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Abstract A superiority-inferiority-based inexact fuzzy-

stochastic chance-constrained programming (SI-IFSCCP)

approach is developed for supporting long-term municipal

solid waste management under uncertainty. Through

SI-IFSCCP, multiple uncertainties expressed as intervals,

possibilistic and probabilistic distributions, as well as their

combinations, could be directly communicated into the

optimization process, leading to enhanced system robust-

ness. Through tackling fuzziness and two-layer randomness,

various subjective judgments of many stakeholders with

different interests and preferences could be extensively

reflected, guaranteeing a lower degree of biases during data

sampling and a higher degree of public acceptance for the

generated plans. Two levels of system-violation risk could

also be reflected by SI-IFSCCP, reflecting the relationship

between economic efficiency and system reliability. A two-

step solution method with improved computational effi-

ciency is proposed for SI-IFSCCP. To demonstrate its

applicability, the developed methodology is then applied to a

long-term municipal solid waste management problem.

Useful solutions have been generated. Satisfactory waste

flow plans could be identified according to system conditions

and policy inclination, supporting in-depth tradeoff analyses

between system optimality and reliability as well as between

economic and environmental objectives.

Keywords Interval parameter � Fuzziness � Randomness �
Uncertainty � Waste management

1 Introduction

Due to population growth and economic development,

quantities of municipal solid waste (MSW) are on the rise

across the world. The problem of meeting rising waste

disposal demands with limited facility capacities has been

one of the most pressing challenges confronted by muni-

cipal authorities. Systems analysis methods and

optimization techniques are thus required to assist in

identifying cost-effective plans for waste-flow allocation

and facility utilization. From a viewpoint of long-term

planning, desired MSW management plans may vary with

changes in waste-generation rates among different periods

(Baetz 1990; Huang et al. 1997; Maqsood et al. 2004).

Moreover, precise data is hard to be obtained due to tem-

poral and spatial variations in MSW system conditions;

instead, uncertainties are ubiquitous in each system com-

ponent, creating complexities which are beyond the

capabilities of deterministic programming approaches.

Thus, it is imperative to employ inexact mathematical

programming techniques for supporting long-term MSW

management planning under uncertainty.

Over the past two decades, a number of studies were

conducted to contend with uncertainties in MSW man-

agement systems. Correspondingly, a wide spectrum of

inexact optimization techniques were proposed which

could be classified into three categories: stochastic math-

ematical programming (SMP), fuzzy mathematical

programming (FMP) and interval mathematical program-

ming (IMP) (Huang et al. 1994, 1995, 1997, 2001; Huang

1998; Chang and Wang 1997; Chanas and Zielinski 2000;
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Yeomans et al. 2003; Maqsood et al. 2005; Li et al. 2007;

Cai et al. 2009a). Among them, interval-parameter linear

programming (ILP) proves to be an effective approach

because that it allows uncertainties expressed as interval

numbers to be directly communicated into the optimization

process and does not lead to complicated intermediate

models (Huang et al. 1995). Although ILP has such

strengths, it may encounter difficulties when parameters in

the model’s right-hand sides (bi) are highly uncertain and

expressed as probability distributions (Morgan et al. 1993;

Huang 1998). In contrast, chance-constrained programming

(CCP) is effective in reflecting probability distributions of

bi, but not so much for uncertainties in left-hand-side

coefficients (aij) and cost coefficients (cj). Thus, Huang

(1998) developed an interval-parameter chance-constrained

linear programming (ICCP) approach through the integration

of CCP and ILP. It improves upon ILP by allowing

distribution information in bi to be effectively incorporated

within its optimization process; it also enhances the capa-

bility of CCP by being able to tackling uncertainties in aij

and cj. Although ICCP is effective in dealing with intervals

and probability distributions, several limitations still

remain, including: (1) it encounters difficulties when the

lower and upper bounds of interval numbers are uncertain;

(2) it becomes ineffective when the right-hand coefficients

(bi) are expressed as probability distributions of uncertain

numbers; (3) it cannot handle possibilistic distributions

(i.e., fuzzy sets) which reflect a series of confidence levels

of decision makers when estimating parameter values.

