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Abstract Popular parameter estimation methods, includ-

ing least squares, maximum likelihood, and maximum

a posteriori (MAP), solve an optimization problem to

obtain a central value (or best estimate) followed by an

approximate evaluation of the spread (or covariance

matrix). A different approach is the Monte Carlo (MC)

method, and particularly Markov chain Monte Carlo

(MCMC) methods, which allow sampling from the pos-

terior distribution of the parameters. Though available for

years, MC methods have only recently drawn wide atten-

tion as practical ways for solving challenging high-

dimensional parameter estimation problems. They have a

broader scope of applications than conventional methods

and can be used to derive the full posterior pdf but can be

computationally very intensive. This paper compares a

number of different methods and presents improvements

using as case study a nonlinear DNAPL source dissolution

and solute transport model. This depth-integrated semi-

analytical model approximates dissolution from the

DNAPL source zone using nonlinear empirical equations

with partially known parameters. It then calculates the

DNAPL plume concentration in the aquifer by solving

the advection-dispersion equation with a flux boundary.

The comparison is among the classical MAP and some

versions of computer-intensive Monte Carlo methods,

including the Metropolis–Hastings (MH) method and the

adaptive direction sampling (ADS) method.

Keywords Markov chain Monte Carlo �
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1 Introduction

Parameter estimation is a fundamental problem for

researchers and practitioners who work with mathematical

models in almost every field of endeavor. Every model has

parameters that must be selected, and this problem is even

more important when the model describes subsurface

processes, where direct measurements are expensive and

sometimes even impossible to obtain (Frind and Pinder

1973; Kitanidis and Vomvoris 1983; Butler et al. 1999;

Yeh and Liu 2000; Liu et al. 2007). Parameters must be

inferred from data, some of which may only be indirectly

related to the parameters of interest.

Generally we can conceptualize the physical model in

the form of functions as

y ¼ hðhÞ; ð1Þ

where y is a vector of quantities that can be predicted from

the model (output of the model), h is the vector of unknown

parameters, h is a set of functions that map the parameter

space to the output space. If quantities y are also measured,

Eq. 1 can be used to estimate the values of h: The

representation of Eq. 1 is incomplete because, in practice,

it is usually unreasonable to expect that model predictions

should perfectly match observations even if the right

parameters could be found. The measurement process

causes error, i.e., the measured value is not exactly equal to

the true value. Furthermore, the conceptualization process

itself regularly leads to an inexact representation (or model

error) of the physical processes, which is another reason

X. Liu (&) � M. A. Cardiff � P. K. Kitanidis

Department of Civil and Environmental Engineering,

Stanford University, Stanford, CA 94305, USA

e-mail: shawnliu@stanford.edu

123

Stoch Environ Res Risk Assess (2010) 24:1003–1022

DOI 10.1007/s00477-010-0395-y



why the model should not be expected to exactly match the

observations. For practical purposes, it is common practice

to incorporate all the uncertainty from the model and the

measurement into a term � that describes the total deviation

of the measurement from model predictions given the

‘‘ideal’’ parameter set h: Hence a more useful repre-

sentation that we will be working with is

y ¼ hðhÞ þ �: ð2Þ

A relevant issue is nonlinearity. A parameter estimation

problem is called nonlinear when the transformation from

the parameter set to the observations is nonlinear, i.e.,

when h is nonlinear. The topic of nonlinear estimation is

important because most physical processes are nonlinear.

Parameter estimation for such models, particularly the

probabilistic quantification of uncertainty, is mathemati-

cally and computationally difficult to tackle in an exact

way. The most common approach (Bard 1973; van den Bos

2007) in applications involves approximations of a best

estimate and estimation error, usually through a series of

linearization steps. Examples are the methods of nonlinear

least squares (NLS), maximum likelihood (ML), and

maximum a posteriori (MAP) estimation. In these

methods, the best estimate is obtained by minimizing a

‘‘fitting criterion’’ followed by a linearized uncertainty

analysis (Bard 1973). The criterion can be fitting to the data

(NLS); a probability model of the data (ML); or the

posterior distribution of the parameters (MAP). We will

refer to such methods as classical methods. These methods

have good asymptotic properties, i.e., when the number of

observations tends to infinity, parameter estimates are

unbiased and exhibit minimum variance with Gaussian

distributions. However, in real-world cases, data are sparse.

Although it is hoped that, in many practical cases, these

methods should work quite adequately and give results that

are reasonably close to the ‘‘correct solution’’, there has

been a dearth of studies that verify this expectation.

Uncertainty analysis based on such classical estimation

methods is valid when a number of implicit assumptions

are met. They perform best when the distribution of errors

is nearly symmetric and not very different from Gaussian.

Such behavior is met when the confidence interval is suf-

ficiently small so that the function can be approximated by

a linear function over that range. Otherwise, a single best

estimate, which may not even be close to the mean of the

distribution, and an approximately evaluated covariance

matrix are not adequate to represent the probability dis-

tribution of errors and thus may be unacceptable for use in

probabilistic (i.e., risk based) assessment of management

plans or strategies. Optimization under uncertainty may

require generating a number of equi-probable sets of

parameters, which are representative of the uncertainty in

the parameters.

When classical methods are inadequate, we must resort

to methods that are not dependent on the linearity of the

model, among which Monte Carlo methods are most

prominent. For example, Sahuquillo et al. (1992) devel-

oped the sequential self-calibration method to simulate the

transmissivity field conditioned on piezometric data and

later Gomez-Hernandez et al. (1997) provided theoretical

basis for it. Gomez-Hernandez et al. (2001) applied this

method in conductivity simulation of a fractured rock block

and Franssen et al. (2003) extended it to a coupled

groundwater flow and mass transport problem. Ramarao

et al. (1995) developed the pilot point method for condi-

tional simulation of transmissivity field and it was later

applied in a fractured aquifer by Lavenue and de Marsily

(2001). Kentel and Aral (2005). combined fuzzy set theory

with Monte Carlo methods to include incomplete infor-

mation and applied it in health risk analysis. A recent

review of the application of Monte Carlo methods in the

inverse modeling of groundwater flow can be found in

Franssen et al. (2009).

An early Monte Carlo application can be traced back to

the famous needle-throwing experiment (Buffon’s Needle)

conducted by Georges Buffon in 1777 (Dorrie 1965).

Because the Monte Carlo method converges at a rather

slow rate (proportional to the square root of the number of

samples, according to the Central Limit Theorem), its

potential use is highly dependent on an efficient sampling

strategy to produce samples h that follow a certain distri-

bution, such as the posterior distribution, which may be

hard to work with and defined only within a multiplicative

constant. The rejection method (von Neumann 1951) can

be used for this purpose. However, application of this

method is hindered by difficulties in finding the constant

term in the acceptance ratio and in finding a proper proxy

distribution that is not too different from the target distri-

bution and that is easy to sample from. Almost two hundred

years after the Buffon’s Needle experiment, the Metropo-

lis–Hastings algorithm was invented and generalized. This

is a powerful and comprehensive approach that can be used

to create a Markov chain that is composed of samples from

any distribution. The theory underlying the Markov chain

Monte Carlo (MCMC) method has been rigorously inves-

tigated and many algorithms have been developed to con-

struct the Markov chain, including the Gibbs sampler

(Geman and Geman 1984), which does directional sam-

pling along the coordinates, and the hybrid MCMC sampler

(Duane et al. 1987), which uses a series of deterministic

iteration steps (or a surrogate distribution) to generate

samples.

