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Abstract Given a collection of science-based computa-

tional models that all estimate states of the same environ-

mental system, we compare the forecast skill of the average

of the collection to the skills of the individual members.

We illustrate our results through an analysis of regional

climate model data and give general criteria for the average

to perform more or less skillfully than the most skillful

individual model, the ‘‘best’’ model. The average will only

be more skillful than the best model if the individual

models in the collection produce very different forecasts; if

the individual forecasts generally agree, the average will

not be as skillful as the best model.

Keywords Model average � Model comparison �
Environmental models � Mean-square error �
Stochastic processes � Uncertainty

1 Introduction

Scientific models of environmental systems are based on

accepted physical, chemical and biological principles

of energy and mass transfer. The goal of a science-based

environmental system model is to approximate selected

states of the system, and science-based computational

models are often used to forecast system states. Weather

prediction, climate studies, and analyses of groundwater

flow and transport provide examples too numerous to list.

The accuracy of model forecasts must be assessed when

management and policy decisions are based on them. In

general, forecasts are assessed by comparing predicted states

to observations taken over given periods, locations, or both.

A wide range of evaluation measures has been used for

assessment, including correlations between observed states

and forecasts (Epstein and Murphy 1989; Murphy 1989),

anomaly correlation coefficients (Wilks 2005), ranked

probability score (Epstein 1969; Murphy 1971), receiver

operating characteristic under the curve (Swets 1973), Peirce

skill score (Peirce 1884), potential predictability (Boer

2004), various information criteria (Neuman 2003; Ye et al.

2008), odds ratio skill score (Thornes and Stephenson 2001),

and mean-square error (Wilks 2005), which is the basis of

square-error skill scores used in weather forecasting (Murphy

1989, 1996) and is also the basis for the analysis in this paper.

Assessing model forecasts is complicated by the exis-

tence of alternative models that produce different estimates

of system states. The question of how to accommodate

differences among models naturally arises, and one response

has been to average model forecasts, the idea being that

an average can achieve a consensus among individuals

that emphasizes their points of agreement. In both climate

(Palmer et al. 2004; Latif et al. 2006) and groundwater

applications (Ye et al. 2004, 2005, 2008; Beven 2006;

Poeter and Anderson 2005), the (weighted) average of a

collection of models seems to produce better forecasts than

any individual model when evaluated by standard measures

of skill. For example, the average of models is in general the

‘‘… ‘best’ model in its ability to simulate current climate, at

least in terms of typical second order measures such as

mean square differences, spatial correlation, and the ratio of
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variances’’ (Boer 2004). Nonetheless, the reasons for that

are not completely understood (Latif et al. 2006).

We use observed mean-square error,

MSEðX; YÞ ¼ 1

T

XT

t¼1

ðXt � YtÞ2 ð1Þ

to compare the relative skill of individual models and their

averages because it is a standard measure of forecast skill

(e.g., Murphy 1989, 1996; Epstein and Murphy 1989; Boer

2004; Palmer et al. 2004; Wilks 2005; Poeter and Anderson

2005; Ye et al. 2008). Observed MSE is a strong measure of

skill in the sense that it directly compares model forecasts,

Xt [ (X1,…,XT) to observed state variables, Yt [ (Y1,…,YT)

obtained over an interval of length T. The observed variables

may be direct observations of the system state or a related

variable, for instance, some combination of the principal

components of the observed state and/or model. From here

on ‘‘skill’’ means observed square error skill.

Our goal is to compare the skill of forecasts of a system

state at t made by m = 1,…,M individual models, Xt
(m), to

the skill of their average,

�Xt ¼
XM

m¼1

wmX
ðmÞ
t ; where

X

m

wm ¼ 1

and wm� 0 for all m:

ð2Þ

In many climate applications, e.g., Meehl et al. (2007),

model weights are uniform, wm = 1/M, and we use uniform

weights in our climate example (Sect. 3). However, that is

not necessary. In geohydrology, e.g., Neuman (2003), Ye

et al. (2004, 2005, 2008), weights are often chosen by

Bayesian methods. We make no assumptions about weights,

beyond those just stated in (2), to derive our general results

(Sect. 4), which are therefore independent of the method

used to choose weights. In some approaches, for instance

Palmer et al. (2004), the values Xt
(m) are themselves the

result of stochastic averaging, but that also does not

affect our analysis. Krishnamurti and his colleagues have

considered weighted ensembles where some of the weights

may be negative, but that approach raises several questions

that go beyond the scope of this paper and so we only

consider nonnegative weightings.