Particularly, it is incapable of dealing with fuzzy sets with

probabilistic characteristics (i.e., fuzzy random variables)

which represent varied subjective judgments on a param-

eter either from a number of stakeholders or from one

stakeholder under different scenarios; (4) it may become

useless when any combinations of the above problems

exist, especially when multiple formats of uncertainties are

concurrently present in one parameter.

On the other hand, in order to address uncertainties

expressed as possibilistic distributions (i.e., fuzzy sets), a

number of fuzzy linear programming (FLP) approaches

were proposed based on fuzzy sets theory. These methods

mostly utilize ranking operations (e.g., the area compen-

sation and signed distance methods) or discretize fuzzy sets

via a-levels (e.g., robust programming) to defuzzify

ambiguous coefficients in an optimization model so as to

convert the problem into a corresponding deterministic one

(Fortemps and Roubens 1996; Inuiguchi and Sakawa 1998;

Chiang 2001). At the same time, a number of fuzzy-stochastic

linear programming (FSLP) methods were developed to

tackle fuzzy random variables. In these methods, fuzzy

random variables are usually defuzzified in the first place

and then derandomized through traditional stochastic pro-

gramming techniques such as the two-stage programming

approach (Luhandjula 1996; Van Hop 2007). The major

disadvantages of these FSLP approaches lie in that they

normally generate a large number of additional constraints

and variables, and thus result in complicated and time-

consuming computation processes (Van Hop 2007).

Recently, Van Hop (2007) proposed a superiority-inferi-

ority-based fuzzy-stochastic linear programming

(SI-FSLP) approach as a new attempt to deal with fuzzy

random variables. Through this method, relationships

among fuzzy/fuzzy-random coefficients are reflected

through varying superiority and inferiority degrees (instead

of discrete intervals under different a-cut levels), leading to

a sharp decline in computational efforts compared to con-

ventional FLP such as robust programming. Also, through

quantifying economic penalties of potential constraint

violations (due to possibilistic and/or probabilistic uncer-

tainties), the original models could be transformed into

equivalent deterministic ones and thus easily solved.

Though SI-FSLP is effective in reflecting dual uncertainties

expressed as probability distributions of fuzzy sets, it is

incapable of addressing independent uncertainties of many

parameters that can hardly be available as possibilistic or

probabilistic distributions. It is well recognized that, the

quality of available information is mostly not satisfactory

enough in real-world cases; when uncertainties can only be

obtained as intervals without any distribution information,

the SI-FSLP approach may become inapplicable. Moreover,

SI-FSLP cannot handle uncertainties which are expressed

as probability distributions of fuzzy random variables

(i.e., fuzzy sets with two-layer randomness) in many

real-world problems, resulting in losses of valuable

uncertain information.

Therefore, this research is aimed at remedying the above

deficiencies and contending with multiple uncertainties

existing in MSW management systems. In this study, ILP,

CCP and SI-FSLP will be incorporated within a general

framework to deal with multiple uncertainties in terms of

intervals, probabilistic and possibilistic distributions, as

well as their combinations. This will lead to a superiority-

inferiority-based inexact fuzzy-stochastic chance-constrained

programming (SI-IFSCCP) approach. The proposed

approach would help explicitly address multiple uncer-

tainties embedded in MSW management systems without

unrealistic simplifications, so that robust solutions could be

obtained. Also, it can help examine the relationship

between system efficiency and system-violation risk under

uncertainty. More importantly, through quantifying the

costs of violating constraints by a set of economic penalties

under a series of risk levels, satisfactory waste flow plans

could be identified with comprehensive considerations over

potential system violations, leading to highly enhanced

system robustness. The proposed methodology will then be

applied to a case study to demonstrate its validness.
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2 Statement of problems

A MSW management system is pervaded with uncertain-

ties. Most of its parameters are uncertain in nature and their

interrelationships could be extremely complicated. For

example, due to the variations in waste characteristics,

geographical conditions, employed technologies, land

availability and labor prices, costs of waste collection,

transportation, treatment and disposal are subject to

uncertainties. Also, intrinsic fluctuations of many impact

factors, such as waste compositions and operation condi-

tions, may result in uncertainties associated with the

capacities of waste management facilities. Particularly,

waste generation is highly uncertain since it is affected by

many factors, such as economic development, population

growth and public policies (Nie et al. 2007). Inevitably,

these inherent uncertainties would cause difficulties in

parameter estimation. In fact, in long-term MSW man-

agement problems, values of parameters are hard to be

precisely estimated, while it is more realistic for decision

makers to express them as imprecise data based on historic

data, expertise and experience. Moreover, uncertainties

within MSW management systems could be further com-

pounded by combinations of uncertain information

presented in multiple formats (e.g., intervals, possibilistic

and probabilitic distributions), leading to amplified intri-

cacies in MSW management.