The nonlinear parameter estimation problems can be

formulated in a Bayesian framework leading to an

expression for the posterior probability density function

(pdf) (Bard 1973; van den Bos 2007), which is known up to
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a multiplicative constant and is difficult to sample directly.

We are primarily interested in the application of the

MCMC method to generate a modest number of indepen-

dent and equiprobable samples from the posterior proba-

bility density function in Bayesian inference. These

samples are to be used in risk analysis and optimization

under uncertainty.

There have been numerous applications of the MCMC

method in science and engineering, but we will focus on

reviewing applications in the water resources field. Kucz-

era and Parent (1998), Bates and Campbell (2001), Vrugt

et al. (2003), Feyen et al. (2007), and Blasone et al. (2008)

used the MCMC method to evaluate parameter uncertainty

in hydrological models. Marshall et al. (2004) and Smith

and Marshall (2008) performed comparison studies of the

MCMC application in rainfall-runoff modeling. The

MCMC method was also used to generate conditional

realizations in parameter/function estimation (Michalak

and Kitanidis 2003). Oliver et al. (1997), Michalak (2008)

and Fu and Gomez-Hernandez (2009) applied MCMC

methods in various groundwater applications. Vrugt et al.

(2008) designed the differential evolution adaptive

Metropolis (DREAM) algorithm especially for efficient

sampling of the posterior distribution of hydrological

models, and Vrugt et al. (2009) later compared this algo-

rithm with the generalized likelihood uncertainty estima-

tion (GLUE) method. The MCMC method thus is

increasingly recognized as a promising approach to solving

challenging parameter estimation problems in water

resources areas.

Classical parameter estimation methods are ‘‘local’’ in

nature because they involve optimization algorithms to

determine a single estimate (e.g. the peak of the posterior

distribution) followed by an approximate procedure to

compute a covariance matrix that describes parameter

estimation error. In contrast, the MCMC approach is global

in the sense that it attempts to represent the probability

distribution through a large number of samples. The

MCMC method per se is theoretically sound and straight-

forward to program. However, the method may require

many iterations and the generation and evaluation of many

samples. Each sample requires at least the implementation

of one run of the model and thus the total computational

cost can be high.

As an important member in the family of MCMC

samplers, Gibbs sampling has the advantage of eliminating

the worry of acceptance rate in MCMC sampling because it

searches in the axial directions and accepts all proposal

samples acquired from axial line sampling. As Gilks et al.

(1994) pointed out, one major drawback of the Gibbs

sampler is that when the support domain of the target

probability distribution comprises several disjoint subdo-

mains, such as that shown in Fig. 1, it is impossible for the

Gibbs sampler to sample the whole domain. Hence Gilks

et al. (1994) proposed an adaptive direction sampling

method in which the Snooker algorithm starts from mul-

tiple initial samples that compose the initial population.

Then two samples are uniformly chosen without replace-

ment from the population and a new sample is generated

from an adjusted conditional distribution along the line

determined by the two chosen samples. This line sampling

strategy overcomes the drawback of Gibbs line sampling.

Furthermore, as Liu et al. (2000) propose, this sampling

strategy can be easily combined with a local optimization

algorithm such as the Conjugate Gradient method. While

Gilks et al. (1994) did not mention exactly how to sample

from the adjusted distribution, Liu et al. (2000) developed

a multiple-try method (MTM) for this purpose and named

the new sampler the Conjugate Gradient Monte Carlo

(CGMC) sampler. However, in a high-dimensional prob-

lem, the local mode search step is rather computationally

intensive, and our test cases showed that it might not be

worthwhile to perform a local mode search in high-

dimensional applications. Hence in this paper, we will use

the ADS sampling strategy combined with the multiple-try

line sampling method.

Since MCMC methods are computationally expensive,

the quality of the samples is of paramount importance in

MCMC sampling. However, this issue has not received

enough attention in many applications of MCMC methods

in the water resources area. We recommend a combination

of two diagnostic methods in this paper. The first method

comes from the perspective of the independence require-

ment of the samples for Monte Carlo simulation. Thus, we

test the auto-correlation of samples from one MCMC chain

as a function of lag distance, expecting that the auto-cor-

relation coefficient stabilize around 0 after a relatively

Fig. 1 The failure of Gibbs sampling and the success of ADS

sampling. The dotted lines are the two possible Gibbs sampline

directions, and the dashed line represents one of the possible sampling

directions when there are three sequences
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short lag distance. The second method diagnoses the con-

vergence of the MCMC chains, using the Scale Reduction

Factor (SRF) proposed by Gelman and Rubin (1992). The

SRF compares the cross-chain variance and the within-

chain variance, and it serves as an effective measure of the

convergence of MCMC sampling. In this work, we also

adopt the graphical approach suggested by Brooks and

Gelman (1998) to visualize the SRF as a function of the

number of samples.

In this paper, we generalize on several aspects in the

application of the MCMC method to parameter estimation

problems. In the process, we review all the necessary steps

required in MCMC sampling, i.e. choice of the starting

sample(s); choice of the candidate generating function, and

the diagnosis of the samples. We also test a relatively new

MCMC sampler, the ADS sampler in conjunction with a

semi-analytical DNAPL dissolution and transport model.

This methodology is applicable to the parameter estimation

in environmental problems and associated risk analysis.

We also compare a classical parameter estimation method

(MAP) with the MCMC methods to test the applicability of

the classical methods in environmental problems.

2 Bayesian probability model

In Bayesian theory, the posterior distribution of parameters

h; pðhjyÞ; (i.e., the distribution conditional on the obser-

vations y) is proportional to two terms: the prior distribu-

tion, which is the unconditional distribution of h; p0ðhÞ;
and the conditional distribution of the observations y given

the parameters h; LðyjhÞ; which is also called the likelihood

function. Then, using Bayes’ theorem

pðhjyÞ ¼ LðyjhÞp0ðhÞ
fYðyÞ

; ð3Þ

where fY(y) is the unconditional distribution of the

observations y,

pðhÞ � pðhjyÞ / p0ðhÞ � LðyjhÞ ð4Þ

where pðhÞ is the target distribution of h from which we

want to generate samples. We drop the conditional nota-

tion for notational simplification, keeping in mind that

pðhÞ is the posterior probability density function of h:

When parameters h can only possibly have values in a

certain domain, we call it the support domain and denote it

as H:
Although many parameter estimation applications uti-

lize only the likelihood, which means the exclusion of any

prior/subjective information on the distribution of h; we

strongly recommend this term be included in the target

distribution for the following reasons. (1) In all physical

models, we always know something about the parameters

we want to estimate even before we collect measurements.

The Bayesian formulation and the prior distribution offer a

convenient and systematic way to introduce this informa-

tion. (2) Most physical parameters are meaningful only

within certain bounds. For instance, contaminant mass can

not be negative; and (3) Required relationships/constraints

among various parameters as well as the information from

earlier observations can be included in the prior distribu-

tion. Furthermore, without prior information, the uniden-

tifiability problem often arises due to the infinitely large

support domain of the parameters.

The next issue is what kind of prior distribution we

should use. Our criteria for the prior distribution are as

follows.

1. When there is information available indicating a

parameter should follow a certain distribution, use

that distribution for the parameter.

2. When there is no information about the distribution of

the parameter but a typical value and its variance can

be postulated, use normal distribution for the param-

eter. If the parameter can only have one sign, use a log-

normal distribution for the parameter and formulate the

problem in terms of the logarithm of the parameter

instead.

