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Abstract Conventional statistical downscaling tech-

niques for prediction of multi-site rainfall in a river basin

fail to capture the correlation between multiple sites and

thus are inadequate to model the variability of rainfall. The

present study addresses this problem through representa-

tion of the pattern of multi-site rainfall using rainfall state

in a river basin. A model based on K-means clustering

technique coupled with a supervised data classification

technique, namely Classification And Regression Tree

(CART), is used for generation of rainfall states from large-

scale atmospheric variables in a river basin. The K-means

clustering is used to derive the daily rainfall state from the

historical daily multi-site rainfall data. The optimum

number of clusters in the observed rainfall data is obtained

after application of various cluster validity measures to the

clustered data. The CART model is then trained to estab-

lish relationship between the daily rainfall state of the

river basin and the standardized, dimensionally-reduced

National Centers for Environmental Prediction/National

Center for Atmospheric Research (NCEP/NCAR) reanal-

ysis climatic data set. The relationship thus developed is

applied to the General Circulation Model (GCM)-simu-

lated, standardized, bias free large-scale climate variables

for prediction of rainfall states in future. Comparisons of

the number of days falling under different rainfall states for

the observed period and the future give the change

expected in the river basin due to global warming. The

methodology is tested for the Mahanadi river basin in

India.

Keywords Climate change � Statistical downscaling �
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1 Introduction

The global warming and associated impacts on human

society have drawn considerable concerns from academic

circles, public, and governments. Keller (2009) reviewed

some of the key issues concerning global warming. Climate

change impact assessment studies have aroused newer

interest in local stochastic weather simulation, as the output

of General Circulation Models (GCMs) cannot directly be

used in any regional hydrologic model of interest (Wigley

et al. 1990; Carter et al. 1994). Statistical downscaling

techniques, which relate large-scale climate variables (or

predictors) to regional- or local-scale meteorologic/hydro-

logic variables (or predictands), can serve as a tool to

generate synthetic weather data required for climate change

impact assessment studies. Several single-site stochastic

models are available for simulation of weather series. An

important limitation of these single-site models is that they

simulate weather separately for single sites. Therefore, the

resulting weather series for different sites are independent

of each other, whereas strong spatial correlation may exist

in real weather data. Few stochastic models have been

developed to produce weather series simultaneously at

multiple sites, mainly for daily precipitation, such as the

space–time model (Bardossy and Plate 1992; Bogardi et al.

1993; Sanso and Guenni 1999), non-homogeneous hidden

Markov models (NHMMs) (Hughes et al. 1999; Bellone

et al. 2000; Robertson et al. 2004) and nonparametric non-

homogeneous hidden Markov model (NNHMM) (Mehrotra

and Sharma 2005a). These approaches are comparatively
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complicated in both calibration and implementation. Fur-

ther, statistical downscaling models also fail to model the

variability of the predictand (Wilby et al. 2004) and,

therefore, going by the values of rainfall amount directly

obtained from atmospheric variables may not always be

realistic. In view of these, the present study proposes to

represent the rainfall pattern of all the stations in a river

basin, not by using rainfall amounts but by using a rainfall

state of the basin. A statistical downscaling technique is

developed for prediction of future day rainfall state from

GCM-simulated climate variables. The proposed model

contains two modules, namely training and forecasting, to

be implemented. Multi-site rainfall data is clustered with

the help of an unsupervised data classification technique to

identify rainfall states present in the rainfall data. A

supervised data classification technique-based model is

trained to establish relationship between the input data

containing current day standardized climate predictors

along with previous day(s) rainfall state and the output data

containing the current day rainfall state. The trained model

is used to forecast present day rainfall state of a river basin

with the help of principal components obtained from GCM

output and previous day(s) rainfall state. This approach

overcomes the limitations of capturing cross correlations of

raingage stations and estimates the future rainfall states of

the river basin. The generated rainfall states can further be

used for predicting rainfall amounts.

The rest of the paper is organized as follows. Section 2

deals with the literature review on statistical downscaling

techniques. The model formulation is described in Sect. 3.

Salient features of study area and data used in this research

are detailed in Sect. 4. Section 5 gives details on the

proposed unsupervised data classification technique viz.

K-means algorithm to cluster the feature data and cluster

validity tests normally performed on the clustered data to

identify the optimum number of clusters. The CART

model, the steps involved in building CART tree, and the

advantages of using CART are detailed in Sect. 6. Deri-

vation of rainfall states from multi-site rainfall data,

training and validation of the CART model, forecast of

future day rainfall state using GCM output, and interpre-

tation of results are detailed in Sect. 7. Section 8 summa-

rizes the conclusion of this study.

2 Statistical downscaling techniques: a review

Statistical downscaling methods use identified system

relationships derived from observed data (Wigley et al.

1990; Hewitson and Crane 1996). In this approach, a sta-

tistical model, which relates large-scale climate variables

(or predictors) to regional- or local-scale climate/hydro-

logic variables (or predictands), is developed to derive the

regional information about the climate/hydrologic variable.

Statistical downscaling techniques can be broadly classi-

fied into three categories: transfer function-based methods,

weather pattern-based approaches, and stochastic weather

generators.

Transfer function-based regression models (e.g. Wigley

et al. 1990; Wilby 1998; Wilby et al. 2003, 2004; Buishand

et al. 2004; Ghosh and Mujumdar 2008) are conceptually a

simple way of representing linear or nonlinear relationship

between the predictor and predictand. The methods used in

transfer function-based models include multiple regression

(Murphy 1999), canonical correlation analysis (von Storch

et al. 1993), and sparse Bayesian learning with Relevance

Vector Machine (Ghosh and Mujumdar 2008).

Weather typing approaches (e.g. Hay et al. 1991;

Bardossy and Plate 1992; Conway and Jones 1998; Schnur

and Lettenmaier 1998) involve grouping local, meteoro-

logic variables in relation to different classes of atmo-

spheric circulation. The weather states are achieved by

applying methods, such as cluster analysis to atmospheric

fields (Corte-Real et al. 1995; Huth 1997; Kidson and

Renwick 2002) or using circulation schemes (Bardossy and

Caspary 1990; Jones et al. 1995). These methods have

limited success in reproducing the persistence characteris-

tics of at-site wet and dry spells (Wilby 1994). Hidden

Markov models (HMMs), on the contrary, are used to

classify spatial rainfall patterns and then to infer the cor-

responding weather pattern for prediction of rainfall

occurrence. Persistence characteristics of at-site wet and

dry spells are well captured by HMMs (Rabiner and Juang

2003). The non-homogeneous hidden Markov models

(NHMM) (Hughes and Guttorp 1994; Hughes et al. 1999;

Charles et al. 1999, 2004) capture spatial variability in

daily precipitation by way of identifying distinct patterns in

the multi-station daily precipitation record and approxi-

mately capture the temporal variability through persistence

in the weather states.