Particularly, MSW management problems could be

viewed from various perspectives depending on the sub-

jectivity of decision makers and technical professionals

(Najm et al. 2002). The values of parameters are usually

subjectively estimated by decision makers and stakehold-

ers, and thus may merely be obtained as imprecise

information, such as fuzzy sets. Because of the subjectivity,

the estimated values acquired from different sources may

differ from each other. Such deviations in subjective esti-

mations may lead to both fuzziness and randomness within

MSW management systems. Moreover, the estimation for

some parameters, such as waste generation rates, is of

significant importance for the success of optimization

efforts. Thus, many stakeholders should be involved and

detailed subjective information should be investigated.

Consequently, there may even be two-layer randomness

(i.e., two layers of probability distributions) embedded

within one parameter as described below:

Example 1: The estimation from one decision maker on

the same parameter could vary under different scenarios.

When being enquired for the lowest waste generation rate

of a city in the next 5 years, a decision maker would

probably describes it as follows: (a) if the population

growth and economic development in this city is slow in

the next 5 years (with a probability of 20%), the lowest

waste generation rate is roughly 100 ton/day which can be

expressed as a fuzzy set (g100 ton/day); (b) if the population

growth and economic development in this city is medium

(with a probability of 60%), the lower bound for the waste

generation rate is roughly 140 ton/day (i.e., g140 ton/day);

(c) if the population growth and economic development is

rapid (with a probability of 20%), the corresponding waste

generation rate is roughly 180 ton/day (i.e., g180 ton/day).

Such highly imprecise information can be described as

fuzzy random variables. When sufficient fuzzy random

variables (i.e., first-layer randomness) are sampled from a

large number of decision makers, the lower bound of waste

generation rates could then be expressed as a probability

distribution of these fuzzy random variables (i.e., second-

layer randomness), resulting in fuzziness and two-layer

randomness as shown in Fig. 1. Similarly, the upper bound

of waste generation rate can also be obtained as a proba-

bility distribution of fuzzy random variables.
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generation rates
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Example 2: When being asked for the value of a certain

parameter, groups with competing interests have their own

perspectives and thus varied estimations. In order to

extensively reflect a variety of opinions without prejudices,

data for parameter estimation need to be collected from

more than one stakeholder group. Firstly, group A of

stakeholders (e.g., the waste management division of a

local government) is asked to estimate the lowest daily

waste generation rate in a city. Within this group, each

involved individual has his/her own judgment based on his/

her personal experience and preference. Then, individuals

in group A may gather as several small groups: (a) 20% of

them agree that the waste generation rate would be low,

and they reach a consensus that the most possible value

would be 100 ton/day; (b) 60% of them believe that there

would be a medium generation rate at around 140 ton/day;

(c) another 20% support the idea of a high generation rate

which is roughly 180 ton/day. Thus, it is more realistic to

reflect such differences in subjective judgments within

group A as a fuzzy random variable than a deterministic

number. Likewise, other groups of stakeholders may give

their judgments as fuzzy random variables which differ

from that from group A. For example, stakeholders from

waste-generating industries may be inclined to underesti-

mate generation rates; while resident representatives would

prefer higher values to protect environmental quality.

When sufficient fuzzy random variables (i.e., first-layer

randomness) are sampled from a large number of stake-

holder groups, a probability distribution function of these

fuzzy random variables (i.e., second-layer randomness)

could be obtained for each bound of the waste generation

rate, leading to two layers of randomness (see Fig. 1).

Apparently, such multiple uncertainties and associated

complexities are far beyond the capabilities of existing

optimization methods, and over-simplification of these

uncertain parameters into deterministic ones would make

the decision results less useful. These uncertainties are

required to be incorporated into the decision-making pro-

cess to generate robust waste management plans. The more

uncertainties reflected through the optimization efforts, the

more robust the results would be. Thus, it is imperative to

develop advanced inexact optimization approaches to deal

with MSW problems in a theoretically sound and practi-

cally viable way.

