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Abstract The integrated application of remote sensing,

geographic information system and quantitative analytical

modeling can provide scientific and effective methods for

monitoring and studying urban heat island, based on land

surface temperature (LST) retrieved from thermal infrared

channel data of sensors. In this paper, LST is retrieved

from Landsat TM6 and ETM ? 6 data of Shanghai central

city in 1989, 1997, 2000 and 2002, by using the mono-

window algorithm. Based on the data, global and local

spatial autocorrelation analysis, and geostatistical methods

are adopted to quantitatively describe the characteristics of

spatial heterogeneity and temporal evolution of land sur-

face thermal landscape at different scales and periods in

Shanghai central city, by utilizing exploratory spatial data

analysis. Results show that LST field in Shanghai central

city tends to fragmentize and complicate with the devel-

opment of Shanghai, and its global spatial difference

becomes greater gradually. The spatial variance pattern of

the change of LST field from 1997 to 2002 indicates that

the dynamic change of LST presents a tendency of increase

in circularity. LST declines distinctly in the districts of

Puxi and Pudong near and inside the inner ring road, while

it rises obviously outside the central city and near the out

ring road. The extrema of temporal change in LST field

have a characteristic of spatial clustering. Besides, as the

city of Shanghai expands in a circular pattern as a whole,

the directional difference of dynamic change of urban

surface thermal landscape exists but is not very obvious.

Keywords Land surface temperature � Urban heat island �
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1 Introduction

Land surface temperature (LST) is a key factor in physical

processing of land surface at a regional and a global scale,

and it generalizes the results of the interaction between

land surface and atmosphere, and the exchange of matter

and energy (Wan and Dozier 1996). Moreover, in the

general assessment model of sustainable development

and global change, the change of LST is regarded as an

important criterion upon which the evaluation of environ-

mental quality and social and economic development pol-

icy can be based (Janssen 1998; Tamerius et al. 2007;

Keller 2008).

Traditional in situ ground measurements can provide

comparatively accurate LST value, while they cannot

reveal the change of land surface thermal environment

comprehensively and synchronously, due to the limited

spatio-temporal extension of in situ measurements and

great demands for manpower and financial resources. On

the other hand, remote sensing data have the advantages of

wide scope, periodical overlap, and comparative low-cost.
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As the study on LST retrieval from remote sensing data

proceeds deeper and the accuracy of LST retrieval

increases gradually, nowadays, LST retrieval from thermal

infrared band data of remote sensors has become one of the

major approaches to obtain information about LST spatio-

temporal distribution (Gallo et al. 1995; Owen et al. 1998).

The integrated application of remote sensing, geographic

information system (GIS) and quantitative analytical

modeling can provide scientific and effective methods for

monitoring and studying urban land surface thermal envi-

ronment. Chen et al. (2002) utilized the fractal tool to

reveal the whole, regional and microcosmic characteristics

of urban thermal environment, and developed three fractal

dimension measurement methods to analyze the fractal

characteristics of the whole thermal field in the city of

Shanghai, China, the thermal structure of its typical regions

and gradient of the thermal field distribution. Xu and Chen

(2003) normalized and graded two LST images acquired in

June, 1989 and April, 2000, and devised an urban heat

island ratio index (URI) to quantitatively study urban heat

island (UHI) changes during the study period, and reduce

the influence of seasonal difference on the dynamical

change of UHI to a certain extent. Streutker (2002) and

Zhang et al. (2007) respectively adopted a Gaussian-based

density slice method and a robust statistical method to

divide the LST data of different years and seasons into

several LST levels for an exploration of the spatio-tem-

poral change of LST field distribution in the study area.

Tran et al. (2006) applied a 2-D Gaussian surface

approximation to quantify spatial extents and magnitude of

individual UHIs for a comparative assessment of the UHI

spatial patterns and temporal variation in eight Asian mega

cities in both temperate and tropical climate regions from

2001 to 2003.