Weather generators (Wilks 1992; Khalili et al. 2009), on

the other hand, produce artificial time series of weather

data of unlimited length for a location based on the sta-

tistical characteristics of observed weather at that location.

Stochastic weather generators are generally developed in

two steps: the first step focuses on modeling of daily pre-

cipitation, while the second step concentrates on modeling

other climate/hydrologic variables of interest conditional

upon precipitation occurrence. The model proposed by

Wilks (1998) uses familiar first-order Markov chain model

for rainfall occurrence combined with mixed exponential

distributions for non-zero rainfall amounts. This approach

is further extended for prediction of multi-station rainfall

(Wilks 1998). Mehrotra and Sharma (2007) conceptualized

a semi-parametric model comprising a two-state first-order

Markov model for multi-station rainfall occurrence and
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kernel density estimation-based approach for generation of

rainfall amounts on the simulated wet days.

Other popular nonparametric approaches offer a differ-

ent framework for downscaling precipitation. These mod-

els are solely based on the observed data, thus avoiding the

need to estimate any parameters for the downscaling per-

iod. Two commonly used nonparametric stochastic models

are kernel density estimation (Sharma et al. 1997; Sharma

2000; Sharma and O’Neill 2002; Harrold et al. 2003a, b)

and K-nearest-neighbor (KNN)-based resampling methods

(Lall and Sharma 1996; Mehrotra et al. 2004; Mehrotra and

Sharma 2005a, b; Rajagopalan and Lall 1999; Harrold et al.

2003a; Yates et al. 2003).

Summarily, parametric models, like HMM and the

model proposed by Wilks (1999), require a large number of

parameters to maintain the spatial and temporal structures.

The NHMM-based models are computationally intensive.

The nonparametric alternatives, like the KNN, on the other

hand, do not require specific parameters to be estimated.

However, models based on KNN-logic resample the rain-

fall at all locations on a given day with replacement and,

therefore, result in responses that cannot be different from

what was observed (Mehrotra and Sharma 2005a, b). The

weather typing-based approaches involve grouping local,

meteorologic variables in relation to different classes of

atmospheric circulation. The developed relationship

between weather type and local climate variables may not

hold good in a future climate scenario.

Considering the complexities involved in modeling

the spatial and temporal variabilities, a novel method is

proposed in the present study to represent the rainfall

pattern of all the stations in a river basin by using a rainfall

state of the basin. This approach overcomes the limitations

of capturing cross correlations of raingage stations by way

of grouping the rainfall data into various clusters.

3 Model formulation

The main objective of this study is to derive the rainfall

state of a river basin from large-scale atmospheric vari-

ables, which can further be used for generating multi-site

rainfall amounts. The proposed statistical downscaling

technique couples the K-means clustering technique and a

supervised data classification technique, namely Classifi-

cation And Regression Tree (CART), to achieve the

objective. A flow chart depicting the model for estimation

of daily rainfall state of a river basin is given in Fig. 1. The

various steps involved in the estimation of future daily

rainfall state are as follows:

Step 1: Adopt a suitable unsupervised data classification

technique, such as K-means clustering technique, for

clustering the observed multi-site rainfall data of the

river basin concerned to identify the rainfall states

present in the rainfall data.

Step 2: Perform Principal Component Analysis (PCA) to

reduce the dimensions of the standardized predictor data,

i.e. NCEP/NCAR reanalysis climate data set, pertaining

to the study area and preserve the eigen vectors obtained

Lag Rainfall 
State 

PCA 

CART Model Training 

Standardization Clustering 

NCEP/NCAR 
Reanalysis data 

Standardized 
Predictor 

Multi-site 
Rainfall

Lagged 
Rainfall State 

(Lag 1)

Bias Correction 

Raw GCM 
Output

Bias-corrected 
GCM Output 

Rainfall State of 
River Basin 

Dimensionally-reduced 
Standardized Predictor 

Eigen Vectors 

Dimensionally-reduced 
GCM Predictor 

PCA 

Trained CART Model 

Future Rainfall 
State  

Fig. 1 Flow chart for

estimation of future rainfall

state
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therein. The dimensionally-reduced climate variables

represent a large fraction of the variability contained in

the original data.

Step 3: Train the CART model(s) to establish relation-

ship between the input data containing current day

standardized and dimensionally-reduced climate predic-

tors along with previous day(s) rainfall state and the

output data containing the current day rainfall state.

Step 4: Apply bias correction for the downloaded GCM

output data to obtain bias-corrected GCM data.

Step 5: Obtain principal components of GCM data by

performing PCA of the bias-corrected GCM data with

the help of principal directions (eigen vectors) obtained

during PCA of NCEP/NCAR reanalysis data.

Step 6: Use the trained CART model to derive present

day rainfall state of the river basin with the help of

principal components obtained from GCM output and

rainfall state of the previous day.

The main advantage of the present statistical down-

scaling technique is the use of simple and easy-to-use

K-means clustering technique for grouping the rainfall data

to identify rainfall states and the use of classification and

regression tree-based model for prediction of future rainfall

state, which is less computationally intensive and requires

less number of parameters to model. Also the CART model

permits us to have both continuous and discrete or both

data type as predictors and a discrete data as predictand.

The present downscaling technique also represents the

pattern of rainfall in a river basin by using a rainfall state of

the basin and, thereby, overcomes the limitations of cap-

turing cross correlations of raingage stations. Conventional

statistical downscaling techniques used for prediction of

rainfall in a river basin also fail to capture the variability of

the predictand. Therefore, it is more realistic to first derive

the rainfall states from atmospheric variables (which may

not suffer from the above-mentioned limitation) and then

generate rainfall amount from the rainfall state.

4 Study area and data

The Mahanadi River is a major peninsular river of India

flowing from west to east. It drains an area of 141,589 km2,

and has a length of 851 km from its origin. The river

originates in a pool at an elevation of about 442 m above

MSL from Pharsiya village in Raipur district of Chhattis-

garh State. The Mahanadi basin lies north-east of Deccan

plateau between latitudes 19�210N and 23�350N and lon-

gitudes 80�300E and 87�000E. Important tributaries of the

Mahanadi River are Seonath, Jonk, Hasdeo, Mand, Ib, Tel,

and Ong. The location map and basin map of the Mahanadi

River is given in Fig. 2. The Mahanadi River splits into at

least six major distributaries and numerous smaller chan-

nels near the city of Cuttack, before meeting Bay of Ben-

gal. The delta region through which these tributaries flow is

a densely-populated (with population of 400–450 people

per km2), flat, and extremely fertile region.

Reanalysis data on (a) mean sea level pressure (MSLP),

(b) relative humidity, (c) eastward wind field (UWind),

(d) northward wind field (VWind), and (e) surface air

temperature, which resemble output of any GCM, down-

loaded from the official website of National Center for

Environmental Prediction/National Center for Atmospheric

Research (NCEP/NCAR) reanalysis project (Kalnay et al.