3. When there is no information about the distribution but

a physical range of the parameter is known, use a

uniform distribution defined on the range. In this case,

the prior information known about the parameter is

rather limited. When a uniform distribution defined on

[-?, ?] is used as a prior, which means no prior

information at all, the posterior distribution is exactly

the likelihood function.

Another assumption we often need to make is the form

of the conditional distribution of the observation given all

the parameters, i.e., the likelihood function L(y|x). With a

model as in Eq. 2, we know that when h is linear and h is

normal, y will also be normal. However, when h is non-

linear, the conditional distribution of y|x can not be directly

derived and can not be written in a closed form. Hence,

according to the same rules mentioned above for the prior

distribution, we assume that y|x is normal and L(y|x) fol-

lows the pdf of a multivariate normal distribution with

mean hðhÞ and covariance matrix R that is the same as that

of the observation error �:

In case we use the multivariate normal distribution as

the prior distribution, we can rewrite the target pdf, Eq. 4

as

pðhÞ / exp �1

2
h� lh

� �T
Q�1 h� lh

� �� �

� exp �1

2
�y� hðhÞð ÞT R�1 �y� hðhÞð Þ

� �
ð5Þ
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where lh and Q are respectively the mean, and covariance

matrix of the prior multivariate normal distribution; and �y

and R are respectively the measurement data and covari-

ance matrix of y.

3 MAP parameter estimation with linearized

uncertainty analysis

One of the most popular methods for parameter estimation

is the maximum a posteriori (MAP) approach. The MAP

method is related to the Maximum Likelihood (ML)

method (for example, Kitanidis and Lane 1985; Carrera

and Neuman 1986) in the sense that the target function of

the ML method is a part of the target function of the MAP

method. Nonetheless, the ideas behind these two methods

are somewhat different, the former being a sampling-theory

tool and the latter being a Bayesian approach. The logic

behind the ML method is, given the conditional distribution

of the observations and a sample (the observed values)

from this distribution, under what kind of conditions

(parameters) can the probability of the occurrence of the

sample be maximized. While the logic behind the MAP

method is, given the conditional distribution of the

parameters, what is the mode of this distribution, or what

are the most probable values for the parameters, or what is

the best estimate of the parameter given all the information

we have. Thus, for the MAP method, we try to maximize

the posteriori probability density function pðhÞ as in Eq. 5

by solving the following constrained optimization problem:

max
h

pðhÞ ¼ exp � 1

2
h� lh

� �T
Q�1 h� lh

� �� �

� exp �1

2
�y� hðhÞð ÞT R�1 �y� hðhÞð Þ

� �
ð6Þ

or equivalently,

min
h
LðhÞ ¼ h� lh

� �T
Q�1 h� lh

� �

þ �y� hðhÞð ÞT R�1 �y� hðhÞð Þ ð7Þ

subject to

h 2 H:

Given nonlinearity in h, the covariance matrix of the

distribution in Eq. 5 can rarely be easily derived. Here we

use a first order approximation of functions h and the

posterior covariance matrix can be written as

bV ¼ bHT R�1 bH þQ�1
� ��1

ð8Þ

where bV is the MAP covariance matrix estimate, and bH is

the sensitivity matrix evaluated at the solution of Eq. 7 ðĥÞ:
bHi;j ¼ ohi

ohj
jĥ where hi is the ith component in h and hj is the

jth component in h:

One would notice that bV is actually the Fisher infor-

mation matrix for the MAP estimator, hence it can be used

to bound the covariance matrix of the estimator according

to the Cramér-Rao Inequality. From this point of view, we

would expect that bV is an underestimate of the posterior

covariance matrix V in the sense that the difference V� bV
is positive semidefinite.

4 MCMC sampling

4.1 Metropolis–Hastings (MH) sampling

The Metropolis–Hastings (MH) sampling strategy (Metrop-

olis et al. 1953; Hastings 1970) is the most popular and the

most investigated MCMC method. It has also been used and

proved to be effective in several parameter estimation

applications in hydrology (Kuczera and Parent 1998; Bates

and Campbell 2001; Vrugt et al. 2003; Feyen et al. 2007;

Blasone et al. 2008). The MH sampling strategy starts from

an initial sample and then evolves according to the fol-

lowing steps:

(1) Generate a new sample hkþ1 2 H from a candidate

generating density function, pðhk; hkþ1Þ; where hk is

the current sample, and pðhk; hkþ1Þ should be from a

distribution that can be directly sampled.

(2) Calculate the ratio

r ¼ pðhkþ1Þpðhkþ1; hkÞ
pðhkÞpðhk; hkþ1Þ

ð9Þ

and accept the new sample with probability a = min{r, 1}.

If we choose a symmetric candidate generating density

function pðhk; hkþ1Þ such that pðh; hkþ1Þ ¼ pðhkþ1; hkÞ;
then the ratio in Eq. 9 can be simplified to r ¼ pðhkþ1Þ

pðhkÞ and

a ¼ minfpðhkþ1Þ
pðhkÞ ; 1g:

The Metropolis–Hastings algorithm is quite straightfor-

ward and easy to program. One modification to this algo-

rithm would be to run multiple parallel chains starting from

different initial samples. This modification needs little

change to the original algorithm and is especially useful

when one can take advantage of a multi-processor

computer.

4.2 Adaptive direction sampling (ADS)

For the multiple-chain Metropolis–Hastings algorithm,

each chain starts from its own initial sample and goes

through a different path of samples to converge to the same

target distribution, pðhÞ: During this process, each chain

does not gain any information from the other chains, hence

it does not know where the other chains are and what paths

the other chains have traveled through. Communication
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among chains could improve efficiency. For example,

when a chain gets trapped at a minor local mode of the

target distribution, information from other chains could

allow it to break away. On the other hand, the communi-

cation among the chains has to be carefully designed to

retain the desired properties of the Markov chain. Gilks

et al. (1994) propose a method called adaptive direction

sampling (ADS) for this purpose, and in this paper, we will

avoid the theories but review the algorithm below.

Adaptive Direction Sampling (ADS) generates several

chains of samples in parallel. Hence, instead of one initial

sample, it starts from a population of m samples and all

samples in the population evolve from one generation to

the next. To generate the next generation, a current point

ðhðcÞk Þ—the point to be moved—is chosen randomly from

the current generation, and an anchor point ðhðaÞk Þ is chosen

independently and uniformly from the rest of the current

generation k (Fig. 1). Then, the current point is updated by

a new point sampled along the random direction deter-

mined by the two chosen points, i.e., ek ¼ ðhðcÞk �
h
ðaÞ
k Þ= h

ðcÞ
k � h

ðaÞ
k

���
���: The location of the new point is

determined by a scalar l drawn from distribution

f ðrÞ / jljd�1pðhðaÞk þ lekÞ ð10Þ

where d is the dimension of h and p is the target

distribution. After that, the current population is updated by

h
ðcÞ
kþ1 ¼ h

ðaÞ
k þ lkek; and h

ðjÞ
kþ1 ¼ h

ðjÞ
k for j = c. In the

distribution in Eq. 10, the target distribution is adjusted

in a way such that a penalty is enforced on the points

around the anchor point. The adjustment is a must to ensure

that the stationary distribution of the chain is such that each

sample from the current population is independently drawn

from distribution pðhÞ; or

Pðhð1Þk ; h
ð2Þ
k ; . . .; h

ðmÞ
k Þ ¼

Ym

i¼1

pðhðiÞk Þ ð11Þ

The line sampling along the random direction can be

conducted in various ways, for example, the Griddy-Gibbs

(Ritter and Tanner 1992) sampling that approximates the 1-

D distribution with numerical integration. Here in this

paper, we use the multiple-try Metropolis (MTM) method

developed by Liu et al. (2000) because it does not need the

numerical integration that is usually computationally

intensive. It proceeds as follows.