Spatial statistical method is used to reveal the spatial

dependence, spatial association and spatial autocorrelation

among spatial data by adopting various spatial statistical

analytic models. As a core technique in spatial statistical

analysis, exploratory spatial data analysis (ESDA) tech-

nique can be applied to study spatial dependence and het-

erogeneity by analyzing spatial autocorrelation, and reveal

the characteristics of spatial data, detect singular points or

regions, explore spatial association pattern, clustering or

hot-spot, and make spatial partition by means of visuali-

zation tools (Anselin 1999; Ma et al. 2002; Morakinyo and

Mackay 2005; Olea 2006; Brenning and Dubois 2008). To

explore the spatio-temporal evolution of urban thermal

environment during the rapid social and economic devel-

opment of Shanghai, in this paper, LST is retrieved from

Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced

Thematic Mapper Plus (ETM?) thermal channel data

covering Shanghai central city in 1989, 1997, 2000 and

2002, by using mono-window algorithm. Based on the

data, global and local spatial autocorrelation analysis and

geostatistical methods are adopted to reveal the charac-

teristics of spatial heterogeneity and temporal evolution of

land surface thermal landscape at different scales and

periods in Shanghai central city with ESDA. In Sect. 2 we

describe the data sources, and the preprocess to rectify

remote sensing images and other vector thematic maps and

retrieve LST from Landsat TM6 and ETM ? 6 data. The

description of spatial distribution of LST field is presented

in Sect. 3. In Sect. 4 we describe the characteristics of

spatial heterogeneity and temporal evolution of land sur-

face thermal landscape at different scales and periods with

ESDA. The last section summarizes our main conclusions.

2 Data and preprocessing

Shanghai lies between 30�230–31�370N and 120�500–
121�450E, belonging to the alluvial plain of Yangtze River

Delta, to the west of the Yangtze River estuary, with a total

area of approximately 8,239 km2 covering eighteen dis-

tricts and one county. With a pleasant subtropical maritime

monsoon climate, Shanghai has a temperate climate, plenty

of rainfall and four distinct seasons, with an annual average

temperature of 15–16�C and annual average precipitation

amount of about 1,100 mm. Preferable geographical loca-

tion and natural condition provide favorable natural basis

upon which the exploitation and utilization of land

resources and rapid social and economic development of

Shanghai rest. However, since the reform and opening of

Shanghai progress at an unprecedented pace, Shanghai has

experienced a notable change of land use structure, and a

series of urban ecological environmental problems, such as

soil, water and atmosphere pollution, UHI, and so on.

Shanghai was at the peak of urban renewal and the stage

of large-scale development of the whole Pudong area from

1992 to 2002. The course of urban renewal has witnessed a

rapid spatial sprawl of urban land, and the developed area

of the city is located mainly inside the outer ring road. To

explore the UHI effect accompanied by the change of

urban landscape layout and land use pattern during this

period, in this paper, Landsat 5 TM image acquired on Aug

11, 1989, Landsat 7 ETM ? images acquired on Apr 11,

1997, June 14, 2000 and Nov 11, 2002 are used as primary

data source. The study area includes Shanghai central city

inside the out ring road, and meanwhile, partial suburban

areas near the out ring road for a contrast between city and

suburbs (Fig. 1). The images of bands 1–7 are geometri-

cally rectified to 1:10000 vector topographic map with

Gauss-Krueger projection, and resampled by adopting the

nearest-neighbor algorithm with a pixel size of 30 m by

30 m for bands 1–5 and 7, 60 m by 60 m for ETM ? 6,

and 120 m by 120 m for TM6. The resultant root mean
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square error (RMSE) of the corrected images is found to be

less than half a pixel. In addition, the remote sensing

images and other vector thematic maps used for auxiliary

analysis, such as land use classification images, population,

economy and traffic distribution images, and district maps,

etc., are all rectified to a Shanghai local coordinate system.

Before LST retrieval, the brightness temperature of the

thermal band at the satellite level must be computed from

the ETM ? 6 and TM6 data. The computation of bright-

ness temperature involves the estimation of spectral radi-

ance from digital numbers (DNs) of band 6 using the

following Eqs. 1 and 2, and the conversion of the radiance

into brightness temperature using the Eq. 3 (Wukelic et al.

1989; Chander and Markham 2003).

Lk ¼ L min
k
þL maxk�L mink

255
� DN ð1Þ

Lk ¼ gain� DNþ offset ð2Þ

where Lk is the spectral radiance received by the sensor

(W m-2 sr-1 lm-1), Lmaxk and Lmink are the maximum

and minimum detected spectral radiance for DN = 255 and

DN = 0, respectively, and gain and offset are rescaled gain

and bias value supplied in the Level 1G Landsat 7

ETM ? image header or ancillary data record both in

W m-2 sr-1 lm-1. For TM6 of Landsat 5, it has been set

that Lmink = 1.238 W m-2 sr-1 lm-1 for DN = 0 and

Lmaxk = 15.6 W m-2 sr-1 lm-1 for DN = 255.