1996; http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.

shtml) are generally used as predictor data for training

and validating any statistical downscaling model. Often,

simple linear relationship between the predictor and pre-

dictand provides a general idea on the aerial extent of data

required for statistical downscaling. Figure 3 shows the

contour plots of Pearson correlation coefficient between the

predictor variables and the rainfall data for the region

between latitudes 5�–40�N and longitudes 60�–120�E. The

selection of the aerial domain for downscaling is mainly

based on the Indian summer monsoon activity. To account

for the physical processes, such as low pressure area over

the northern and central Indian subcontinent and the

movement of air current from the Indian Ocean through

Bay of Bengal towards the low-pressure area during the

Indian summer monsoon in the present stochastic model,

the climate data for 144 (12 9 12) grid points falling under

the region between latitudes 7.5�–35�N and longitudes

70�–97.5�E are extracted from the NCEP/NCAR data.

The third generation coupled GCM (CGCM3.1) output

for experiments, such as 20C3M, SRESA1B, COMMIT,

SRESA2, and SRESB1 downloaded from website of

Canadian Centre for Climate Modeling and Analysis

(CCCMA) (http://www.cccma.ec.gc.ca/data/cgcm3/cgcm3.

shtml), forms the ensemble of future climate scenario

predictor data for generation of future rainfall state. As the

grid spacing of the GCM grid points does not match with

the NCEP/NCAR grid points, the GCM data are interpo-

lated to obtain the GCM output at NCEP grid points.

Standardization (Wilby et al. 2004) of GCM predictor

data is carried out prior to statistical downscaling to reduce

systematic biases in the means and variances of GCM

predictors relative to the observations or the NCEP/NCAR

data. The standardization of NCEP/NCAR reanalysis data

is carried out by subtracting the mean and dividing the

standard deviation of the predictor variables of NCEP/

NCAR reanalysis data for the predefined baseline period.

The baseline period considered in this study is from 1951

to 2000. This duration is sufficient to establish a reliable

climatology and is neither too long nor too contemporary to
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include a strong global change signal. However, stan-

dardization of GCM data is corrected with the help of mean

and standard deviation of predictor data pertaining to

20C3M experiment for the same duration. The standard-

ized climate predictor for any day contains 720 data attri-

butes represented by MSLP, specific humidity, wind fields

(zonal and meridional), and surface temperature at 144

NCEP/NCAR grid points (five climate variables in each

gridpoint; i.e. 144 9 5 = 720 attributes in total) of the

study region. Statistical modeling with high-dimensional

correlated data will be computationally expensive. There-

fore, Principal Component Analysis (PCA) is carried out to

reduce the dimension of the NCEP/NCAR predictor. It is

found that 98% of the variability of the original data set is

explained by the first 142 principal components of the

dimensionally-reduced data. Hence, the first 142 principal

components of the NCEP/NCAR data for the baseline

period are used for training and validating the proposed

statistical model. It is also very much essential to preserve

the eigen vectors obtained during PCA of the NCAP/

NCAR data to obtain the principal components of bias-

corrected GCM data.

A high-resolution (1� 9 1� lat/long) gridded daily rainfall

data for the Indian region developed by India Meteorological

Department (IMD) is used in this study (Rajeevan et al.

2005). The daily gridded rainfall dataset is based on 1803

stations that have at least 90% data availability for the period

1951–2000. Indian summer monsoon daily rainfall data for

the Mahanadi basin represented by 19 grid points are picked

up for further analysis. The main objective of this study is to

generate rainfall state (predictand) for future climate sce-

narios with the use of climate predictor variables. Before

developing any statistical relationship between the predictor

and predictand, it is essential to identify the possible rainfall

Fig. 2 a Location of Mahanadi

Basin in India. b Mahanadi

Basin map (Source: Irrigation

Atlas of India)
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states in the observed rainfall data for the study region. An

unsupervised data classification technique, namely K-means

clustering, is used for identification of possible rainfall states

in rainfall data.

5 Unsupervised classification

Clustering is an unsupervised data classification technique

used to group together feature vectors, which are close to

one another in a multi-dimensional feature space, to

uncover some inherent structure which the data possess. A

simple partitional clustering procedure, namely K-means

method, is adopted in this study to identify the rainfall

states for the study area.

5.1 K-means clustering

The K-means algorithm (McQueen 1967) is commonly

used to identify clusters in a given dataset. Let xi denote the

ith feature vector in the n-dimensional attribute space

{xi = [xi1, …, xij, …xin] [ <n}. The K-means algorithm is

an iterative procedure in which the feature vectors move

from one cluster to another to minimize the objective

function, F, defined as:

F ¼
XK

k¼1

Xn

j¼1

XNk

i¼1

d2 xk
ij; x

k
:j

� �
ð1Þ

where d2(xij
k , x.j

k) is the squared Euclidian distance between

feature vectors, K is the number of clusters, Nk is the

number of feature vectors in cluster k, xij
k is the value of

attribute j in the feature vector i assigned to cluster k, and

x.j
k is the mean value of attribute j for cluster k, computed

as: xk
:j ¼

Pn
i¼1 xk

ij

.
Nk

By minimizing F in Eq. 1, the distance of each feature

vector from the center of the cluster to which it belongs is

minimized. The computational steps involved in pro-

gramming K-means algorithm to obtain clusters for a given

value of K are as follows:

(1) Set ‘current iteration number’ t = 0 and maximum

number of iterations to tmax.

Fig. 3 Contour plot of Pearson

correlation coefficient between

rainfall and predictor variables
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(2) Initialize K cluster centers to random values in the

multi-dimensional feature vector space.

(3) Initialize the ‘current feature vector number’ i to 1.

(4) Determine Euclidean distance of ith feature vector xi

from centers of each of the K clusters, and assign it to

the cluster whose center is nearest to it.

(5) If i \ N, increment i to i ? 1 and go to step (4), else

continue with step (6).

(6) Update the centroid of each cluster by computing the

average of the feature vectors assigned to it. Then

compute F for the current iteration t using Eq. 1. If

t = 0, increase t to t ? 1 and go to step (3). If t [ 0,

compute the difference in the values of F for

iterations t and t - 1. Terminate the algorithm if

the change in the value of F between two successive

iterations is insignificant, else continue with step (7).

(7) If t \ tmax, update t to t ? 1 and go to step (3), else

terminate the algorithm.

The optimal value attained by F depends on the assumed

number of clusters (K) and initialized values of their

centers.

5.2 Cluster validation measures

Many clustering algorithms require the number of clusters

given as an input parameter. This is a potential problem, as

this number is often not known. To overcome this problem,

a number of cluster validation indices have been proposed

in the literature. A cluster validation index, by definition, is

a number that indicates the quality of a given clustering.

Hence, if the correct number of clusters is not known, one

can execute a clustering algorithm multiple times varying

the number of clusters in each run from some minimum to

some maximum value. For each clustering obtained under

this procedure, the validation indices are computed.