3 Methodology

3.1 Inexact chance-constrained programming

In real-world problems, deterministic numbers are nor-

mally hard to be obtained, while the values of a parameter

may fluctuate within a range. Such a range with known

lower and upper bounds but unknown distribution is

defined as an interval number: a� ¼ ½a�; aþ� ¼ ft 2 aja�
� t� aþg, where a- and a? are the lower and upper

bounds of a±, respectively. When a- = a?, a± becomes a

deterministic number (Huang et al. 1995). In MSW man-

agement systems, many parameters may be obtained as

interval numbers (Cai et al. 2007, 2008, 2009b; Tan et al.

2009). For example, the operating cost of a landfill is

$[55, 75] per tonne, which means that the cost for

disposing one tonne of waste at the landfill is between $55

and 75. Likewise, decision makers mostly feel more con-

fident in specifying the minimum and maximum daily

capacities of a waste-to-energy facility than giving a

deterministic number.

In ILP, interval numbers are allowed to be modeling

inputs and can be directly communicated into the optimi-

zation process. According to Huang et al. (1994, 1995), an

ILP model is defined as follows:

Min f� ¼ C�X� ð1aÞ

subject to:

A�X� �B� ð1bÞ

X� � 0 ð1cÞ

where A� 2 fR�gm�n;B� 2 fR�gm�1;C� 2 fR�g1�n;

X� 2 fR�gn�1
, and R

� denotes a set of interval numbers.

Although ILP allows intervals to be directly communi-

cated into the optimization process, it may encounter

difficulties when parameters in the model’s right-hand side

(bi) are highly uncertain and can merely be expressed as

probability distributions (Morgan et al. 1993; Huang 1998).

Thus, chance-constrained programming (CCP) should be

introduced. Consider a general stochastic linear program-

ming (SLP) as follows:

Min CðtÞX ð2aÞ

subject to:

AðtÞX�BðtÞ ð2bÞ
X� 0 ð2cÞ

where A(t), B(t) and C(t) are sets with random elements

defined on a probability space T, t [ T (Charnes et al. 1972;

Infanger and Morton 1996). Moreover, A(t), B(t) and C(t)

are stochastically independent. To solve this model, the

CCP approach converts it to a deterministic version

through fixing a certain level of probability pi [ [0, 1] for

the ith (i = 1, 2,…,m) constraint in AðtÞX�BðtÞ and

imposing the condition that the constraint is satisfied with

at least a probability of 1 - pi. Then, the feasible solution

set is subject to the following constraints (Charnes et al.

1972):
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Pr½ftjAiðtÞX� biðtÞg� � 1� pi; i ¼ 1; 2; . . .;m ð3Þ

where AiðtÞX� biðtÞ is the ith constraint in AðtÞX�BðtÞ.
According to Huang (1998) and Huang et al. (2001),

these constraints are generally nonlinear, and the set of

feasible constraints is convex only for some particular

cases, one of which is when Ai(t) become deterministic

[i.e., Ai(t) ?Ai] and bi(t) are random. Under such condi-

tion, constraint (3) becomes linear:

AiX� biðtÞðpiÞ; 8i ð4Þ

where biðtÞðpiÞ is a deterministic number when the

cumulative distribution function of bi [i.e., Fi(bi)] and the

probability of violating the ith constraint (i.e., pi) are both

given, and biðtÞðpiÞ ¼ F�1
i ðpiÞ. Equation 4 is linear only

when A is deterministic. If both A and B are uncertain, the

set of feasible constraints may become more complicated

(Ellis 1991; Infanger 1993; Zare and Daneshmand 1995).