First define

wðh; h0Þ ¼ pðhÞTðh; h0Þkðh; h0Þ ð12Þ

where pðhÞ is the target pdf specified up to a multiplicative

constant, Tðh; h0Þ is the candidate generating density

function (corresponding to the function pðh; h0Þ in Eq. 9),

and kðh; h0Þ is a nonnegative symmetric function in h and

h0: In this equation, the first two parts are commonly seen

as in the Metropolis–Hastings algorithm, and the third part,

as we will see later, adds a lot of flexibility to this algo-

rithm. The MTM algorithm proceeds as follows.

1. At current state h; draw t (t = 8, for example) iid

candidates h01; h
0
2; . . .h0t; from Tðh; �Þ; compute wðh; h0iÞ

for i = 1, 2,…t;

2. select h� among the candidates h01; h
0
2; . . .h0t with

probability proportional to wðh; h0iÞ;
3. draw t - 1 iid candidates h1; h2; . . .ht�1 from Tðh�; �Þ;

and let ht ¼ h;

4. accept h� with probability

rg ¼ min 1;

Pt
i¼1 wðh0i; xÞPt

j¼1 wðhj; h
�Þ

( )

ð13Þ

where rg is called the generalized M–H ratio.

The choice of kðh; h0Þ is flexible. Liu et al. (2000) pro-

pose the so-called MTM(II) algorithm in which

kðh; h0Þ ¼ Tðh; h0Þ þ Tðh0; hÞ
2

� ��1

ð14Þ

where Tðh; h0Þ is a symmetric candidate generating density

function, such that

rg ¼ min 1;

Pt
i¼1 pðh0iÞPt
j¼1 pðhjÞ

( )

: ð15Þ

However, this formation is numerically problematic

when pðhÞ is calculated as its logarithm (or negative

logarithm) to avoid computational overflow when pðhÞ is

too big. Also loss of accuracy may occur when pðhÞ is too

small. In this paper a new kðh; h0Þ is proposed as

kðh; h0Þ ¼ ðpðhÞ þ pðh0ÞÞ�1Tðh; h0Þ�1: ð16Þ

It satisfies the requirements for kðh; h0Þ: (1) it is sym-

metric when we choose a symmetric Tðh; h0Þ; and (2)

kðh; h0Þ[ 0 when Tðh; h0Þ[ 0:

It leads to

wðh; h0Þ ¼ pðhÞTðh; h0Þkðh; h0Þ

¼ pðhÞ
pðhÞ þ pðh0Þ

¼ 1þ pðh0Þ
pðhÞ

	 
�1

¼ 1þ exp ln pðh0Þð Þ � ln pðhÞð Þð Þ½ ��1 ð17Þ

and the generalized M–H ratio can be calculated using

Eq. 13.

The choice for kðh; h0Þ is robust when the absolute value

of pðhÞ is small relative to the computational precision,

while the difference between pðhÞ and pðh0Þ is relatively

larger.
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4.3 Starting samples

There is no doubt that the choice of the starting samples

affects the performance of MCMC sampling. For example,

having a starting sample at the tail of the density function

means it will take a long time to reach the mode area of the

density function and many of the samples at the beginning

of the chain will have to be discarded (the burn-in period).

The most intuitive way of choosing a starting sample is to

use the prior mean values, or a local mode search can be

conducted with the prior estimates to get a starting sample.

However, this only gives one starting sample while mul-

tiple starting samples are needed in parallel MH sampling

and ADS sampling. What is more, when multiple starting

samples are used, we require them to be relatively scat-

tered. An ideal choice would be that the starting samples

are from the target distribution. Unfortunately, the later is

unknown, and a straightforward choice would be to sample

from a multivariate normal distribution with mean and

covariance from the MAP estimates. (MCMC sampling are

much more computationally intensive than the MAP

method and it is supposed to provide more accurate esti-

mation of the parameters, so it makes sense to use the

results from MAP method as a starting point.) However,

samples generated in such a way are often not adequately

dispersed, especially when the target distribution has more

than one modes and minor local modes are not insignificant

compared with the major mode. As Cowles and Carlin

(1996) have shown, serious convergence test errors can be

made when the starting samples may not be adequately

dispersed. Here we will review a process suggested by

Gelman and Rubin (1992) as follows.

1. Conduct a set of local mode searches w.r.t. Eq. 7 from

various initial points, and evaluate the Hessian matri-

ces at the local modes.

2. Generate u samples from a mixture of normal approx-

imations of the target distribution with the local modes

as the mean values and the inverse Hessian matrices as

covariance matrices. The weight of each normal

distribution in the mixture is proportional to the

probability density evaluations at the local modes,

hence minor local modes with density evaluations

significantly smaller than that of the major mode

can be ignored. If there is only one mode (i.e., the

MAP estimate), sample from the MAP normal

approximation.

3. Divide the samples by a scalar random variableffiffiffiffiffiffiffiffiffiffi
v2

g=g
q

; where v2
g is a Chi-Square variate with degrees

of freedom g (say g = 4, as suggested by Gelman and

Rubin (1992)), hence resulting in n samples that are

from a mixture of Student’s t-distribution and proba-

bility density function ~ptðhÞ:

4. Draw m starting samples from the u samples without

replacement and with probability proportional to the

importance ratio
pðhÞ
~ptðhÞ:

4.4 Candidate generating density functions

The candidate generating density function affects the per-

formance of MCMC sampling in several ways. First, as in

importance sampling, the acceptance rate is affected by the

candidate generating density function. Having a candidate

generating density function that is significantly different

from the target density function can significantly decrease

the acceptance rate. Second, the candidate generating den-

sity function defines the relationship between two consecu-

tive samples in the chain, hence the autocorrelation function

(ACF) of the Markov chain. Third, the candidate generating

density function defines the size of the region where the next

sample will be generated. Consequently, it affects the rate at

which the Markov chain traverses the support domain.

There are two major groups of candidate generating

density functions. The first group uses random walks,

meaning the candidate is a random increment added to the

current sample. The other group avoids random walk,

meaning that the candidates are either calculated from a

deterministic function (Hybrid MC; Duane et al. 1987), or

iid samples from a proxy distribution as in importance

sampling.

We can use the prior distribution to get sample candi-

dates (either random walk or iid); however, when the

number of observations is large or the observation error is

small, the likelihood function will have much larger weight

in the posterior density function than the prior distribution

does, thus the posterior distribution will be generally sig-

nificantly different from the prior distribution. When that is

the case, the acceptance rate will be very low. Another

choice is to use the covariance matrix bV from the MAP

estimation (Eq. 8), i.e., we do a Cholesky factorization

w.r.t. to bV to get an upper triangular matrix R such that

RTR ¼ bV: In case the bV is not positive definite, a modified

Cholesky factorization by adding positive values to the

diagonal components of bV (Gill and Murray 1981) can be

used. Then a sample candidate hkþ1 is generated through

hkþ1 ¼ hk þ RT e (random walk) or hkþ1 ¼ ĥþ RT e (iid),

where ĥ is the MAP best estimates of the parameters, and e

is a vector of iid standard normal random numbers.

To generalize, we propose here an autoregressive

equation to generate candidate samples as

hkþ1 ¼ qhk þ ð1� qÞĥþ lfkþ1 þ kdkþ1 ð18Þ

where hk is the current sample, fkþ1 is a multivariate nor-

mal vector with zero mean and covariance matrix bV; dkþ1

is a vector of normal random numbers with zero mean and
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covariance from the prior covariance matrix Q, and

q, l; and k are tuning coefficients that will be discussed

below.