T6 ¼
K2

lnð1þ K1=LkÞ
ð3Þ

where T6 is the effective at-satellite brightness temperature in

K, K1 and K2 are pre-launch calibration constants. For Landsat

5, K1 = 607.76 W m-2 sr-1 lm-1 and K2 = 1260.56 K,

and for Landsat 7, K1 = 666.09 W m-2 sr-1 lm-1 and

K2 = 1282.71 K, respectively.

Based on the above, LST is retrieved from the ETM ? 6

and TM6 data by using mono-window algorithm (Qin et al.

2001). The derivation of the mono-window algorithm

considering the influence of atmospheric and land surface

condition on land surface heat exchange is based on the

thermal radiance transfer equation and needs three

parameters including emissivity, atmospheric transmittance

and effective mean atmospheric temperature. Comprehen-

sive assessment indicates that the algorithm is able to

provide accurate LST retrieved from Landsat thermal band

data, and for the estimate of the essential parameters with

moderate errors, the probable LST estimation error is less

than 1.1�C (Qin et al. 2001). The results of experiments in

different test areas indicate that the accuracy of the algo-

rithm is satisfactory (Zhang et al. 2005; Huang et al. 2006;

Ding and Xu 2006). Provided that the data set of land

surface emissivity (LSE), atmospheric transmittance, and

effective mean atmospheric temperature are available, the

LST Ts, is obtained by the following equation:

Fig. 1 Map of the study area

Stoch Environ Res Risk Assess (2010) 24:247–257 249

123



Ts ¼ f67:3554 C þ D� 1ð Þ
þ 0:4586þ 0:5414 C þ Dð Þ½ �T6 � DTag=C ð4Þ

where T6 is the at-satellite brightness temperature in

K, Ta represents the effective mean atmospheric

temperature in K, and C and D are given by the

following equations:

C ¼ e6s6 ð5Þ
D ¼ ð1� s6Þ 1þ 1� e6ð Þs6½ � ð6Þ

where e6 is the emissivity, and s6 is the atmospheric

transmittance.

According to the characteristics of land cover in the

study area and spatial resolution of the utilized remote

sensing images, for the purpose of dynamic monitoring, the

land use in Shanghai central city is classified into five

classes, namely, high albedo building (H), low albedo

building (L), water (W), vegetation (V) and soil (S) by

applying mixed-pixel classification based on a Possibilistic

C Repulsive Medoids (PCRMdd) clustering algorithm (Dai

et al. 2009). Each of the land use categories is assigned an

emissivity value by reference to the emissivity classifica-

tion scheme proposed by Snyder et al. (1998) and Qin et al.

(2004). In this study, the emissivity value for high

albedo building, low albedo building, water, vegetation and

soil are set to 0.970, 0.962, 0.995, 0.985 and 0.976,

respectively.

The two atmospheric parameters, Ta and s6, required for

the algorithm can be estimated according to local meteo-

rological observation data, such as the near-surface air

temperature and atmospheric water vapor content. In the

standard atmospheric conditions, i.e., clear sky and without

great turbulence, Ta can be estimated from T0, air tem-

perature of the ground (at about 2 m height) for mid-lati-

tude summer and winter by the linear relations (7) and (8),

respectively, as follows:

Ta ¼ 16:0110þ 0:92621 T0 ð7Þ
Ta ¼ 19:2704þ 0:91118 T0 ð8Þ

Atmospheric transmittance s6, can be estimated from w,

the total atmospheric water vapour content, for the range

0.4–3.0 g/cm2 by the equations shown in Table 1.

If the total atmospheric water vapour content is not

available, s6 can be approximately estimated as

w ¼ w 0ð Þ=Rw 0ð Þ ð9Þ

where w(0) is water vapour content near the surface (at

about 2 m height), which can be usually obtained from

local meteorological data, and Rw (0) is the ratio of

atmospheric water vapour content near the surface to the

total water vapour content which can be substituted with

standard atmospheric ratio, i.e., 0.438446 and 0.400124 for

mid-latitude summer and winter, respectively.