We show by example (Sect. 3) and analysis (Sect. 4) that

a forecast produced by averaging outputs from a collection

of M models will be more skillful than the forecast of any

individual model, XðmÞ; only if the models in the collection

do not correspond too closely. In other words, for the

average to be more skillful than any XðmÞ; it is necessary that

the collection of models include a diverse set of distinctly

different forecasts. Second, if the forecasts of individual

models are too similar, the average will produce worse

forecasts than the most skillful individual model.

Intuitively, averaging in this case dilutes the best forecast

with other, similar forecasts that are not as good.

2 Components of MSE( �X; Y)

Using wm C 0 for all m, the MSE of the average of a

collection of models,

MSEð �X; YÞ ¼ 1

T

X

t

ð �Xt � YtÞ2

¼
X

m

w2
m MSEðXðmÞ; YÞ

þ
XX

m 6¼m0

wmwm0Rm;m0 ; ð3Þ

depends on the MSEs of the individual models, as well as

the correspondences between models,

Rm;m0 ¼
1

T

X

t

ðXðmÞt � YtÞðXðm
0Þ

t � YtÞ: ð4Þ

The correspondence has an obvious geometrical interpre-

tation,

Rm;m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðXðmÞ; YÞ MSEðXðm0Þ; YÞ

q
cos hm;m0 ; ð5Þ

due to its dependence on the angle, hm;m0 between the

vectors

Z~
ðmÞ ¼ X

ðmÞ
1 � Y1; . . .; X

ðmÞ
T � YT

� �
ð6Þ

and Z~
ðm0Þ

in <T. We use this to motivate our general results

in Sect. 4. If the models are unbiased, i.e., E [Xt
(m)] = Yt,

the correspondence is proportional to the correlation

between models and has similar mathematical properties.

But it should be emphasized that we are focusing on the

model results as a fixed set of outcomes and are not

assuming additional probability structure in this problem.

From now on we write MSE(Z~
ðmÞÞ ¼ MSE(Xm; YÞ when it

is convenient.

3 North American climate example

To illustrate these relationships, we consider the departures,

Z~
ðmÞ ¼ Z

ðmÞ
WNA; Z

ðmÞ
CNA; Z

ðmÞ
ENA

� �
ð7Þ

produced by 19 global climate models (m = 1,…,19) when

estimating normal winter temperature for Western North

America (WNA), Central North America (CNA) and

Eastern North America (ENA). The normal is defined for

the period 1970–1999, and winter consists of December,

January and February. The data are normalized by summing

over months and through the normal period 1970–1999,
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Z
mð Þ

i;j ¼
1

3
Z
ðmÞ
i;j;Dec þ Z

ðmÞ
i;j;Jan þ Z

ðmÞ
i;j;Feb

� �
and

Z
ðmÞ
i ¼ 1

30

X1999

j¼1970

Z
ðmÞ
i;j :

ð8Þ

Here we use i = WNA, CNA, or ENA instead of t to

emphasize that the data are normalized and range over

regions.

The model results are taken from the coordinated

modeling effort supporting the Intergovernmental Panel on

Climate Change (IPCC) Fourth Assessment Report (Meehl

et al. 2007). The model output fields were re-gridded to a

common 5� grid and compared to the observational data set

from the Climate Research Unit (CRU), East Anglia, and

the Hadley Centre, UK MetOffice (Jones et al. 1999). More

details of these data and a global analysis of this multi-

model sample can be found in Tebaldi et al. (2005), Tebaldi

and Knutti (2007), Jun et al. (2008), Knutti et al. (2008).

The regions WNA, CNA, and ENA are a subset of the

Giorgi and Mearns (2002) divisions.

The model departures from regional normals and MSEs

are shown in Table 1 where models correspond to rows and

regions to columns. The last two rows are average depar-

tures over (1) the full suite of models, �Z19; including the

most skillful, and (2) the suite of models with the most

skillful left out, �Z18: As noted, models are uniformly

weighted in this section, wm = 1/M for all m, where

M = 18 or 19 depending on which average is being

considered.

Looking at the suite of all 19 models first, the average,
�X19; is not as skillful as the best model, m = 16, for these

data: MSE(Xðmin19Þ; Y) = MSE(X(16), Y) = 0.08 while

MSE( �X19; Y) = 0.39. When model 16 is removed from the

set of models, MSE(Xðmin18Þ; Y) = MSE(X(2), Y) = 0.47

while the average of the reduced set, �X18; yields MSE( �X18;

Y) = 0.45. These two cases illustrate the sensitivity of

model evaluations to the set of models. There are perhaps

other factors that affect these results, such as the specific

observation interval and choice of regions, however, our

analysis does not address these points.