Equation 18 is a combination of the two previously

mentioned groups of candidate functions. We see that when

q = 1, it is a random walk process; and when q = 0, it

generates iid samples from a scaled multivariate normal

distribution from the MAP estimation. q takes values

between -1 to 1 and it weights the random walk part and

the iid part in the candidates. When q = -1, it is the

antithetic sampling, which is known as a variance reduction

technique. l is a scaling factor which defines the step size

for candidate generation. The k term is used to compensate

the fact that the MAP covariance estimate bV might not

represent the posterior covariance matrix well. In case bV is

a good approximation of the posterior covariance, k can be

near 0.

Random walk and iid samples have their own advanta-

ges. When random walk is used, the candidate sample is

always generated from the neighborhood of the current

sample, which means that once the chain hits a feature

(mode) of the distribution, that feature will be extensively

explored before the chain leaves it. On the contrary, when

iid samples are used, the surrogate distribution is inde-

pendent of the target distribution and all the accepted

samples are still mutually independent, hence the auto-

correlation of the Markov chain is generally low, which is a

desirable property for MCMC samples.

On the other hand, these methods have also disadvan-

tages. For the random walk method, sometimes (when the

step size is too small, for instance) it takes a long time for the

chain to escape a minor feature, and for the iid sampling

method, some areas of the target distribution will practically

never be explored when the surrogate distribution is sig-

nificantly different from the target distribution (for example,

when the surrogate distribution has long tails at the areas

where the target distribution has probability away from 0).

Equation 18 gives one the flexibility to lean to either one

of the two methods depending on the values of q and l.

When q is large, one tends to use a smaller l value to

down-scale the search area when the Markov chain is away

from the MAP best estimate, and vice versa.

Another criterion for selecting the proper q, l and k is to

adjust the values in test runs to get the desired acceptance

rate (for instance, 25% as suggested by Chib and Green-

berg (1995)) .

The candidate generating density function for Eq. 18 as

in Eq. 9 can be written as

pðh;h0Þ / exp

�
� 1

2
h0 � qh� ð1� qÞĥ
� �T

l2 bVþ k2Q
� ��1

� h0 � qh� ð1� qÞĥ
� ��

: ð19Þ

This equation is not symmetric unless q = ±1, hence it can

not be dropped from Eq. 9.

4.5 Diagnosis of MCMC samples

There are some simple tests we can perform to diagnose the

samples even when the statistical properties of the target

distribution is completely unknown. In this paper, we

promote two different posterior sample diagnosis methods

that test the samples in two important aspects.

The autocorrelation of the samples as a function of lag

distance is an important measure of the quality of the

samples. Given a sequence of samples {xi, i = 1,…, n},

the autocorrelation coefficient of x as a function of lag

distance d is defined as

cðdÞ ¼ 1

n� d

Xn�d

i¼1

xi � lq

� �
xiþh � lsð Þ

rqrs
; ð20Þ

where n is the number of samples in {xi}; lq and rq are

respectively the mean and standard deviation of the first

n - d samples in the chain, and ls and r s are those of the

last n - d samples. Here the maximum value of d is n - 1.

However, the larger h is, the less samples there are in the

two sub-sequences, and hence the less accurate c(d) is.

Therefore, we limit the lag distance to be less than n/2 so

that the two sub-sequences together will always include all

the samples in the original chain.

Generally, for a MCMC chain, the autocorrelation

coefficient should approach and then stabilize around 0 as a

function of the lag distance. In practice, one can define a

threshold autocorrelation coefficient (0.2, for example) and

record the lag distance where the autocorrelation coeffi-

cient hits the threshold value. That lag distance can be used

as a measure of the quality of the samples in the sense of

autocorrelation.

Furthermore, for any type of iterative modeling such as

MCMC sampling, we need to know when to terminate the

iteration, and usually we stop the iteration when conver-

gence is reached. Generally there are various ways to

define convergence. Cowles and Carlin (1996) reviewed up

to 13 convergence diagnostic methods and sorted them

according to properties such as single/multiple chains,

theoretical basis, applicability, and ease of use. Among all

these methods, the one proposed by Gelman and Rubin

(1992) is widely used due to its wide applicability and ease

of implementation. According to Cowles and Carlin

(1996), Gelman and Rubin’s (1992) method is based on

large-sample normal theory; it is quantitative; and it uses

multiple chains. Furthermore, Gelman and Rubin (1992)

show that lack of convergence can not be generally

examined from a single chain, hence they propose a con-

vergence test for multiple sequences. In this method, a
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scale reduction factor (SRF) (it is actually
ffiffiffiffi
bR

p
that is

called the scale reduction factor, but we will work on bR
instead.) is calculated as

bR ¼
bV

W

df þ 3

df þ 1
¼ n� 1

n
þ mþ 1

mn

B

W

� �
df þ 3

df þ 1
ð21Þ

Before explaining what the various terms mean in the

equation above, we will give a brief introduction of the

process to acquire the SRF.

1. Generate m starting samples as described previously in

subsection ‘‘Candidate Generating Density Functions’’.

2. Run m independent MCMC chains with 2n samples in

each chain. We will work on the last n samples in each

chain only.

3. Choose a scalar statistic x that is a function of one

sample (for instance, the quantity we are trying to

estimate using the Monte Carlo approach, or LðhÞ in

equation Eq. 7 as suggested by Gelman and Rubin

(1992)); calculate

– B
n ¼ 1

m�1

Pm
i¼1ðxi: � x::Þ2; the variance of the m

chain means �xi:; where x.. is the mean of all

samples in all chains.

– W ¼ 1
m

Pm
i¼1 s2

i ; the mean of the variances within

each chain, where s2
i ¼ 1

n�1

Pn
i¼1ðxi;j � xi:Þ2; and

xi,j is the jth component in the ith chain.

4. Calculate df ¼ bV 2

d
Var bV
� � where

bV ¼ B

mn
¼ n� 1

n
W þ ðmþ 1ÞB

mn

and

d
Var bV
� �

¼ n�1

n

� �2
1

m
dVar s2

ið Þþ
mþ1

mn

� �2
2

m�1
B2

þ2
ðmþ1Þðn�1Þ

mn2

n

m
dCov s2

i ;�x
2
i:ð Þ�2�x::

dCov s2
i ;�xi:ð Þ

h i

5. The bR statistic is calculated as in Eq. 21

In a deterministic iterative process, such as the Gauss-

Newton iteration, convergence is claimed when the

improvement in the objective function value, gradient, step

size, etc. on the current iteration is small. Similarly, we

claim the convergence of an MCMC sampling process

when the improvement in some statistic(s) on the current

iteration is small. The idea behind Gelman and Rubin’s

(1992) method is that, starting from an overdispersed dis-

tribution, the multiple chains will start from different areas

of the target distribution. In the beginning, these chains

should have drastically different statistical properties,

however, as the chains evolve and more samples are gen-

erated, after a point, all the chains will have approximately

traveled through the whole support domain of the target

distribution such that the statistical properties of each

separate chain are about the same as those of all the chains

together. At this point, convergence can be claimed.

In the process above, we calculate W, the mean of the

within-chain variance; and bV ; the cross-chain variance of

all chains. Without the df term, the SRF is simply a ratio

between the cross-chain variance and the within-chain

variance. At convergence we should see the SRF stabilize

around 1. In fact, df represents the sampling variability

(Fisher 1953), and it is usually a large number when the

number of samples is larger, hence it can practically be

dropped when the number of samples is large.