3 Spatial distribution of LST field

The distribution images of LST on Aug 11, 1989, Apr 11,

1997, June 14, 2000 and Nov 11, 2002 are acquired as

shown in Fig. 2. To explore the spatial distribution of LST

field during the study period and reduce the influence of

Table 1 Estimation of atmospheric transmittance in the mono-window

algorithm

Profiles Water vapour

(w) (g cm-2)

Transmittance

estimation equation

High air temperature 0.4–1.6 s6 = 0.974290 - 0.08007w

1.6–3.0 s6 = 1.031412 - 0.11536w

Low air temperature 0.4–1.6 s6 = 0.982007 - 0.09611w

1.6–3.0 s6 = 1.053710 - 0.14142w

Fig. 2 LST distribution image in 1989, 1997, 2000 and 2002
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seasonal difference on the study on LST dynamical change,

the resultant multi-temporal LST images are divided into

five levels, i.e., lower LST zone (L1), low LST zone (L2),

medium LST zone (L3), high LST zone (L4) and thermal

kernel zone (L5) by using density-based segmentation and

unsupervised classification method (Fig. 3). Figure 3 rep-

resents the general pattern of LST spatial distribution in

Shanghai central city. The boundary of high-temperature

zone in the thermal field is consonant with the profile of the

built-up area as a whole. The LST decreases gradually in

circularity from the high temperature kernel in downtown

to urban fringe, which forms obvious UHI effect. The high-

speed social and economic development of Shanghai and

the regulation of city spatial layout lead to notable changes

in the distribution of population, buildings, traffic and

industry in Shanghai central city, and accordingly, changes

in the surface thermal landscape. Furthermore, it can be

found from the evolution process of LST field pattern from

1989 to 2002 that, the area and intensity of Shanghai UHI

rapidly sprawls and strengthens from 1980s, and the

expansion direction of UHI is consistent with that of urban

area. However, since the end of the twentieth century, UHI

effect shows a weakening tendency, and the difference in

LST value inside the urban area minishes gradually. Until

2002, the high-temperature zone stops enlarging and the

thermal kernel zone begins to diminish. Although on the

whole, the LST in Pudong area is widely lower than that in

Puxi area, the LST has an obvious increasing trend with

the intensifying development of Pudong area along the

Huangpu River since the opening up of Pudong New Area.

4 Spatio-temporal exploratory analysis of LST field

4.1 Global spatial autocorrelation analysis of LST field

Global spatial autocorrelation analysis can be used to

describe the spatial characteristic of a given property in the

Fig. 3 Distribution of LST

levels in 1989, 1997, 2000 and

2002
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entire study area and reflect the mean of spatial difference

between all the spatial cells and their adjacent cells. In this

paper, the Global Moran’s I statistic is used to measure the

global spatial autocorrelation of the LST field and it can be

calculated as (Goodchild 1986):

I ¼ N

S0

�
PN

i¼1

PN
j¼1 Wijðxi � �xÞðxj � �xÞ
PN

j¼1 ðxi � �xÞ2i
ð10Þ

where N is the number of spatial observation cells, xi is the

observed value of cell i, �x is the mean of xi, x ¼ 1
N

PN
i¼1 xi;

and S0 ¼
PN

i¼1

PN
j¼1 Wij: Wij is the spatial weighting value

between the cell i and j, indicating the influence extent of

spatial structure dependence, and determined according to

adjacent relationship in this paper. After the Global

Moran’s I statistic of the LST is computed, its

normalized Z-Score calculated by the Eq. 11 is used for

statistical test of the result:

zðIÞ ¼ I � EðIÞ
SðIÞ ð11Þ

where E(I) and S(I) are the mean and standard deviation of

the Global Moran’s I, respectively. To determine if the

Z-Score is statistically significant, we can compare it to the

range of values for a particular confidence level. For

example, at a significance level of 0.05, a Z-Score would

have to be less than -1.96 or greater than 1.96 to be

statistically significant.

The value of Global Moran’s I ranges from -1 to 1.