Additional insight can be gained by decomposing

MSE �Zð Þ�MSE Z~
ðminÞ� �

¼
X

m

w2
m MSEðZ~mÞ
� �

�MSE Z~
ðminÞ� �

þ
XX

m6¼m0

wmwm0 Rm;m0 �MSE Z~
� �ðminÞ� �

¼m2þ r;

ð9Þ

which makes clear that the model average is more skillful

than the best model when r B -m2, i.e., when the models do

not correspond too much. Values of r and m corresponding to

the full suite of nineteen models with model 16 included are

r = 0.16 and -m2 = -0.15 (Table 2). This is a case where

the best model is so much more skillful than all others that

averaging only dilutes its individual skill. When model 16 is

removed, there is then enough disagreement among the

remaining models for the average to perform better than any

of the rest: r = -0.17 and -m2 = -0.15 (Table 2).

4 General results

Our general results consist of a sufficient condition for the

model average to perform less skillfully than the best

model, and a necessary condition for the average to per-

form better. Each result only requires that the weights be

non-negative and sum to 1 (Eq. 2).

Table 1 Departures (�C) and MSE for North America

Model ID WNA (Zm,1) CNA

(Zm,2)

ENA

(Zm,3)

MSE Minimum

1 -2.02 -0.44 1.07 1.80

2 0.37 -1.11 -0.17 0.47 18 Models

3 0.48 -1.35 -0.22 0.70

4 -3.85 -3.15 -2.29 10.00

5 -3.03 -2.25 -0.81 4.97

6 0.66 1.53 2.10 2.39

7 -2.39 0.54 0.51 2.09

8 -1.66 -1.01 0.69 1.41

9 0.69 1.89 4.28 7.44

10 -0.37 0.61 1.10 0.57

11 1.27 -1.70 -0.37 1.54

12 -0.26 1.60 2.01 2.22

13 0.73 1.23 -0.53 0.78

14 -0.50 2.34 1.48 2.65

15 -0.91 -0.54 -1.49 1.11

16 0.31 0.27 0.27 0.08 19 Models

17 -2.16 -1.96 -2.77 5.39

18 -1.77 -2.93 0.08 3.90

19 -3.57 -2.75 0.12 6.76

�Z19 -0.95 -0.48 0.19 0.39 0.08

�Z18 -1.02 -0.52 0.19 0.45 0.47

Table 2 Effect of model collection on performance

Number of models -m2 r MSEAve MSEmin

19 -0.15 0.16 0.39 0.08

18 -0.15 -0.17 0.45 0.47
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4.1 Result 1

If the models correspond too closely, the average is less

skillful than the best model. Intuitively, this is because the

other models dilute the performance of the best model in this

case. Referring to Eq. 9, it is clear that MSE( �Z) [
MSE(Z~

ðminÞ
) if Rm,m0[ MSE(Z(min)), for all m and m0.

Another way for the best model to be more skillful than

the average is for the best to be much more skillful than all

the other models, i.e., MSEðZ~ðminÞÞ � MSEðZ~ðmÞÞ for all

m = min, as was the case in the climate example. In that

case, MSEð �Znþ1Þ �MSEðZ~ðminÞÞ ffi MSEð �Znþ1Þ� 0. How-

ever, Result 1 shows it is not necessary for one model to be

much more skillful than the rest for the average to be less

skillful; it is enough for all the models to correspond at a

level that only depends on MSE(Z(min)).

4.2 Result 2

The average is more skillful than the best model only if

some individual models do not correspond too much. This

is derived from Result 1 as a proof by contradiction (modus

tollens).

To emphasize the role of geometry, we illustrate the

results in <T, the T-dimensional vector space of model

forecasts (Figs. 1, 2). Letting �Z ¼ ð �Z1; . . .; �ZTÞ and taking

Z~
ðmÞ

from Eq. 6, the MSE are equivalent to squared lengths

in <T, MSEð �ZÞ ¼ 1
T

�Zk k2
and MSEðZ~ðmÞÞ ¼ 1

T Z~
ðmÞ���
���

2

;

while Rm;m0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðXðmÞÞMSEðXðm0ÞÞ

p
cos hm;m0 is the

vector product Z~
ðmÞ � Z~ðm

0Þ
: In the figures, T = 3 for con-

venience of illustration, so each Z~
ðmÞ

= (Z1
(m), Z2

(m), Z3
(m)).