Eventually, the clustering that yields the best index value is

returned as the final result. Cluster validation measures,

such as the Dunn’s index (Dunn 1973), the Davies–Bouldin

index (Davies and Bouldin 1979), and the Silhouette index

used in this study that reflect compactness, connectedness,

and separation of cluster partitions, are detailed below.

5.2.1 Dunn’s index

The Dunn’s index (VD) defines the ratio between the

minimal intra-cluster distance to maximal inter-cluster

distance, and is computed as follows:

VD ¼ min
1� i�K

min
1� j�K;j 6¼j

d Ci;Cj

� �

max
1� k�K

D Ckð Þ

2

4

3

5

8
<

:

9
=

; ð2Þ

where

d Ci;Cj

� �
¼ min

xi2Ci;xj2Cj

d xi; xj

� �� �

is the distance between clusters Ci and Cj (inter-cluster

distance), and

D Ckð Þ ¼ max
xi;xj2Ci

d xi; xj

� �� �

is the intra-cluster distance of cluster Ck. The value of K for

VD, which is maximized, is taken as the optimal number of

clusters.

5.2.2 Davies–Bouldin index

The Davies–Bouldin index (VDB) is a function of the ratio

of the sum of within-cluster scatters to between-cluster

separation, and is given by:

VDB ¼
1

k

XK

k¼1

max
k;k 6¼l

Sk;q þ Sl;q

dkl;k

� 	
ð3Þ

The scatter within the kth cluster Sk,q and the Minkowski

distance of order k between the centroids that characterize

clusters Cj and Ck are computed as follows:

Sk;q ¼
1

Nk

X

xi2Ck

xi � zkk k q
2




 !1

q

ð4Þ

dkl;k ¼ zk � zlk kk¼
Xn

j¼1

xk
:j � xl

:j









k

 !1
k

ð5Þ

where zk is the centroid of cluster k, and Sk,q is the qth root

of the qth moment of the Euclidean distance of feature

vectors in cluster k with respect to its centroid. First

moment (q = 1) and Minkowski distance of order 2

(k = 2) are used in the present study. A small value for

VDB indicates good partition, which corresponds to com-

pact clusters with their centers far apart.

5.2.3 Silhouette index

The silhouette width of the ith vector in the cluster Cj is

defined as follows:

s j
i ¼

b j
i � a j

i

max a j
i ; b

j
i

� � ð6Þ

The average distance ai
j between the ith vector in the cluster

Cj and the other vectors in the same cluster is given by:

a j
i ¼

1

mj � 1

Xmj

k¼1;k 6¼j

d X j
i ;X

j
k

� �
; i ¼ 1; . . .;mj ð7Þ

The minimum average distance bi
j between the ith vector in

the cluster Cj and all the vectors clustered in the clusters

Ck, k = 1, …, K, k = j is given by:
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b j
i ¼ min

n¼1;...;K;n 6¼j

1

mn

Xmn

k¼1

d X j
i ;X

n
k

� �
( )

; i ¼ 1; . . .;mj ð8Þ

From Eq. 6, it follows that the values of si
j varies between

-1 and ?1 (both inclusive).

The silhouette of the cluster Cj is defined as

Sj ¼
1

mj

Xmj

i¼1

s j
i ð9Þ

and the global Silhouette index of the clustering is given

by:

S ¼ 1

K

XK

j¼1

Sj ð10Þ

Both a cluster’s silhouette and the global silhouette take

values between -1 and ?1 (both inclusive).

6 Supervised classification

Supervised classification is a machine learning technique

for learning a function from training data. The training data

consist of pairs of input objects (typically vectors) and

desired outputs. The output of the function can be a con-

tinuous value or can predict a class label of the input

object. The task of the supervised learner is to predict the

value of the function for any valid input object after having

seen a number of training examples (i.e. pairs of input and

target output).

The CART model builds classification and regression

trees for predicting continuous dependent variables

(regression) and categorical predictor variables (classifi-

cation). In most general terms, the purpose of the analysis

via tree-building algorithms is to determine a set of if-then

logical (split) conditions that permit accurate prediction or

classification of cases. The tree is built through a process

known as binary recursive partitioning algorithm. This is

an iterative process of splitting the data into partitions, and

then splitting it up further on each of the branches. The

steps involved in building CART are as follows:

(1) Initially, place all observations in the training set

(the pre-classified records that are used to determine

the structure of the tree) at the root node. This node

is considered impure or heterogeneous, since it

contains all observations. The goal is to devise a rule

that initially breaks up these observations and

creates groups or binary nodes that are internally

more homogeneous than the root node.

(2) Starting with the first variable, split a variable at all

of its possible split points (at all of the values the

variable assumes in the sample). At each possible

split point of the variable, the sample splits into two

binary or child nodes.

(3) Apply goodness-of-split criteria to each split point

and evaluate the reduction in impurity or heteroge-

neity due to the split.

(4) Select the best split on the variable as that split for

which reduction in impurity is the highest.

(5) Repeat steps (2)–(4) for each of the remaining

variable at the root node and rank all of the ‘best’

splits on each variable according to the reduction in

impurity achieved by each split.

(6) Select the variable and its best split point that

reduces most of the impurity of the root or parent

node.

(7) Assign classes to these nodes according to a rule that

minimizes misclassification cost.

(8) Repeatedly apply steps (2)–(7) to each non-terminal

child node at each of the successive stages.

(9) Continue the splitting process and build a larger

tree. The largest tree can be achieved if the splitting

process continues until every observation constitutes

a terminal node.

(10) Prune the results using cross-validation and create a

sequence of nested tree, and select the optimal tree

based on minimum cross-validation error rate.

The advantages of using the CART model are:

(a) It makes no distributional assumption of any kind,

either on dependent or on independent variables. No

predictor variable in CART is assumed to follow any

kind of statistical distribution;

(b) The predictor variables in CART can be a mixture of

categorical, interval, and continuous;

(c) CART is not affected by outliers, colinearities,

heteroscedasticity or distributional error structure that

affect parametric procedures;

(d) CART has the ability to detect and reveal interactions

in the dataset;

(e) CART is invariant under monotonic transformation of

independent variables; and

(f) CART effectively deals with higher-dimensional data.

7 Results and discussion

7.1 Derivation of rainfall states

As a first step in building the statistical model for pre-

dicting the occurrence of future rainfall states, the K-means

algorithm is used to cluster gridded rainfall data of 19 grid

points for a period of 50 years from 1951 to 2000 repre-

senting the Mahanadi basin. As this is an unsupervised
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clustering without any target output, validation/testing is

not required/possible for K-means algorithm. The cluster-

ing algorithm tries to minimize the objective function in

Eq. 1. As such, the optimum number of clusters is not

known, the K-means algorithm is executed several times

varying the number of clusters (K) in each run. The

K-means algorithm gives, in each run, classified cluster

identification (ID) for each rainfall vector and cluster

centroids as the main output, which are preserved for

computation of cluster validation indices. The optimum

number of clusters is worked out based on the cluster

validity indices. The three cluster validation measures

mentioned above (i.e. Dunn’s index, Davies–Bouldin

index, and Silhouette index) are computed for each cluster

obtained under the K-means clustering technique. Fig-

ure 4a–c shows plots of various cluster validity indices

computed against the number of clusters used for cluster-

ing. Table 1 gives the cluster centroids as computed using

the K-means clustering technique for clusters varying from

2 to 5. It is observed from Table 1 that the cluster centroid

for almost dry condition is found to be well separated from

the cluster centroids of other states in all groups of clusters.