Given a certain significance level, a Moran’s I value sig-

nificantly beyond zero implies spatial positive correlation

and obvious spatial clusters of cells with higher attribute

values or lower attribute values, and the Moran’s I near

?1.0 indicates a small global spatial difference. On the

other hand, a Moran’s I value significantly below zero

implies spatial negative correlation and an obvious spatial

difference in the attribute values between the cells and their

adjacent cells, and the Moran’s I near -1.0 indicates a

large global spatial difference. While a Moran’s I value

near -1/(N - 1) indicates the pattern expressed is spatially

random without spatial autocorrelation.

To explore the spatial autocorrelation of the LST field in

the study area at different scales, the resultant LST images

are resampled to the spatial resolution of 180, 540 and

1,080 m. At different levels of spatial resolution, the values

of Global Moran’s I of the LST images in 2002 are all

significantly positive, which indicates that the LST field in

Shanghai central city has a characteristic of spatial aggre-

gation with significant spatial positive correlation. The

distribution pattern of LST field shown in Figs. 2, 3 also

confirms the existence of this spatial aggregation pattern.

The value of Global Moran’s I decreases as the spatial

scale increases, the Global Moran’s I reaches 0.795, 0.651

and 0.367, and the normalized Z-score of Moran’s I is

276.940, 73.355 and 15.193 at the scale of 180, 540 and

1,080 m, respectively, much greater than the test threshold

of normal distribution function at the significance level of

0.05. It can be concluded that the LST values in the

neighborhood show a certain similarity at a small spatial

scale, while the difference of neighboring LST values

sharply increases and the similarity minishes as the scale

increases. To reveal the temporal change tendency of the

overall distribution pattern of LST field in the study area,

the computed Global Moran’s I of the LST images with

180 m resolution in 1989, 1997 and 2000 are 0.857, 0.851

and 0.839, and their normalized Z-scores are 291.683,

288.259 and 284.689, respectively. These results show that,

under the impact of human activity, the LST field in central

city tends to fragmentize and complicate with the devel-

opment of the city, its global spatial difference becomes

greater gradually, and therefore, its spatial autocorrelation

has a trend of decrease year by year.

4.2 Local spatial autocorrelation analysis of LST field

The Global Moran’s I only indicates overall clustering

extent but cannot be used to detect spatial association

pattern in different locations. To further reveal the spatial

autocorrelation of LST in neighborhood space and visual-

ize the spatial pattern of local difference, the local spatial

autocorrelation statistics, including Local Moran’s Ii and

Getis-Ord’s Gi* are used to evaluate the local spatial

association and difference between each cell and its sur-

rounding cells.

4.2.1 Local Moran’s I statistic

The Local Indicators of Spatial Association (LISA), such

as Local Moran’s I and Local Geary’s C can be adopted to

measure the spatial difference in the attribute values

between each cell and its surrounding cells and its signif-

icance. Local Moran’s I is the disintegration form of

Global Moran’s I. For a given spatial cell i, the value of

Local Moran’s I is computed as (Anselin 1995):

Ii ¼ xi

XN

j¼1;j6¼i

wijxj ð12Þ

where N is the number of spatial observation cells, xi and xj

are the standardized observed value of cell i and j, and wij

is the standardized spatial weighting value,
P

j wij ¼ 1:

Similar to the significance test of Global Moran’s I, the

result of Local Moran’s I can be tested by means of

Z-Score.

Given a certain significance level, if the Ii value is sig-

nificantly positive, then the cell i has value similar to
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neighboring cells’ values, and a spatial cluster of similar

LST values surrounds the cell i, which indicates a spatial

positive correlation. A high positive Ii value demonstrates a

strong clustering extent. On the other hand, if the Ii value is

significantly negative, then the cell i has a very different

LST value than its neighbors, which indicates a spatial

negative correlation.

The distribution of normalized Z-Score of Local Mor-

an’s I of LST field with 540 m resolution in central city

in 2002 is shown in Fig. 4. It can be found from the

figure that the regions having significant spatial positive

correlation with Z-Score beyond 1.65 are mainly distrib-

uted along the west bank of Hangpu River and the banks

of Suzhou River, over the Wusong industrial zone in the

northern area, Zhabei industrial zone, and the junction of

Zhabei, Baoshan and Putuo, where are cluster zones of

high LST values, and besides, at the junction of south-

eastern Pudong, Nanhui and the out ring road, where are

cluster zones of low LST values. These regions consti-

tuting the hot and cold spots in the distribution of LST

field in central city have a typical feature of small inner

difference and large difference from outer regions. In

addition, the cluster zones of high LST values are also

located at the southern Putuo, northeastern Changning,

and the junction of Minhang and Xuhui. On the other

hand, the regions with Z-Score below -1.65 are mainly

distributed near the banks of Hangpu River and the edges

of cluster zones of high LST values, where are the tran-

sition zones of a mixture of high and low LST values in

LST field with a typical feature of large inner difference

and large difference from outer regions as well. The rests

with Z-Score between -1.65 and 1.65 have no significant

local spatial correlation.