The thin vectors represent the performances of different

models, while the thick vector is the average, �Z; their

lengths corresponding to MSE( �Z) and MSE(Z(m))

respectively.

Figure 1 shows a typical case of Result 1 leading to

MSE( �Z) [ MSE(Z~
ðminÞ

). The models all vary similarly

about Y~; as evidenced by their approximate colinearity, but

Z~
ðminÞ

performs much better than the others. The result of

averaging is to ‘‘stretch’’ �Z away from Z~
ðminÞ

in the general

direction of the other models. Figure 2 illustrates Result 2,

a case when MSE(Z~
ðminÞ

) C MSE( �Z). The role of the anti-

correspondence requirement,

cos hm;m0\
MSEðZðminÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSEðZðmÞÞ
p

MSEðZðm0ÞÞ
for some m; m0;

is clear: MSE(Z(min)) C MSE( �Z) because the two sets of

vectors ‘‘pull’’ against each other to produce a reduced �Z:

5 Summary and discussion

Alternate science-based computational models of a given

environmental system always forecast system states that

differ somewhat, and sometimes forecast states that differ

considerably. Model averaging has been proposed as a

means for dealing with differences among model forecasts,

and it has been noted that in some cases the average of a

collection of models produces ‘‘better’’ forecasts than any

individual model in the collection (e.g., Boer 2004). We

have compared models and their averages on the basis of

mean-square difference skill score, which is a standard

assessment measure in weather forecasting, climate studies

and groundwater hydrology. In addition to its ubiquity, no

other measure of skill has the straightforward metric

properties of mean square error, the normalized distance

between observations and forecasts.

We investigated two climate examples to compare the

sensitivity of the skill of an average of a collection ofFig. 1 Example of Result 1. Colinearity places �Z beyond Z~
ðminÞ

Fig. 2 Example of Result 2. Weak correspondence allows

MSE(Z(min)) C MSE( �Z)
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models to the most skillful model (the ‘‘best’’) in the col-

lection. The best model in the first example was so much

more skillful than any other model that the average simply

could not perform as well as the best. When the best model

was removed from the first collection, the average per-

formed better than any individual model in the reduced

collection. In that case, none of the remaining climate

models performed well enough to dominate the others.

Furthermore, the models disagreed, thus giving an example

of the general result (Result 2) that the average can be more

skillful than the best model only if some models make

markedly different forecasts. The example also illustrated

the sensitivity of skill assessments to the collection of

models, but we did not go more deeply into that point.

Our general results give a sufficient condition for the best

model to be more skillful than the average (Result 1) and a

necessary condition for the average to be more skillful than

the best individual (Result 2). In general, (1) the average is

less skillful than the best individual if the forecasts of

individuals correspond closely to each other when compared

to the skill of the best model, and (2) the average is more

skillful than the best model only if the forecasts of some

individuals do not correspond. These results depend just on

simple geometric properties of the collection of models, and

are independent of (i) how the models make their forecasts

and (ii) the weighting scheme used to derive their average

(except the weights must be positive and sum to 1).

These results, and the example, suggest a certain amount

of caution should be applied when making strong claims

that model averages are more skillful than individual

models, at least if those claims are based on second-order

performance measures like observed square-error skill. At

the same time, the results should not be over-interpreted. In

the first place, Result 2 does not indicate that collections of

models should be assembled with the idea of maximizing

the differences among individuals. The goal is to make

skillful forecasts, not to merely have a collection of models

whose average is more skillful on a set of observations than

any individual model. At the same time, Result 1 does not

imply that an average is never useful when models agree.

A collection of good models (models based on reasonable

physical assumptions and estimates of system parameters)

can be expected to produce forecasts that correspond

strongly with each other, but differ in their details. An

average might be useful in that setting even if it is not as

skillful as the best model on a set of observations.

The discussion of the relative skill of science-based

environmental models and their averages has taken place

so far in the absence of statistical tests. The complex

probability distributions of environmental forecasts in

realistic settings is one reason for that. What is needed is a

statistical test (or tests) to evaluate hypotheses about the

means of forecasts made by complex physics models

whose uncertain physical parameters are not Gaussian, or

even necessarily unimodal (cf., Rubin 1995; Gomez-

Hernandez and Wen 1998; Winter and Tartakovsky 2000,

2002; Christakos 2003; Guadagnini et al. 2003; Neuman

and Wierenga 2003). In the absence of such tests, the

results in this paper indicate the sources of apparent fore-

casting skills of model averages have a simple geometric

explanation in some cases.
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