From hydrologic point of view, it is important to separate

out the almost dry conditions and, therefore, number of

clusters greater than 2 is considered for identification of the

optimum number of clusters in this study. It is also

observed that the cluster validity measures show the opti-

mum cluster as 3 for number of clusters greater than 2.

Therefore, the clusters obtained by the K-means algorithm

for k = 3 clusters are adjudged as the best clusters, and the

respective cluster indices are considered as the predictand

for training the CART model. The rainfall states are thus

named as ‘‘almost dry,’’ ‘‘medium,’’ and ‘‘high’’ on the

basis of rainfall amounts present in the cluster centroid.

Considering both the rainfall values as well as the number

of rainy days in unsupervised classification may provide a

more realistic rainfall state estimation and can be consid-

ered as a potential research area.

7.2 Training and validation of the CART model

The standardized and dimensionally-reduced NCEP/NCAR

reanalysis data, containing 142 principal components rep-

resenting five climate variables, viz. MSLP, specific

humidity, wind fields (U, V Wind), and air temperature for

144 grid points of the study area, represents the predictor

data set. The rainfall states identified by the K-means

clustering technique form the predictand to train the CART

model. Three possible models considered for training and

validation purpose are given below:

Fig. 4 Computed cluster

validity measures
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Model 1: RðtÞ ¼ f mðtÞ;mðt � 1Þ;Rðt � 1Þf g ð11Þ
Model 2: RðtÞ ¼ f mðtÞ;mðt � 1Þ;Rðt � 1Þ;Rðt � 2Þf g

ð12Þ

Model3: RðtÞ¼ f mðtÞ;mðt�1Þ;Rðt�1Þ;Rðt�2Þ;Rðt�3Þf g
ð13Þ

where R(t)/m(t) is the state of rainfall/set of atmospheric

variables on the tth day, and R(t - i)/m(t - i) is the state

of rainfall/set of atmospheric variables on the (t - i)th day.

The relationship/function (f) (Eqs. 11–13) used in CART

considers both continuous (values of atmospheric/climate

variables) and discrete (lag rainfall states) variables as

input and only discrete variable as output (present rainfall

state).

Standardized and dimensionally-reduced NCEP/NCAR

predictor data and concurrent rainfall states for a period of

33 years from 1951 to 1983 are used for training the CART

models and the remaining predictor data for a period of

18 years from 1986 to 2003 are used for validating the

trained CART models. Therefore, a total of three training

and three validation runs are taken for models referred in

Eqs. 11–13. The model validation results are used to

compute skill measures, such as success rate of model

prediction (SRMP), Heidke skill score (HSS) (Wilks 1995)

and v2 goodness-of-fit test statistic to reliably identify the

best model for future use.

The success rate of model prediction (SRMP) for a 3 9 3

contingency table, as given in Table 2, can be defined as:

SRMP ¼ aþ eþ ið Þ
aþ bþ cþ d þ eþ f þ gþ hþ ið Þ � 100

ð14Þ

The value of SRMP ranges from 0 to 100, with 0 for poor

forecasts and 100 for perfect forecasts.

The Heidke score is based on the hit rate as the basic

accuracy measure defined as (Wilks 1995):

Thus, perfect forecasts receive Heidke scores of one,

forecasts equivalent to the reference forecasts receive zero

Table 1 Centroids of clusters computed by K-means clustering technique

No. of clusters Cluster centroids

2 5.4 5.2 5.1 3.8 4.0 4.1 4.3 5.2 6.1 5.4 3.3 3.6 4.1 4.5 4.6 4.6 5.0 5.9 5.0

22.0 18.7 26.5 25.3 27.3 28.2 24.8 21.0 20.3 37.7 23.9 23.6 29.0 29.2 21.5 29.6 26.6 26.6 25.2

3 4.4 4.3 3.7 2.7 2.8 2.9 3.2 4.1 4.9 3.4 2.2 2.3 2.7 3.0 3.1 2.8 3.4 4.0 3.3

14.0 11.6 16.2 13.4 14.3 14.2 13.6 13.8 14.9 21.6 13.5 14.4 17.2 17.8 15.9 20.5 18.5 20.6 19.0

33.1 30.3 40.0 43.1 46.7 49.8 41.2 30.7 26.8 60.9 37.3 34.5 42.5 42.6 25.7 35.7 32.9 29.6 27.8

4 16.4 10.5 27.6 22.4 21.9 17.7 13.5 11.1 10.8 78.5 33.7 31.4 36.9 30.2 33.0 53.0 37.1 32.3 40.6

40.2 41.0 39.9 48.3 55.3 65.3 57.4 44.8 40.2 27.9 29.3 29.0 37.3 42.9 18.0 18.7 25.6 21.6 17.4

13.7 11.8 15.3 12.6 13.5 13.6 13.1 13.5 14.7 16.9 11.5 12.4 15.1 16.2 13.3 16.0 16.0 19.0 15.4

4.0 3.9 3.3 2.5 2.5 2.5 2.9 3.7 4.4 3.0 2.0 2.1 2.4 2.7 2.9 2.6 3.0 3.6 3.0

5 14.4 11.3 17.2 16.1 20.4 20.6 19.5 15.8 13.6 23.0 23.0 29.3 45.5 42.3 28.9 52.9 44.0 42.7 42.3

13.2 11.7 14.2 11.6 12.5 12.7 12.3 13.4 15.2 14.4 10.2 11.0 12.4 13.6 11.9 13.3 13.3 15.8 13.1

18.1 11.7 35.1 26.8 21.9 16.2 12.1 11.4 11.8 111.7 33.2 22.6 20.9 18.0 23.4 26.7 20.4 18.8 22.5

44.8 45.8 44.1 52.7 59.8 71.0 59.9 44.8 40.1 28.5 29.7 28.3 31.1 36.0 17.3 15.4 21.0 17.1 14.3

3.7 3.6 3.0 2.2 2.2 2.2 2.5 3.3 3.9 2.8 1.9 1.9 2.2 2.4 2.7 2.4 2.8 3.4 2.8

Table 2 Contingency table for state-to-state transition

Observed state (Oi) Predicted state (Yi)

1. Almost dry 2. Medium 3. High

1. Almost dry a b c

2. Medium d e f

3. High g h i

HSS ¼ aþ eþ ið Þ=nð Þ � aþ bþ cð Þ aþ d þ gð Þ þ d þ eþ fð Þ bþ eþ hð Þ þ gþ hþ ið Þ cþ f þ ið Þ½ �=n2

1� aþ bþ cð Þ aþ d þ gð Þ þ d þ eþ fð Þ bþ eþ hð Þ þ gþ hþ ið Þ cþ f þ ið Þ½ �=n2
ð15Þ
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scores, and forecasts worse than reference forecasts receive

negative scores. However, HSS [ 0.15 indicates a rea-

sonably good forecast (Maity and Nagesh Kumar 2008).