Also, CCP is unable to handle independent uncertainties in

C. In order to better account for uncertainties in A, B and C,

Huang (1998) integrated the CCP method into the ILP

framework, leading to an interval-parameter chance-

constrained programming (ICCP) model as follows:

Max f� ¼ C�X� ð5aÞ

subject to:

Pr½ftjA�i X� � biðtÞg� � 1� pi; i ¼ 1; 2; . . .;m ð5bÞ

x�j � 0; x�j 2 X�; j ¼ 1; 2; . . .; n ð5cÞ

where A�i X� � biðtÞ is the ith constraint in A�X� �BðtÞ.
Model (5) can be converted into an ‘‘equivalent’’

deterministic version as follows:

Max f� ¼ C�X� ð6aÞ

subject to:

A�i X� � biðtÞðpiÞ; i ¼ 1; 2; . . .;m ð6bÞ

x�j � 0; x�j 2 X�; j ¼ 1; 2; . . .; n ð6cÞ

3.2 Superiority-inferiority-based fuzzy-stochastic

linear programming

Besides interval numbers, uncertainties in MSW manage-

ment cases may be expressed as fuzzy sets. For example,

decision makers might estimate that the most possible

value for the operating cost of a facility is $40 per tonne

and there is no possibility for it to be lower than $30 or

more than $50 per tonne; this can then be expressed as a

fuzzy set (i.e., $f40 per tonne). In addition, these fuzzy sets

are usually associated with randomness, leading to fuzzy

random variables. Fuzzy random variables could result

from different subjective judgments upon one parameter

from either one decision maker under varied scenarios or

from a number of decisions makers.

In order to tackle fuzzy random variables, a superiority-

inferiority-based fuzzy-stochastic linear programming (SI-

FSLP) approach which was recently proposed by Van Hop

(2007) should be introduced. This programming approach

is based on a method for comparing fuzzy sets (or fuzzy

random variables) through superiority and inferiority

degrees. Let ~G be a family of triangular fuzzy sets which

can be defined as follows

~G ¼ f~d ¼ ðd; a; bÞ; a; b� 0g and l~dðxÞ

¼
max 0; 1� d�x

a

� �

if x� d; a [ 0

1 if a ¼ 0 and/or b ¼ 0

max 0; 1� x�d
b

� �

if x [ d; b [ 0

0 otherwise

8

>

>

<

>

>

:

ð7Þ

where scalars a and b (a; b� 0; a; b 2 R) are named the left

and right spreads, respectively. A crisp (i.e., deterministic)

number (d 2 R) can be illustrated as a triangular fuzzy set
~d ¼ ðd; 0; 0ÞZimmerman (1991).

Consider two triangular fuzzy sets ~u ¼ ðu; a; bÞ and

~v ¼ ðv; c; dÞ 2 ~G, where ~u� ~v (Fig. 2). The a-level set (i.e.,

a-cut) of ~u (or ~v) is a crisp subset of X (or X0) which can be

defined as follows:

~ua ¼ fxjl~uðxÞ� a and x 2 Xg ð8aÞ

~va ¼ fx0jl~vðx0Þ � a and x 2 X0g ð8bÞ
Since ~u� ~v, we have ~ua� ~va, and supfx0 : l~vðx0Þ � ag�

supfx : l~uðxÞ� ag� 0. Therefore, the total superiority of ~v

over ~u is defined as the area of ~v larger than ~u. Mathe-

matically, this area can be presented as follows (Van Hop

2007):

Sð~v; ~uÞ ¼
Z

1

0

fsupfx0 : l~vðx0Þ � ag � supfx : l~uðxÞ� aggda

ð9aÞ

Analogously, the inferiority of ~u to ~v can be defined as

follows:

Fig. 2 Superiority and inferiority between ~u and ~v
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Ið~u; ~vÞ ¼
Z

1

0

finffx0 : l~vðx0Þ � ag � inffx : l~uðxÞ� aggda

ð9bÞ

It should be noted that the definitions for superiority and

inferiority degrees in Eqs. 9a and b are applicable to not

only triangular fuzzy sets, but also other types of fuzzy

sets. For triangular fuzzy sets ~u ¼ ðu; a; bÞ and ~v ¼
ðv; c; dÞ 2 ~G (~u� ~v), the superiority of ~v over ~u can be

further quantified as (Van Hop 2007):

Sð~v; ~uÞ ¼ v� uþ d � b

2
ð10aÞ

Likewise, the inferiority of ~u to ~v can be presented as:

Ið~u; ~vÞ ¼ v� u� c� a

2
ð10bÞ

Based on Eqs. 10a and b, the following can be obtained

(Van Hop 2007):