4.2.2 Getis-Ord G* statistic

To further evaluate the clustering extent and correlation of

spatial distribution of attribute value in local regions, Getis

and Ord (1992) proposed the G* statistical method to

identify the presence of clusters of extremely high or low

values and determine spatial clustering pattern by preset-

ting a certain spatial scale. Suppose there is an n–pixel

image, the Getis-Ord G�i statistic is defined as the ratio of

the sum of the weighted attribute values of the pixels

within a specified distance d of a particular observation

pixel i (including the pixel i) to the sum of the values of all

n pixels in the entire image:

G�i ðdÞ ¼
Xn

j¼1

WijðdÞxj

,
Xn

j¼1

xj ð13Þ

where Wij(d) is the spatial weighting value, the pixels with

nonzero Wij constitute a computation window centred on

the ith pixel. The shape of the window is defined according

to the study aim and image characteristics. If a square

window is used, then Wij(d) is set to 1 as the jth pixel is

within the distance d of the ith pixel, otherwise it is set to

zero. The spatial scale d can be usually set to 1 (3 9 3

pixels window), 2 (5 9 5 pixels window), or 3 (7 9 7

pixels window).

The normalized Z-Score of G�i ðdÞ is calculated as

ZiðdÞ ¼
G�i ðdÞ � EðG�i ðdÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðG�i ðdÞÞ
p ¼

P
j WijðdÞxj �W�i �x

s½W�i ðn�W�j Þ=ðn� 1Þ�1=2

ð14Þ

where W�i ¼
Pn

j¼1 WijðdÞ; �x ¼
Pn

j¼1 xj=n; and s2 ¼
Pn

j¼1

x2
j =n� �x2: A significant positive Zi(d) value indicates

spatial pattern of clustering of high values, that is, the cell i

is surrounded by high attribute values. The higher the Zi(d)

value, the stronger the association. On the other hand, a

significant negative Zi(d) value indicates spatial pattern of

clustering of low values, that is, the neighbors of cell i have

low attribute values. Therefore, Getis-Ord G* statistics can

be used to identify spatial clusters of statistically significant

high or low attribute values. A Zi(d) near 0 indicates no

apparent concentration and the neighbors have a range of

values.

To clearly illustrate the spatial clustering pattern of LST

field in the study area, and make a comparison with the

result of Local Moran’s I, the normalized Z-Score of G�i
statistic is calculated at the scale d = 1. Figure 5 shows the

distribution of normalized Z-Score of G�i of LST field with

540 m resolution in central city in 1997 and 2002, where

navy blue represents cluster zones of high LST value, and

light green represents cluster zones of low LST value. It

can be found from the figure that the cluster zones of high

Fig. 4 Distribution of normalized Z-Score of Local Moran’s I of LST

field in 2002
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and low LST values in LST field in Shanghai central city

tend to shrink and fragmentize, and accordingly, the cluster

centers come to scatter. In 1997, the cluster zones of high

LST value with Z-Score beyond 1.96 spread over most

districts in Puxi area inside the out ring road and the belt

from Lujiazui to the steel work and glass work in Pudong

area on the east bank of Huangpu River. And the cluster

centers of high LST value occur in Shanghai old urban area

covering Huangpu and southern part of Yangpu, Hongkou

and Zhabei on the west bank of Huangpu River. On the

other hand, the cluster zones of low LST value with Z-

Score below -1.96 are mainly distributed over partial

Baoshan outside the out ring road, partial Pudong near the

out ring road, and the junction of the southeastern Pudong

and Nanhui. In 2002, the cluster zones of high and low LST

values both shrink markedly. The cluster zones of high

LST are divided into three regions, which are Shanghai old

urban area on the west bank of Huangpu River, Zhabei

industrial zone and its junction with Baoshan and Putuo,

and the belt from Wusong industrial zone in Baoshan to the

northwestern Yangpu. The cluster zones of low LST are

only located at the southeastern area near the out ring road,

and the northern and southern ends of Huangpu River in

the study area. In addition, by comparison between Figs. 2

and 5, it can be found that, some high LST centers in LST

field in Fig. 2 do not correspond to the centers of high Z-

Score in Fig. 5, because these LST centers have a lower

spatial correlation, meanwhile, some pixels having not

extremely high LST but surrounded by high LST appear in

the high Z-Score zones.