Similarly, the association between the forecasts and the

observed rainfall based on the v2 distribution can be found to

decide whether or not the null hypothesis H0 is plausible; the

null hypothesis is defined as: There is no association between

the observed and the forecasted rainfall occurrence.

The v2 statistic is defined as:

v2 ¼
X3

i¼1

X3

j¼1

fij � eij

� �2

eij
ð16Þ

where fij’s are the entries in the table of observed fre-

quencies in the contingency table, and eij ¼ row(iÞtotalf
�column(jÞtotalg= grand totalð Þ’s are the corresponding

expected frequencies under the null hypothesis H0. Under

H0, the test statistic v2 has, approximately, a v2 distribution

with (r - 1)(c - 1) degrees of freedom, where r and c are

the numbers of rows and columns in the contingency table.

As with the v2 goodness-of-fit test, H0 is usually rejected

only for large values of v2.

The SRMP (in percentage), HSS, and v2 goodness-of-fit

statistic computed for the results of all the model runs are

presented in Table 3. It is observed that the SRMP, HSS,

and v2 goodness-of-fit statistic computed for the results of

Model 1 validation run are 63.86%, 0.17, and 126.8,

respectively, which are found to be the highest among all

the runs. Since the computed HSS for the results of Model

1 run (0.17) is higher than 0.15, one can infer that Model 1

gives a reasonably good forecast (Maity and Nagesh

Kumar 2008).

The upper 10 and 5% points for v4
2 are 7.78 and 9.49,

respectively. It is observed that the v2 goodness-of-fit sta-

tistic computed for the Model 1 validation results

(v2 = 126.8) is much higher than the upper 10 and 5%

point values. Hence, the null hypothesis H0 would be

rejected at both 10 and 5% significance levels. Thus, there

is a strong evidence of association between the forecasts

and the observed rainfall as far as the v2 goodness-of-fit

statistic is concerned. The SRMP, HSS, and v2 goodness-

of-fit statistic computed for the results of validation runs of

the above three models indicate that the performance of

Model 1 is better than Model 2 or Model 3. Therefore,

Model 1 is selected for forecasting the occurrence of future

day rainfall states using GCM output.

7.3 Forecast of future day rainfall states using GCM

output

The principal components of third generation coupled

GCM (CGCM3.1) outputs for experiments, such as

20C3M, SRESA1B, COMMIT, SRESA2 and SRESB1, are

used for driving the trained CART model for estimation of

rainfall states for future scenarios of climate change.

Tables 4, 5, 6, 7, and 8 give a 25-year wise breakup of

number of days forecasted falling under different rainfall

states. The percentage-wise occurrences of rainfall states

for various scenarios are given in Fig. 5.

A customary look at Fig. 5a, b shows that model results

obtained for CGCM3.1 output with 20C3M experiment

almost match with K-means clusters used for training the

model. Further, it is observed that the model results

obtained for COMMIT experiment are consistent with that

of the 20C3M experiment (Fig. 5c), and also there is no

significant trend in the occurrence of ‘‘almost dry,’’

‘‘medium,’’ and ‘‘high’’ rainfall states. The model results

obtained for SRESA1B experiment (Fig. 5d) show an

increase in ‘‘almost dry’’ states, a decrease in ‘‘medium’’

rainfall states, and an increase in ‘‘high’’ rainfall states.

Figure 5e depicts the model results obtained for SRE-

SA2 experiment. It shows no significant increase in the

number of ‘‘almost dry’’ states for the first two periods

(2001–2025 and 2026–2050), and an increase in the num-

ber of ‘‘almost dry’’ states for the third period (2051–2075).

The fourth period (2076–2100) shows a decrease in the

number of ‘‘almost dry’’ states. The number of ‘‘medium’’

rainfall states slightly increases for periods 2001–2025 and

2026–2050, and then steadily decreases for the remaining

Table 3 CART training and validation results

Sl. no. Model ID CART validation results

SRMP HSS v2

1. Model 1 63.86 0.17 126.8

2. Model 2 61.77 0.14 95.8

3. Model 3 61.21 0.12 70.4

Table 4 25-yearwise breakup of number of rainy days forecasted

falling under different states: (a) K-means cluster used for training the

model; and (b) Model results for CGCM3.1 output with 20C3M

experiment

State Forecast for the period

1951–1975 1976–2000

Number of days % Number of days %

(a)

1. Almost dry 2656 69.44 2703 70.67

2. Medium 955 24.97 922 24.10

3. High 214 5.59 200 5.23

(b)

1. Almost dry 2634 68.86 2561 66.95

2. Medium 885 23.14 1027 26.85

3. High 306 8.00 237 6.20
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periods. There is a slight decrease in the number of ‘‘high’’

rainfall states for periods 2001–2025 and 2026–2050, a

marginal increase in the number of ‘‘high’’ rainfall states

for periods 2026–2050 and 2051–2075, and a steep

increase in the number of ‘‘high’’ rainfall states for periods

2051–2075 and 2075–2100.

Figure 5f shows no increase in ‘‘almost dry’’ rainfall

states for the periods 2001–2025 and 2026–2050, and then

a steady increase in almost dry rainfall states for the peri-

ods 2026–2050 and 2076–2100. It is also observed that

there is a slight increase in ‘‘medium’’ rainfall states for the

periods 2001–2025 and 2026–2050, and then a decrease for

the periods 2026–2050 and 2076–2100. The ‘‘high’’ rain-

fall states marginally decrease for periods 2001–2025 and

2026–2050, and then there is no significant trend in ‘‘high’’

rainfall states.