Sð~fjðaiÞ; ~fjðakÞÞ 6¼ Ið~fjðakÞ; ~fjðaiÞÞ ð11Þ

This method can also be extended to measure the

superiority and inferiority degrees between two fuzzy

random variables. Consider a probabilistic space (X;=;P),

a fuzzy random variable on this space is a fuzzy set-valued

mapping as follows:

~�X : X! F0 Rð Þ ð12aÞ

x! ~�Xx ð12bÞ

For any Borel set (B) (Croft et al. 1991) under a a-cut

level (between 0 and 1), we have:

~�X
�1
a ðBÞ ¼ fx 2 Xj ~Xa

x � Bg 2 = ð13Þ

where F0ðRÞ and ~Xa
x stand for the set of fuzzy numbers

with compact supports and the a-level set of ~Xx, respec-

tively; ~�X is a fuzzy random variable if and only if x 2 X;
~Xa
x is a random interval with a 2 ð0; 1� (Luhandjula 1996).

According to Van Hop (2007), for two triangular fuzzy

random variables (~�u�~�v), the superiority of fuzzy random

variable ~�v over ~�u is:

Sð~�v; ~�uÞ ¼ vðxÞ � uðxÞ þ dðxÞ � bðxÞ
2

ð14aÞ

Likewise, the inferiority of fuzzy random variable ~�u to ~�v

is:

Ið~�u;~�vÞ ¼ vðxÞ � uðxÞ � cðxÞ � aðxÞ
2

ð14bÞ

The above method for measuring superiority and

inferiority degrees can be utilized to solve fuzzy-stochastic

linear programming (FSLP) problems where fuzzy-stochastic

coefficients exist in constraints. Consider a FSLP problem

as follows:

Max CX ð15aÞ

subject to:

~�AX� ~�B ð15bÞ
X� 0 ð15cÞ

where C 2 fRg1�n
, ~�A 2 f<gm�n

, ~�B 2 f<gm�1
, R denotes a

set of real numbers (i.e., deterministic numbers), and <
denotes a set of fuzzy random coefficients defined on a

probability space ðX;F;PÞ. This problem requires a

maximized objective function value subject to a superiority

of the right-hand sides (RHS) over the left-hand sides

(LHS) and an inferiority of LHS to RHS. Based on the

concepts of superiority and inferiority degrees, problem

(15) can be reformulated by applying penalty costs to the

violated constraints as caused by variations in fuzziness

and randomness. This corresponds to a maximized

objective function value subject to penalty costs for any

violations of superiority of RHS over LHS or inferiority of

LHS to RHS. The equivalent deterministic program for

problem (15) is:

Max
X

n

j¼1

cjxj �
X

m

i¼1

biE½ks
i ðxÞ� �

X

m

i¼1

ciE½kI
i ðxÞ� ð16aÞ

subject to:

Si

X

n

j¼1

ð~aijÞxxjð~biÞx

 !

¼ kS
i ðxÞ i ¼ 1; 2; . . .;m ð16bÞ

Ii ð~biÞx;
X

n

j¼1

ð~aijÞxxj

 !

¼ kI
i ðxÞ i ¼ 1; 2; . . .;m ð16cÞ

xj� 0 ð16dÞ

x 2 X ð16eÞ

where bi [ 0 and ci [ 0 are penalty coefficients, E denotes

the expected value. The penalty coefficients are introduced

to quantify adverse impacts caused by constraint violations

as monetary values. Higher penalty costs would correspond

to stricter policies in terms of constraint violations.

Therefore, decision makers can identify suitable penalty

levels based on projected applicable conditions. For

example, in an optimistic case (i.e., constraint violations

would not lead to significant losses), the decision makers

can have bi and ci be lower values; comparatively, in a

pessimistic case (i.e., constraint violations would result in

severe consequences), the values of bi and ci should be

higher. Since the superiority and inferiority degrees (rather

than intervals at different a-cut levels) are used to defuzzify

the uncertainties, the number of constraints in the resulting
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deterministic model can be drastically reduced. Also, the

comparisons between fuzzy (random) coefficients through

analyzing their relative relationships would help relax the

constraints. The larger spreads of fuzzy numbers, the

higher level of relaxation (Van Hop 2007).