Brooks and Gelman (1998) corrected an error on the df

term in Eq. 21 made by Gelman and Rubin (1992) and

argued that in addition to bR approaching 1, bV and W should

also stabilize at convergence. They proposed an iterated

graphical approach to monitor the convergence by dividing

the t chains into batches of length b; then calculate
bV ðkÞ;WðkÞ; and bRðkÞ using the latter half of sub-chains of

length 2kb, k = 1, 2,…l/b; and plot bV ðkÞ; WðkÞ; and bRðkÞ
as a function of k. Thus on the plot, we should expect that

the line of bV ðkÞ is always on the top of that of W(k) but the

two lines get sufficiently close and stabilize at conver-

gence, and at the same time, bRðkÞ should approach 1. The

failure of either one indicates lack of convergence.

Cowles and Carlin (1996) claim that any single existing

convergence monitoring strategy could fail under certain

complex circumstances. Specifically, Cowles and Carlin

(1996) showed that for the bimodal mixture of trivariate

normal distributions, Gelman and Rubin’s method fails

when there is not enough dispersion in the initial samples.

This lack of dispersion in the initial samples generally

could happen when one or more of the modes of a multi-

modal distribution is not detected. In practice, we know

some prior information of the parameters to be estimated,

hence deterministic mode searches can be conducted

starting from multiple initial values. Thus unawareness of a

mode can be avoided in most cases. In this paper, we use a

combination of two simple methods for convergence

monitoring. The autocorrelation tells us the quality of the

samples, while SRF tells us whether we have sampled the

whole support domain or not.

5 An example of DNAPL dissolution and transport

To exemplify the methodologies we propose in this paper,

a simple test case is used. We use a modification of the

semi-analytic source dissolution and dissolved-phase

transport solution developed by Parker et al. (2008). This

model has two main sub-modules—a source dissolution

sub-module that calculates the net mass flow out of a
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source zone, and an advection-dispersion-reaction (ADR)

sub-module that calculates the transport of the dissolved

contaminant plume within the aquifer. The model also

simulates effects of remedial actions such as partial source-

zone mass removal. In this paper, we will focus on pre-

remediation stage parameter estimation.

5.1 Source dissolution sub-module

We utilize a modified version of the Parker and Park (2004)

model of field-scale source-zone dissolution to simulate

flux from a source zone that can include multiple dissolu-

tion architectures (e.g. residual DNAPL and pools). Parker

and Park (2004) use an exponential formula to describe

non-equilibrium DNAPL dissolution:

JiðtÞ � Jo;i
MiðtÞ
Mo;i

� �bi

ð22Þ

where, for source architecture type i, Ji [M/T] is the mass

dissolution rate from the non-aqueous phase to the dis-

solved phase within the source zone; Jo,i [M/T] is the initial

mass flow rate at the time of site contamination (to); Mi(t)

[M] is the current remaining mass of DNAPL; Mo,i [M] is

the initial mass of NAPL at the time of contamination; and

bi [-] is a mass depletion exponent. bi measures the speed

that DNAPL dissolves, which is greater than 1 for finger-

dominated residual and less than 1 for DNAPL pools and

lenses.

By solving a mass conservation equation

dMiðtÞ
dt

¼ �JiðtÞ ð23Þ

subject to the initial condition Mi(0) = M0,i, the analytic

solution for source mass remaining in architecture i is:

MiðtÞ¼
Mo;i

� �1�bi� 1�bið Þ Jo;i

M
bi
o;i

t� toð Þ
	 
1= 1�bið Þ

for bi 6¼1

M0;i exp � J0;i

M0;i
ðt� t0Þ

� �
for bi¼1

8
><

>:

ð24Þ

Substituting Eq. 24 back to Eq. 22, yields an analytical

solution for Ji(t). Summing up all Ji(t) leads to

Jtot tð Þ �
X

i

JiðtÞ: ð25Þ

5.2 Advection-dispersion sub-module

The source dissolution sub-module calculates the total

mass flow rate of dissolved contaminant that enters the

aquifer over time. We assume a contaminant source of

width Ly perpendicular to the groundwater flow direction in

an aquifer of thickness Lz. Applying the depth averaged

solution of Domenico (1987) yields:

Cðx; y; tÞ ¼
Z t

0

Jtot t � sð Þ
4LzLy/ pALvsð Þ1=2

exp � x� vsð Þ2

4ALvs

 !

� erf � y� Ly=2

2 AT vsð Þ1=2

 !

� erf � yþ Ly=2

2 AT vsð Þ1=2

 !" #

ds

ð26Þ

where Jtot is the source zone discharge rate from Eq. 25, /
is the porosity [-], AL and AT are the longitudinal and

transverse dispersivities [L], respectively, and v is the

aquifer pore velocity [L/T] (specific discharge qw [L/T]

divided by porosity /), assumed to be in the x direction.

5.3 Parameter estimation problem setup

In this paper, we test the parameter estimation scheme on a

synthetic problem. A DNAPL source is assumed to occur

in 1965. The source zone is comprised of two architectures,

one representing pools and the other one representing

residual DNAPL. The true groundwater plume extents in

1980 and 2010, and the positions of monitoring wells are

shown in Fig. 2. Monitoring wells are assumed to be

sampled from 1980 to 2010, totalling 140 samples. DNAPL

concentration in the samples is calculated through Eq. 26

and Gaussian noise of various levels (e of 0.1, 0.01, and

0.001 for the log-concentration) is added to the calculated

concentration to represent measurement error.

The true values of the parameters are listed in Table 1

along with pdf of the prior distributions. To test the effects

of measurement error on parameter estimation, three dif-

ferent levels of noise (e of 0.1, 0.01, and 0.001) were added

to natural logarithms of the measurements to represent

measurement error and conceptual model deviations.

We enforce a physical constraint on the porosity (/)

such that it is between 0 and 1. In addition, to avoid the

un-identifiability issue between the two architectures, we

enforce another constraint such that M0,1 [ M0,2. The

preceding constraints fully define the support domain of the

parameters ðHÞ and it will be included in the prior distri-

bution of the parameters.

In addition to the prior distributions, the likelihood func-

tion, or the conditional distribution of the measurements (log-

transformed dissolved contaminant concentrations) given a

set of parameter values follows a multi-variate normal dis-

tribution. Its expectations are calculated through Eq. 26 and

its covariance matrix �2I140�140 is diagonal. Approximately,

e = 0.1 represents a noise level of 10%, e = 0.01 of 1%, and

e = 0.001 of 0.1%. The last case is rare in practice, however,

it serves well as a numerical exercise because under this sit-

uation, the posterior distribution is almost the same as the

likelihood function, which is highly nonlinear and generally

difficult to analyze using classical methods.
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Fig. 2 Plumes of DNAPL in

the aquifer at years 1980 and

2010. The white dots represent

the observation points

Table 1 The variables that will be estimated in the model and their true values and prior estimates