7.4 Transition probability

Tables 9, 10, 11, 12 and 13 give 25-year wise state–state

transition probability matrix computed for the results of

model runs for the four experiments: COMMIT, SRE-

SA1B, SRESA2, and SRESB1. Figure 6 shows the plots of

Table 5 25-yearwise breakup of number of rainy days forecasted falling under different states for the COMMIT experiment

State Forecast for the period

2001–2025 2026–2050 2051–2075 2076–2100

Number of days % Number of days % Number of days % Number of days %

1. Almost dry 2526 66.0 2578 67.4 2624 68.6 2618 68.4

2. Medium 1005 26.3 1008 26.4 958 25.1 939 24.6

3. High 294 7.7 239 6.3 243 6.4 268 7.0

Table 6 25-yearwise breakup of number of rainy days forecasted falling under different states for the SRESA1B experiment

State Forecast for the period

2001–2025 2026–2050 2051–2075 2076–2100

Number of days % Number of days % Number of days % Number of days %

1. Almost dry 2592 67.8 2629 68.7 2818 73.7 2737 71.6

2. Medium 934 24.4 993 26.0 713 18.6 548 14.3

3. High 299 7.8 203 5.3 294 7.7 540 14.1

Table 7 25-yearwise breakup of number of rainy days forecasted falling under different states for the SRESA2 experiment

State Forecast for the period

2001–2025 2026–2050 2051–2075 2076–2100

Number of days % Number of days % Number of days % Number of days %

1. Almost dry 2612 68.3 2623 68.6 2839 74.2 2588 67.7

2. Medium 930 24.3 998 26.0 730 19.2 420 11.0

3. High 283 7.4 204 5.3 256 6.7 817 21.4

Table 8 25-yearwise breakup of number of rainy days forecasted falling under different states for the SRESB1 experiment

State Forecast for the period

2001–2025 2026–2050 2051–2075 2076–2100

Number of days % Number of days % Number of days % Number of days %

1. Almost dry 2552 66.7 2580 67.4 2735 71.5 2939 76.8

2. Medium 964 25.2 1069 27.9 908 23.7 667 17.4

3. High 309 8.0 176 4.6 182 4.7 219 5.7
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‘‘almost dry–almost dry,’’ ‘‘medium–medium,’’ and ‘‘high–

high’’ rainfall state transition probabilities obtained for

model outputs for all the experiments.

7.4.1 COMMIT experiment

The state-to-state transition probability plots drawn for

COMMIT experiment are shown in Fig. 6a. It is observed

that there is no major trend in the almost dry–almost dry,

medium–medium, and high–high rainfall states. This

shows consistency in predictability of the CART model.

7.4.2 SRESA1B experiment

Figure 6b shows the state–state transition probability plots

obtained for the SRESA1B experiment. It is observed that

there is no significant trend in almost dry–almost dry state

transition probabilities for the periods 2001–2025 and

2026–2050 and also for the periods 2051–2075 and 2076–

2100. A marginal increase in almost dry–almost dry tran-

sition probabilities is noticed for the periods 2026–2050

and 2051–2075. The medium–medium rainfall state

transition probabilities for the periods 2001–2025 and

Fig. 5 Percentage-wise

breakup of occurrence of

rainfall states

Table 9 Transition probability: (a) results of K-means clustering with three clusters; and (b) model results for CGCM3.1 output with 20C3M

experiment

1951–1975 1976–2000

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

(a)

1. Almost dry 0.8415 0.1476 0.0109 1. Almost dry 0.8528 0.1350 0.0122

2. Medium 0.3958 0.4869 0.1173 2. Medium 0.3915 0.5011 0.1074

3. High 0.2009 0.4579 0.3411 3. High 0.1850 0.4750 0.3400

(b)

1. Almost dry 0.7916 0.1727 0.0357 1. Almost dry 0.7945 0.1816 0.0238

2. Medium 0.4486 0.3785 0.1729 2. Medium 0.4002 0.4635 0.1363

3. High 0.4967 0.3105 0.1928 3. High 0.4852 0.3629 0.1519
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Table 10 Transition probability for the COMMIT experiment

2001–2025 2026–2050

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.7886 0.1817 0.0297 1. Almost dry 0.7929 0.1815 0.0256

2. Medium 0.3821 0.4418 0.1761 2. Medium 0.4048 0.4524 0.1429

3. High 0.5102 0.3469 0.1429 3. High 0.5272 0.3515 0.1213

2051–2075 2076–2100

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.7988 0.1780 0.0232 1. Almost dry 0.8063 0.1674 0.0264

2. Medium 0.4123 0.4384 0.1493 2. Medium 0.4058 0.4366 0.1576

3. High 0.5432 0.2963 0.1605 3. High 0.4739 0.3358 0.1903

Table 11 Transition probability for the SRESA1B experiment

2001–2025 2026–2050

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.7975 0.1752 0.0274 1. Almost dry 0.7836 0.1936 0.0228

2. Medium 0.4109 0.4088 0.1803 2. Medium 0.4592 0.4300 0.1108

3. High 0.4415 0.3712 0.1873 3. High 0.5616 0.2759 0.1626

2051–2075 2076–2100

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.8254 0.1423 0.0323 1. Almost dry 0.8180 0.1286 0.0533

2. Medium 0.5133 0.3773 0.1094 2. Medium 0.5931 0.2737 0.1332

3. High 0.4286 0.1463 0.4252 3. High 0.3191 0.0853 0.5955

Table 12 Transition probability for the SRESA2 experiment

2001–2025 2026–2050

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.8028 0.1696 0.0276 1. Almost dry 0.7995 0.1868 0.0137

2. Medium 0.4075 0.4161 0.1763 2. Medium 0.4208 0.4359 0.1433

3. High 0.4806 0.3534 0.1661 3. High 0.5196 0.3578 0.1225

2051–2075 2076–2100

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.8228 0.1497 0.0275 1. Almost dry 0.8191 0.1094 0.0715

2. Medium 0.5288 0.3521 0.1192 2. Medium 0.6762 0.1762 0.1476

3. High 0.4531 0.1914 0.3555 3. High 0.2264 0.0759 0.6977
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2026–2050 show a marginal increase in trend, and then

steadily decrease for the remaining periods: 2026–2050

and 2075–2100. The high–high rainfall transition proba-

bilities initially show a slight decrease in trend for the

periods 2001–2025 and 2026–2050, and then a steep

increase in trend for the remaining periods. The increase

in the transition probability of high–high rainfall states

suggests that there is a possibility of clustering of high

rainfall days together, which may result in severe

flooding.

Table 13 Transition probability for SRESB1 experiment

2001–2025 2026–2050

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.7778 0.1861 0.0361 1. Almost dry 0.7721 0.2105 0.0174

2. Medium 0.4243 0.4118 0.1639 2. Medium 0.4602 0.4331 0.1066

3. High 0.5081 0.3010 0.1909 3. High 0.5455 0.3523 0.1023

2051–2075 2076–2100

Initial state (i) Final state (j) Initial state (i) Final state (j)

1. Almost dry 2. Medium 3. High 1. Almost dry 2. Medium 3. High

1. Almost dry 0.8069 0.1770 0.0161 1. Almost dry 0.8482 0.1253 0.0265

2. Medium 0.4791 0.3987 0.1222 2. Medium 0.5172 0.3988 0.0840

3. High 0.5165 0.3407 0.1429 3. High 0.4612 0.1507 0.3881

Fig. 6 Plot of state–state

transition probabilities
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7.4.3 SRESA2 experiment

Figure 6c shows the state–state transition probability plots

obtained for the SRESA2 experiment. No significant trend

in the almost dry–almost dry state transition probabilities is

observed for the periods 2001–2025 and 2026–2050 and

also for the periods 2051–2075 and 2076–2100. A marginal

increase in trend in almost dry–almost dry state transition

probabilities is observed for the periods 2026–2050 and

2051–2075. The medium–medium rainfall state transition

probabilities show a marginal increase in trend for the

period 2001–2025 and 2026–2050, and then show a steady

to steep increase in trend for the remaining periods. At the

same time, the high–high rainfall transition probabilities

show a slight decrease in trend for the periods 2001–2025

and 2026–2050, and then show a steep to very steep

increase in trend for the remaining periods.

