decision making. The

application of CC is basically a defuzzification process for

converting the fuzzified stochastic risk outputs into a

measurable index. The purpose of AC is to build a linkage

between the extent of risk acceptability (i.e. NM value) and

the management strategy. Both CC and AC are case spe-

cific and largely dependent on the subjectivity of decision

makers; determination of their values must be based on

thorough group discussions, expert consultations, or public

surveys.

Application of risk-based decision analysis to engi-

neering design has roused much attention over the past

decades. Examples can be found in the works of Freeze

et al. (1990), Massmann et al. (1991), Sperling et al.

(1992), James and Gorelick (1994), Khadam and

Kaluarachehi (2004), and Qin et al. (2008). These studies

have made viable attempts in developing sophisticated

techniques to decision analysis in light of either geological

and/or parameter uncertainties. Particularly, the pioneering

works of Freeze et al. (1990) and Massmann et al. (1991)

effectively addressed aquifer heterogeneity, prior infor-

mation and posterior distributions conditional on hydro-

logical data through Bayesian analysis, and applied a risk-

cost-benefit objective function to evaluate the economic

properties of alternative management strategies. Compared

with their works, this study essentially focuses on the

treatment of fuzziness that may be associated with proba-

bilistic risk outputs. The proposed management framework

is relatively simple and could be further enhanced through

incorporating more sophisticated decision analysis tech-

niques such as multi-criteria decision making (Khadam and

Kaluarachehi 2004). Nevertheless, the real management

scenarios may not necessarily be limited to single actions

like the control efficiency in this study. They could be

established based on different designs of site investigation,

waste-reduction technology, and monitoring network sys-

tem, with both capital and operating costs being consid-

ered. A rigorous effort in data collection may have to be

made.

The challenge of handling data quality and resolution

in environmental modeling under uncertainty has also

been attempted through fully probabilistic approaches

such as Bayesian analysis and minimum relative entropy

(MRE) based techniques (Woodbury and Ulrych 1993;

Hou and Rubin 2005). These approaches espouse prior

probabilities to reflect uncertainties associated with

vagueness of data sources; the suitability of prior infor-

mation will be updated when new field observations

become available. Instead of trying to reduce uncertainties

in the sense that additional data are introduced, FPPA
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focuses on using an alternative description about the

vagueness in stochastic parameters and their propagation

through risk assessment modeling. The advantage of such

treatment lies in strength of fuzzy set theory in dealing

with vague or imprecise information arising from data

shortage or subjective human judgment (Sadiq et al. 2007;

Qin et al. 2008). Should additional data become available,

the distribution of dual uncertainties could also be

adjusted in order to render the simulated output better

match the observed profile.

Li et al. (2007) also made a viable attempt in conducting

an integrated fuzzy-stochastic risk assessment (IFSRA) to

systematically quantify both probabilistic and fuzzy

uncertainties. Compared with his work, our study has a

number of major contributions. Firstly, FPPA can deal with

uncertainties associated with site conditions in coupled

fuzzy and stochastic formats (i.e. dual uncertainties). IFS-

RA accounts for fuzziness only in environmental guide-

lines and health impact criteria, and deals with stochastic

parameters separately in contaminant transport modeling.

Secondly, FPPA introduces two deterministic indicators

(i.e. CC and AC) to convert the complex risk information

into a measurable index to underpin identification of

management strategies. IFSRA needs to construct fuzzy

distribution information for the related regulatory criteria

and establish a detailed fuzzy rule base through more rig-

orous efforts in data procurement. Thirdly, the generality of

FPPA in various risk assessment fields was illustrated by

two cases: a river pollution problem and a groundwater

contamination problem. IFSRA, with a focus on using

fuzzy-rule based operation to balance uncertainty derived

from environmental-guideline-based risk (ER) and health

risk (HR), may be more suitable for petroleum contami-

nation problems.

The FPPA method is a new attempt in dealing with dual

uncertainties associated with environmental risk assess-

ment processes. Although the two study cases have dem-

onstrated its applicability and advantages, some technical

limitations also exist and deserve further investigations.