Variable Unit Description Model True Prior Prior r

M0,1 kg Initial contaminant mass deposited in architecture 1 LN 8.41 7.82 0.60

M0,2 kg Initial contaminant mass deposited in architecture 2 LN 6.91 6.21 0.60

J0,1 kg/d Initial flux out of architecture 1 LN -2.30 -2.53 0.20

J0,2 kg/d Initial flux out of architecture 2 LN -0.69 -0.92 0.20

b1 – Mass depletion exponent for architecture 1 LN -0.51 -0.80 0.35

b2 — Mass depletion exponent for architecture 2 LN 0.26 0.34 0.20

AL m Longitudinal dispersivity LN 3.00 2.71 0.20

AT m Transverse dispersivity LN 0.69 0.83 0.10

Ly m Width of source zone LN 3.00 3.14 0.10

qw m/d Ground water Darcy velocity LN -2.66 -2.53 0.35

/ – Aquifer porosity N 0.30 0.32 0.01

Y0 y Time of initial contaminant mass deposition N 1965.00 1963.00 1.00

a � Direction of region flow N 5.00 0.00 4.00

Table 2 MAP estimates and the estimation uncertainty

Variable True MAP 1 (e = 0.1) MAP 2 (e = 0.01) MAP 3 (e = 0.001)

Estimate r Estimate r Estimate r

M0,1 8.41 8.27 3.63E-01 8.23 1.99E-01 8.30 2.29E-03

M0,2 6.91 7.03 1.32E-01 6.99 7.40E-02 6.98 1.50E-03

J0,1 -2.30 -2.37 1.17E-01 -2.28 6.48E-02 -2.27 1.63E-03

J0,2 -0.69 -0.83 1.28E-01 -0.63 5.18E-02 -0.63 2.23E-03

b1 -0.51 -0.91 3.30E-01 -0.88 2.86E-01 -0.77 8.30E-04

b2 0.26 0.26 1.58E-01 0.30 9.21E-02 0.28 2.28E-03

AL 3.00 2.75 9.10E-02 2.99 1.76E-02 3.00 1.17E-03

AT 0.69 0.70 1.65E-02 0.69 2.26E-03 0.69 1.90E-04

Ly 3.00 3.16 6.69E-02 3.00 1.61E-02 3.00 1.35E-03

qw -2.66 -2.64 4.53E-02 -2.61 2.71E-02 -2.61 1.04E-03

/ 0.30 0.32 9.88E-03 0.32 8.65E-03 0.32 3.55E-04

Y0 1965.00 1963.63 7.37E-01 1965.04 1.22E-01 1965.01 9.40E-03

a 5.00 5.03 5.03E-02 5.00 5.33E-03 5.00 4.84E-04
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6 Results

We first apply the active-set quasi-Newton minimization

method (as ‘‘fmincon’’ in MATLAB does) on Eq. 7 to

find the MAP best estimate ðx̂Þ and then compute the

sensitivity matrix of Eq. 26 at x̂: Using the sensitivity

matrix, we get the linearized covariance matrix V̂: We did

several local minimum searches starting at a set of rather

sparse points and found that for cases e = 0.1 and

e = 0.01, all of them converged to the same point. For the

case e = 0.001, it was very difficult for the program to

converge and the minimization procedures ended at

slightly different points due to very small line search step

sizes (*10-10). For this case, we used the point with the

smallest objective function value as our MAP estimate. The

MAP results are presented in Table 2.

Using the MAP results and following the procedure

previously introduced, we generated 4 over-dispersed

starting samples for each case (e = 0.1, 0.01, 0.001) that

would be used for both MH sampling and ADS sampling.

In MH sampling, we simply generated one MCMC chain

on each of four computing nodes. There is no communi-

cation between the nodes, thus the speed-up is linear. Each

chain contains 420000 samples, hence 1680000 samples in

total, and the computation time is about 150 min. For the

ADS sampling, we insert one adaptive line sampling step

between every 20 MH steps, and we use four master nodes

that will do most of the calculation and eight slave nodes

Table 3 Major statistics of the samples from MH sampling (e = 0.1)

Variable True MH sequence 1 MH sequence 2 MH sequence 3 MH sequence 4

Mean Mode r Mean Mode r Mean Mode r Mean Mode r

M0,1 8.41 8.39 8.23 3.67E-01 8.41 8.25 3.90E-01 8.39 8.24 3.68E-01 8.40 8.23 3.82E-01

M0,2 6.91 7.06 7.02 1.37E-01 7.06 7.07 1.36E-01 7.06 7.04 1.37E-01 7.06 7.05 1.36E-01

J0,1 -2.30 -2.38 -2.40 1.12E-01 -2.39 -2.39 1.11E-01 -2.39 -2.41 1.10E-01 -2.39 -2.41 1.11E-01

J0,2 -0.69 -0.82 -0.83 1.29E-01 -0.82 -0.81 1.29E-01 -0.82 -0.85 1.29E-01 -0.82 -0.85 1.29E-01

b1 -0.51 -0.91 -0.94 3.28E-01 -0.92 -0.89 3.30E-01 -0.91 -0.95 3.31E-01 -0.92 -0.90 3.28E-01

b2 0.26 0.31 0.27 1.64E-01 0.31 0.30 1.63E-01 0.31 0.29 1.62E-01 0.31 0.28 1.63E-01

AL 3.00 2.76 2.76 9.00E-02 2.76 2.76 9.08E-02 2.76 2.76 8.96E-02 2.75 2.75 9.13E-02

AT 0.69 0.70 0.70 1.64E-02 0.70 0.70 1.65E-02 0.70 0.70 1.63E-02 0.70 0.71 1.66E-02

Ly 3.00 3.15 3.17 6.93E-02 3.15 3.16 6.91E-02 3.15 3.17 6.85E-02 3.15 3.16 6.89E-02

qw -2.66 -2.64 -2.63 4.44E-02 -2.64 -2.63 4.49E-02 -2.64 -2.63 4.47E-02 -2.64 -2.64 4.50E-02

/ 0.30 0.32 0.32 9.79E-03 0.32 0.32 9.76E-03 0.32 0.32 9.87E-03 0.32 0.32 9.88E-03

Y0 1965.00 1963.68 1963.57 7.13E-01 1963.69 1963.68 7.16E-01 1963.68 1963.58 7.12E-01 1963.67 1963.57 7.19E-01

a 5.00 5.03 5.02 5.10E-02 5.03 5.02 5.11E-02 5.03 5.03 5.09E-02 5.03 5.03 5.08E-02

Table 4 Major statistics of the samples from ADS sampling (e = 0.1)

Variable True ADS sequence 1 ADS sequence 2 ADS sequence 3 ADS sequence 4

Mean Mode r Mean Mode r Mean Mode r Mean Mode r

M0,1 8.41 8.39 8.29 3.71E-01 8.37 8.30 3.55E-01 8.39 8.29 3.62E-01 8.41 8.26 3.88E-01

M0,2 6.91 7.06 7.07 1.34E-01 7.06 7.06 1.36E-01 7.06 7.07 1.39E-01 7.07 7.09 1.38E-01

J0,1 -2.30 -2.39 -2.41 1.09E-01 -2.39 -2.39 1.12E-01 -2.39 -2.39 1.11E-01 -2.39 -2.39 1.09E-01

J0,2 -0.69 -0.82 -0.85 1.29E-01 -0.82 -0.82 1.30E-01 -0.82 -0.84 1.30E-01 -0.82 -0.82 1.29E-01

b1 -0.51 -0.91 -0.99 3.27E-01 -0.92 -0.91 3.30E-01 -0.92 -0.99 3.28E-01 -0.92 -0.95 3.24E-01

b2 0.26 0.30 0.28 1.63E-01 0.31 0.31 1.61E-01 0.31 0.30 1.66E-01 0.31 0.33 1.68E-01