The above analyses indicate that, based on the com-

parison and calculation of the adjacent observed values, the

G* statistical method will not be affected by different

acquisition times of remote sensing images and uncertainty

in observation process, so it can be applied to explore the

spatial pattern and temporal evolution of LST field in

Shanghai central city effectively. Since 1990s, an amount

of population and industrial area in the downtown has been

evacuating and moving out, the cluster zones of high LST

inside the inner ring road gradually shrink. As the city

further expands, the formation of new industrial and pop-

ulation aggregation areas not only results in the occurrence

of new high LST clusters, but the shrink and even disap-

pearance of original low LST clusters as well. Besides, in

comparison with the result of Local Moran’s I, Getis-Ord

G* statistics cannot detect the regions of spatial negative

correlation, while it can precisely locate spatial cluster

zones and centers, differentiate high LST clusters from low

ones. The cluster area identified by G* statistics is smaller

than Local Moran’s I, however, it is more consistent with

the real spatial pattern of LST field.

4.3 Spatio-temporal variation characteristics of LST

field

As a powerful tool for spatial heterogeneity exploration,

geostatistical methods, combined with GIS, can help us to

discover the inherent structure characteristics and spatial

variation regularity of spatial variable which cannot be

found by classical statistical method. Influenced by various

natural and human factors, urban surface thermal landscape

will present highly spatial heterogeneity. In this paper,

geostatistical methods are adopted to qualitatively describe

the characteristics of spatio-temporal variation of LST field

in Shanghai central city. Based on the results of geosta-

tistical analysis, the dynamic change of LST field is spa-

tially interpolated by Kriging method.

The semivariogram, c(h), measures the difference in the

attribute value between two random samples at all sepa-

ration distances, and is defined as the variance of the dif-

ference (Journel and Huijbregts 1978; Olea 2006):

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

ZðxiÞ � Zðxi þ hÞ½ �2 ð15Þ

Fig. 5 Distribution of normalized Z-Score of G�i of LST field in 1997 and 2002
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where h is the spatial separation distance of two samples,

Z(xi) and Z(xi ? h) are the observed values of the region-

alized variable Z(x) at the two locations xi and xi ? h

(i = 1, 2, …, N(h)), N(h) is the total number of the pairs of

samples at the separation distance h.

Affected by various external factors, the level of spatial

heterogeneity may be dissimilar in different directions. So

the semivariogram changes not only with distance but also

with direction (Cressie 1991; Journel and Huijbregts 1978).

This is called anisotropy, which is described for the

anisotropic semivariogram, donated by c(h,h). The aniso-

tropic ratio K(h) can be used to describe the characteristic

of anisotropic structure, and it is calculated as

K hð Þ ¼ c h; h1ð Þ=c h; h2ð Þ ð16Þ

where c(h,h1) and c(h,h2) are the semivariograms at the

direction h1 and h2, respectively. A K(h) near 1 indicates

that the spatial heterogeneity is isotropic, otherwise,

anisotropic.

Semivariogram is a general indicator zto quantify the

spatial dependence and heterogeneity of geographical dis-

tribution. The essential statistic parameters of semivario-

gram including nugget (C0), partial sill (C), sill (C0 ? C),

range (A0), ratio of nugget to sill (C0/(C ? C0)) and

anisotropic ratio (K) are used to discover the spatial het-

erogeneity characteristic of dynamic change of LST field in

Shanghai central city. In the semivariogram, the nugget C0

is comprised of measurement error and microscale varia-

tion, i.e., a random part of spatial heterogeneity, the partial

sill C represents the spatial heterogeneity arising from

spatial autocorrelation, and the sill C0 ? C represents the

total extent of spatial heterogeneity of the system property.