7.4.4 SRESB1 experiment

Figure 6d shows the state–state probability plots obtained

for the SRESB1 experiment. The figure shows no trend in

the almost dry–almost dry state transition probabilities for

the periods 2001–2025 and 2026–2050, and then a slight

steady increase in trend for the remaining periods. The

medium–medium rainfall transition probabilities show a

marginal increase in trend for the periods 2001–2025 and

2026–2050 and a marginal decrease in trend for 2026–2050

and 2051–2075. No trend in medium–medium rainfall state

transition probabilities is observed for the remaining peri-

ods: 2051–2075 and 2076–2100. A steady decrease in trend

is observed for the high–high rainfall state transition

probabilities for the periods 2001–2025 and 2026–2050. A

slight to steep increase in trend is observed for the

remaining periods.

Although there are differences between the projected

results for different scenarios, it is generally observed that

there is a possibility of increase in the occurrences for

almost dry and high rainfall states. On the other hand, the

number of days with medium rainfall state reduces. This

denotes an increase in the occurrences of extreme weather

events (either almost dry state or high rainfall state) in

future. Interesting results are observed in terms of transi-

tional probabilities. The transitional probability of high–

high rainfall state is found to be significantly increasing in

future. The predictions of increase of almost dry days and

decrease of medium rainfall days are similar to the pre-

dictions of Ghosh and Mujumdar (2007) and Mujumdar

and Ghosh (2008), where the possibilities of reduction of

rainfall and streamflow in the Mahanadi River basin

are explored. Moreover, some of the earlier models

using transfer function-based approaches failed to pre-

dict extreme rainfall events correctly (e.g. Ghosh and

Mujumdar 2008). Therefore, the changes in high rainfall

events as forecasted by those analyses are not reliable. The

present study does not have any limitation for capturing the

high rainfall states and, hence, shows the possibility of an

increase in the number of high rainfall days. This increase

is consistent with the recent trend analysis (of Central India

Summer Monsoon Rainfall) by Goswami et al. (2006),

where an increase in the occurrences of heavy rainfall

states is observed. It should be noted that the results pre-

sented here are based on single-GCM outputs. There is a

possibility of obtaining different results if different GCMs

are used. Therefore, analysis with a single GCM may not

be reliable (Ghosh and Mujumdar 2007; Mujumdar and

Ghosh 2008). Multi-ensemble analysis with multiple

GCMs and subsequent uncertainty modeling is required

before any water resources decision-making incorporating

climate change.

Some recent observations show that the Mahanadi basin

is vulnerable to the impact of climate change. For example,

analysis of instrumental climate data revealed that the

mean surface air temperature over the Mahanadi basin has

increased at a rate of 1.1�C per century, which is statisti-

cally significant compared to the national average of 0.4�C

(Rao 1995). Recent past records of Orissa also show that

this is the most affected region of India due to climate

change (www.cseindia.org/programme/geg/pdf/orissa.pdf).

A small change in the circulation pattern may result in a

significant change in rainfall of the case study area.

Increase in trend observed in the occurrence of almost dry

rainfall state, coupled with a steady decrease in the

occurrence of medium rainfall state, may result in less

water availability, which, in turn, may increase the fre-

quency of drought in the study area. Secondly, the increase

in trend observed in the occurrence of high rainfall state

along with the increase in high–high rainfall state transi-

tional probability shows possibilities of continuous heavy

downpour for few days in the monsoon. This may lead to

severe flooding in the lower Mahanadi basin, where the

population density is also high. It is summarized that

potential impact of climate change in the Mahanadi basin

will likely be huge, with predicted freshwater shortages,

sweeping changes in food production conditions, and

increases in deaths from floods, storms, heat waves, and

droughts.

8 Summary and conclusion

The work reported in this paper contributes towards

developing methodologies for predicting the state of rain-

fall at local or regional scale for a river basin from large-

scale GCM output of climatological data. As a first

step towards statistical downscaling, an agglomerative
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clustering technique, namely K-means algorithm, is adop-

ted for clustering the gridded rainfall data pertaining to the

Mahanadi River basin in India. The rainfall states arrived

with the help of clustering technique form the predictand

for the statistical downscaling model developed for pre-

diction of future day rainfall occurrence. Principal Com-

ponent Analysis (PCA) is performed on NCEP/NCAR

reanalysis data pertaining to the study area to reduce the

dimensions of predictor attributes and the computed eigen

vectors are preserved to derive principal components of

other GCM data. The CART models are trained with

principal components of NCEP/NCAR reanalysis data for a

period of 33 years from 1951 to 1983 as predictor and the

concurrent rainfall states derived for the river basin using

the K-means clustering algorithm as predictand. The

trained CART models are tested with the remaining pre-

dictor data for a period of 17 years from 1984 to 2000. The

CART model with lag-1 rainfall as the predictor rainfall

state is found to be the best model for prediction of future

day rainfall occurrence. This model is capable of producing

a satisfactory value of goodness-of-fit in terms of success

rate of model prediction (SRMP), Heidke skill score (HSS),

and v2 value.

General Circulation Model outputs for five climate

scenarios (20C3M, COMMIT, SRESA1B, SRESA2, and

SRESB1) are standardized, i.e. bias-corrected and trans-

formed into principal components using the preserved

NCEP/NCAR eigen vectors. The trained CART model is

then driven with principal components of GCM outputs for

the different climate scenarios. Twenty-five-year wise

predicted rainfall states falling in various categories of

rainfall states namely ‘almost dry,’ ‘medium,’ and ‘high’

are computed. State-to-state transition probabilities are also

computed for the results of various experiments.

The results corroborate the possibility of an increase in

the occurrences of ‘almost dry’ and ‘high’ rainfall states

and a decrease in the occurrences of ‘medium’ rainfall

states. It is interesting to note that the transition probability

for high–high rainfall is reported to increase in future,

which suggests the possibility of clustering of heavy rain-

fall days together. Therefore, it is concluded that the

occurrence of daily rainfall in the Mahanadi basin will be

severely affected due to climate change. A pronounced

increasing trend in the occurrence of high rainfall states

may cause flooding situation in the basin. Also, the

increasing trend in the occurrences of almost dry states

coupled with decreasing trend in the occurrences of med-

ium rainfall states may cause a critical situation for the

Hirakud dam (a major dam across the Mahanadi River) in

meeting the future irrigation and power demands. The

methodology developed herein can be used to project the

occurrence of rainfall also for other GCMs and scenarios.

The future day rainfall states thus predicted for the

Mahanadi basin will be used for generation of rainfall

amounts, which, in turn, will be a valuable input to study

the impact of climate change on local hydrology.
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