AL 3.00 2.76 2.77 9.05E-02 2.75 2.77 9.25E-02 2.75 2.73 9.07E-02 2.75 2.75 9.07E-02

AT 0.69 0.70 0.70 1.64E-02 0.70 0.70 1.64E-02 0.70 0.70 1.65E-02 0.70 0.70 1.64E-02

Ly 3.00 3.15 3.15 6.88E-02 3.15 3.16 6.93E-02 3.15 3.13 6.85E-02 3.15 3.16 6.84E-02

qw -2.66 -2.64 -2.64 4.45E-02 -2.64 -2.63 4.46E-02 -2.64 -2.64 4.50E-02 -2.64 -2.63 4.53E-02

/ 0.30 0.32 0.32 9.86E-03 0.32 0.32 9.89E-03 0.32 0.32 9.87E-03 0.32 0.32 9.75E-03

Y0 1965.00 1963.67 1963.58 7.18E-01 1963.66 1963.79 7.28E-01 1963.68 1963.73 7.19E-01 1963.66 1963.70 7.23E-01

a 5.00 5.03 5.02 5.13E-02 5.03 5.03 5.07E-02 5.03 5.02 5.09E-02 5.03 5.02 5.13E-02
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that exclusively evaluate density values in the multiple-try

line sampling procedure. With this parallelization strategy,

the computation time of ADS sampling to generate the

same amount of samples is about 170 min.

For the case e = 0.1, we show in Table 3 the major

statistics for each chain of the samples from MH sampling,

and in Table 4 we show those from ADS sampling. These

tables, together with the data from the other cases that are

not shown here, indicate that all chains give similar results

and the difference between chains is subtle, however, it is

hard to evaluate the quality of the chains simply based on

these tables.

In Figs. 3 and 4, we show for case e = 0.1 the auto-

correlation plots from both sampling methods. We see that

the samples are weakly correlated and after tens of

steps, the autocorrelation drops to a rather low level.

Furthermore, the figures show that samples from both

methods have similar autocorrelation patterns. In fact, the

samples from ADS sampling are slightly less correlated

than those from MH sampling.

Figures 5 and 6 show for case e = 0.1 a comparison of

the SRF plots of the samples from both sampling methods.

First of all, these plots display that both methods have

converged with rather tight convergence criteria. Second,

we can see from the SRF plots in Fig. 5 that with the ADS

method, the SRF stabilizes earlier and gets close to 1 than

with the MH method. A similar patter can be seen in Fig. 6

that the within-chain variance and cross-chain variance

converge and stabilizes earlier with the ADS method than

with the MH method.

In Fig. 7 we present for case e = 0.1 the histograms

of the samples from all four chains in ADS sampling. In

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

ln(M
o,1

)

A
ut

oc
or

re
la

tio
n

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(M
o,2

)

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(J
o,1

)

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(J
o,2

)

A
ut

oc
or

re
la

tio
n

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(β
1
)

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(β
2
)

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(A
L
)

A
ut

oc
or

re
la

tio
n

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(A
T
)

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(L
y
)

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

ln(q
w

)

A
ut

oc
or

re
la

tio
n

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

φ

Lag
0 200 400 600 800 1000

0

0.2

0.4

0.6

0.8

1

Y
0

Lag

0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

α

Lag

A
ut

oc
or

re
la

tio
n

sequence1
sequence2
sequence3
sequence4

Fig. 3 ACF function plot of the samples from MH sampling (e = 0.1)
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these figures, we also plot the prior marginal density

functions and MAP approximated marginal density

functions. We see from Fig. 7 that the MAP method

satisfactorily approximates the posterior distribution. In

fact, for most of the parameters, the approximation is

nearly exact.

Figure 8 displays for case e = 0.01 the histograms of

the samples from all four chains in ADS sampling. In
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Fig. 4 ACF function plot of the samples from ADS sampling (e = 0.1)
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Fig. 7 Histograms of the samples from ADS sampling (e = 0.1)
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this figure, we clearly see that as the noise level in the

data decreases, and the posterior distribution leans more

to the likelihood function than in the previous case, and

the MAP method provides acceptable but less accurate

estimation than it does in the previous case. When the

noise level in the data gets even smaller, as shown in

Fig. 9 for case e = 0.001, many of the MAP estimates

are biased, however, the variance estimation is still

acceptable. What is more, we generated 10 times more

samples for this case to get the sampling process con-

verge. For the two cases mentioned in this paragraph, the

convergence tests are shown in Figs. 10, 11, 12, and 13,

and they show similar phenomena as the other case

aforementioned.

7 Conclusions and discussion

In this paper, we reviewed several parameter estimation

methods and showed an application to a semi-analytical

DNAPL dissolution/transport model. We also tested a

relatively new MCMC sampler, the ADS sampler with

the sample problem in this paper. Our results showed

that generally, the MAP with a Gaussian model

approximated the posterior distribution quite well. As the

noise level got lower, the MAP approximation slightly

deviated from the posterior distribution. In the extremely

case with very small measurement noise, on one hand,

it was difficult for the MAP method to converge to

the right mode; on the other hand, it is difficult for
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the MCMC method to converge too. Furthermore,

the MAP method still provides acceptable variance

estimation.

We introduced several methods to diagnose the MCMC

samples and under that framework, we compared the

performance of the MH sampler and the ADS sampler. We

7.8 8 8.2 8.4 8.6 8.8 9 9.2
0

1

2

3

4

5
x 10

5 ln(M
o,1

)
Fr

eq
ue

nc
y

6.8 6.85 6.9 6.95 7 7.05 7.1
0

1

2

3

4

5
x 10

5 ln(M
o,2

)

−2.4 −2.35 −2.3 −2.25 −2.2 −2.15
0

1

2

3

4

5
x 10

5 ln(J
o,1

)

−0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45
0

1

2

3

4

5
x 10

5 ln(J
o,2

)

Fr
eq

ue
nc

y

−2 −1.5 −1 −0.5 0 0.5
0

1

2

3

4

5
x 10

5 ln(β
1
)

0.2 0.25 0.3 0.35
0

2

4

6

8
x 10

5 ln(β
2
)

2.985 2.99 2.995 3 3.005 3.01
0

2

4

6

8
x 10

5 ln(A
L
)

Fr
eq

ue
nc

y

0.6915 0.692 0.6925 0.693 0.6935 0.694 0.6945 0.695
0

2

4

6

8
x 10

5 ln(A
T
)

2.98 2.985 2.99 2.995 3 3.005
0

2

4

6

8
x 10

5 ln(L
y
)

−2.75 −2.7 −2.65 −2.6 −2.55 −2.5
0

1

2

3

4

5
x 10

5 ln(q
w

)

Fr
eq

ue
nc

y

0.28 0.3 0.32 0.34 0.36
0

1

2

3

4

5
x 10

5 φ

Bin
1964.8 1964.9 1965 1965.1 1965.2 1965.3

0

0.5

1

1.5

2

2.5
x 10

6 Y
0

Bin

4.994 4.996 4.998 5 5.002 5.004
0

2

4

6

8

10
x 10

5 α

Bin

Fr
eq

ue
nc

y

True params
Prior pdf
MAP pdf

Fig. 9 Histograms of the samples from ADS sampling (e = 0.001)
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found that the ADS method was superior to the MH sam-

pling method in both autocorrelation of the samples and

convergence rate.

The benefit of using multiple chains in this paper is

twofold. First, it fits into the convergence analysis frame

proposed by Gelman and Rubin (1992); second, this

strategy is easily parallelizable, hence the efficiency of

sampling can be increased to a rather large extent. The

parallelization of the MH sampling is rather easy because

there is no communication between computing nodes. For

the ADS sampling, communication between computing

nodes is needed but it only requires minor modifications to

the original single-node model.
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