Firstly, FPPA involves both fuzzy transformation analysis

and Monte Carlo simulation which requires extensive

computational efforts. The problem becomes more severe

if the simulation processes involve complex numerical

models. For example, a major difficulty in predicting

subsurface contaminant transport lies in the complexity of

geological conditions such as heterogeneity. The related

information normally has high spatial variations and the

uncertainty could be associated with any geological loca-

tion. This, in turn, would lead to enormous computational

burden. A parallel computing strategy or high-performance

computer may be needed for dealing with such a difficulty.

Another potential way of mitigating the problem is to

assume a number of homogeneous zones based on existing

monitoring data and build a specific distribution of dual

uncertainty for each zone. Secondly, the defuzzification

technique is not limited to necessity measure. Other alter-

natives such as possibility measure could also be used

(Zadeh 1975). The results may be sensitive to the different

methods adopted.

Although the proposed method was only demonstrated

in the field of environmental risk assessment where a

deterministic environmental guideline was used in proba-

bilistic risk quantification, it is also applicable to health risk

assessment. But the major difference is that there are rarely

accurate or fixed guidelines or criteria in deciding the

health risk levels due to high uncertainty of dose–response

relations (Maxwell and Kastenberg 1999a, b; Kentel and

Aral 2004). For example, when assessing the potential for

risks to people, toxicology studies generally involve dosing

of mature test animals such as laboratory mice as a sur-

rogate for humans. Since the knowledge about how dif-

ferently humans and rats respond is rare, the managers

often employs the use of an uncertainty factor to account

for possible differences; additional consideration may also

be made if there is some reason to believe that the very

young are more susceptible than adults, or if key toxicol-

ogy studies are not available (USEPA 2009). The equation

for calculating necessity measure is still applicable in this

condition but becomes more difficult to operate since both

the left and right-hand items are fuzzy. Further studies are

desired to investigate the applicability of FPPA in health

risk assessment.

5 Conclusions

A new risk assessment method, named fuzzy parameterized

probabilistic analysis (FPPA), was developed to assess

risks associated with environmental pollution-control

problems. Two environmental problems were investigated

for demonstrating the applicability of FPPA. The first

problem was about the point-source pollution in a river

system with uncertain water quality parameters, and the

second was concerned with groundwater contaminant

plume from waste landfill site with poorly known con-

taminant physical properties. The study results indicated

that FPPA was capable of addressing vagueness or

imprecision associated with probabilistic risk evaluation,

and help generate risk outputs that could be elucidated

under different possibilistic levels. The dual uncertainties

could be effectively communicated into processes of

environmental transport modeling, fuzzy transformation

analysis, probabilistic risk assessment, and fuzzy risk

quantification. The two applications also demonstrated the

potential of FPPA for helping environmental managers

to evaluate trade-offs involving risks and costs, as well
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as identify management solutions that sufficiently hedge

against dual uncertainties.

In fact, many parameters for environmental transport

modeling are subject to complex uncertainties. A stochas-

tic parameter may be further complicated by vagueness in

identifying the mean and standard deviation of its proba-

bility distribution function. This could occur due to

application of multiple datasets (obtained at different mea-

surement periods) for estimating a single stochastic param-

eter, or shortage of data for generating an accurate stochastic

distribution. The study results indicated that the complex

uncertain features had significant impacts on modeling and

risk-assessment outputs; the degree of impacts of modeling

parameters were highly dependent on the level of impreci-

sion of these parameters. The conventional probabilistic risk

assessment involves the calculation of only a single proba-

bility of the environmental loss in comparison with the

related environmental standard, and is only a special case of

FPPA applications.

The proposed methodology was able of managing

uncertainties related with transport modeling parameters

described by both probability density functions (PDFs) and

fuzzy sets; it was an excellent vehicle in proving deviations

sensitivity caused by modeling inputs on predictions of

contaminant fate and transport and the related violation

risks compared with the related environmental guidelines.

This study would be strong basis for carrying on engi-

neering design of environmental pollution control. Never-

theless, FPPA was also demonstrated some limitations and

further investigations and improvement would be expected.
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