Therefore, the ratio of nugget to sill C0/(C0 ? C) indicates

the proportion of the spatial heterogeneity arising from

random factors in the total spatial heterogeneity, while

C/(C0 ? C) indicates the contribution of structural factors

to the total spatial heterogeneity. Range A0 is the upper

limit of distance within which the spatial correlation exists

among sample data, and at A0 the semivariogram levels off

to the sill.

To illustrate the spatial variation pattern of the dynamic

change of LST field in the study area, the difference of LST

value with 180 m resolution in 2002 and 1997 is used as

sample data, and the resulted isotropic and anisotropic

semivariograms and their theoretical models for LST field

changes from 1997 to 2002 are shown in Figs. 6 and 7 and

Table 2. In the isotropic analysis, the semivariogram can

be fitted by Gaussian model, in which the sill C0 ? C is

5.975, and the ratio of nugget to sill C0/(C ? C0) is 0.387,

indicating a moderate spatial autocorrelation. On the other

hand, the results of anisotropic computation in the direction

of 0, 45, 90 and 135� show that the theoretical semivari-

ograms in all directions are fitted for exponential model, in

which the anisotropic ratio K is 1.396, indicating that the

directional difference of dynamic change of LST field

exists but is not obvious. So we cannot determine the major

axial direction of the change of LST field in the study area

at macroscale. Although the spatial distribution of LST

Fig. 6 Isotropic semivariogram of dynamic change of LST field from

1997 to 2002

Fig. 7 Anisotropic semivariograms of dynamic change of LST field from 1997 to 2002
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field will represent a local directional characteristic along

with the change of various human and natural factors, the

city of Shanghai expands in a circular pattern as a whole,

the directional extent of dynamic change of urban surface

thermal landscape is not very evident. The ratio of nugget

to sill C0/(C ? C0) is 0.192 in all directions, indicating that

the spatial heterogeneity arising from spatial autocorrela-

tion is the main part of the total heterogeneity, and the

extrema of temporal change in LST field have a charac-

teristic of spatial clustering.

Based on the resultant theoretical models and parame-

ters of the semivariogram, the differences between the LST

in 2002 and 1997 are interpolated by Kriging method, and

the spatial continuous surface of dynamic change of LST

field is obtained. From the Kriging map shown in Fig. 8, it

can be found that the dynamic change of LST field in the

study area from 1997 to 2002 presents a tendency of

increase in circularity. The LST difference transits gradu-

ally from negative value inside the central city to positive

value outside the central city, and the critical profile of zero

is located at the inner side of the out ring road. Although

the utilized remote sensing images in the two years have

seasonal difference, it still can be concluded that LST

declines distinctly in the Puxi and Pudong area near and

inside the inner ring road, which covers the south of

Yangpu and Hongkou, the middle and south of Zhabei and

Putuo, the east of Changning, the middle and north of

Xuhui, Jing’an, Luwan, Huangpu, and the south of Pudong

along the Huangpu River. On the other hand, LST rises

evidently near the out ring road and outside the central city,

mainly distributed over Baoshan to the north of the out ring

road, and Pudong and Nanhui near the out ring road.

5 Conclusions

In this paper, based on the LST retrieval from Landsat

TM6 and ETM ? 6 data of Shanghai central city in 1989,

1997, 2000 and 2002, ESDA is applied to quantify the

characteristics of spatial heterogeneity and temporal evo-

lution of land surface thermal landscape at different scales

and periods in Shanghai central city, by utilizing global and

local spatial autocorrelation analysis and geostatistical

methods. The spatial variance pattern of the change of LST

field from 1997 to 2002 indicates that the extrema of

temporal change in LST field have a characteristic of

spatial clustering. As the city of Shanghai expands in a

circular pattern as a whole, the directional difference of

dynamic change of urban surface thermal landscape exists

but is not obvious. Besides, it can be found from the Kri-

ging map of the LST difference during the study period,

that the dynamic change of LST in the study area exhibits a

tendency of increase in circularity, that is, LST difference

transits gradually from negative value inside the central

city to positive value outside the central city, and the

critical profile of zero is located at the inner side of the out

ring road. LST declines distinctly in the Puxi and Pudong

area near and inside the inner ring road, while it rises near

the out ring road and outside the central city. Future

research will focus on monitoring and studying urban heat

island at multiple spatial and temporal scales by compre-

hensively utilizing remote sensing images with different

spatio-temporal and spectral resolutions.
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