3.3 Superiority-inferiority-based inexact fuzzy-

stochastic chance-constrained programming

ICCP or SI-FSLP alone does not suffice for realistically

reflecting multiple uncertainties within MSW management

problems. Both of them suffer from shortcomings.

Although SI-FSLP is capable of tackling possibilistic and

probabilistic distributions in constraints, it becomes inef-

fective when (a) there are uncertainties existing in the

objection function; (b) the quality of information is not

satisfactory enough as specified distributions. Likewise,

ICCP is able to deal with intervals in aij and cj as well as

probability distributions in bi, but it encounters difficulties

when (a) the lower and upper bounds of intervals are

subject to fuzziness and randomness; (b) the right-hand

coefficients (bi) are merely available as uncertain numbers

under varied probability levels. It is recognized that, in

real-world MSW management problems, it may be hard to

acquire deterministic lower and upper bounds for many

interval parameters; instead, the two bounds may merely be

available as fuzzy random variables, leading to multiple

uncertainties as shown in Fig. 3. Such intervals with fuzzy-

random bounds can be named as fuzzy-random boundary

intervals (FRBIs). Moreover, under some circumstances,

there may even be two-layer randomness embedded within

the two bounds of intervals (see Fig. 1). Apparently, such

problems where two bounds of the intervals possess fea-

tures of fuzziness and randomness (and/or two-layer

randomness) are far beyond the capabilities of ICCP or

SI-FSLP.

Thus, in order to contend with the prescribed multiple

uncertainties, ILP, CCP and SI-FSLP should be integrated

into a general framework. Correspondingly, a superiority-

inferiority-based inexact fuzzy-stochastic chance-con-

strained programming (SI-IFSCCP) model can be proposed

as follows:

Min f� ¼ C�X� ð17aÞ

subject to:

A�r X� � b�r r 2 M; r 6¼ s ð17bÞ
~�A
�
s X� � ~�b

�
s ðtÞ

ðpiÞ s 2 M; s 6¼ r ð17cÞ

X� � 0 ð17dÞ

where C� 2 R
�� �1�n

, A�r 2 fR�g
r�n

, b�r 2 fR�g
r�1

,
~�A
�
s 2 f<�g

s�n
, ~�b

�
s ðtÞ

ðpsÞ 2 f<�gs�1
, M = (1, 2,…,m),

~�b
�
s ðtÞ

ðpsÞ represents corresponding values given the cumu-

lative distribution function of ~�b
�
s and the probability of

violating constraint s (i.e., pi), R
� denotes a set of interval

numbers, and <� denotes a set of intervals with fuzzy-ran-

dom lower and upper bounds which are named ‘‘fuzzy-

random boundary interval (FRBI)’’. Figure 4 illustrates the

framework of the proposed SI-IFSCCP model.

The developed SI-IFSCCP model can be solved

through a two-step interactive solution method. It is

assumed that the lower and upper bounds of intervals

have no intersections and they are mutually independent.

The SI-IFSCCP model should be firstly transformed into

two submodels; each submodel is then converted into a

conventional linear program. When the objective function

is to be minimized, a submodel corresponding to f-

should be firstly formulated as follows (assume that

bi
± [ 0, and f± [ 0):

1

ix−
ix−

ix−
ix+

ix+           
ix+ x

M
em

b
er

sh
ip

 g
ra

d
e 

Fig. 3 Fuzzy-random boundaries for interval x�i

Uncertainty

Fuzzy Sets Probability Distributions Intervals

Superiority-inferiority-based fuzzy-
stochastic linear programming (SI-FSLP)

Interval-parameter chance-constrained
linear programming (ICCP)

Superiority-inferiority-based inexact fuzzy-stochastic
chance-constrained programming (SI-IFSCCP)

SI-IFSCCP lower submodel SI-IFSCCP upper submodel

Solutions for SI-IFSCCP

Generation of decision alternatives under multiple uncertainties

Fig. 4 Schematic diagram of the SI-IFSCCP method
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Min f� ¼
X

k1

j¼1

c�j x�j þ
X

n

j¼k1þ1

c�j xþj ð18aÞ

subject to:

X

k1

j¼1

jarjjþSignðaþrj Þx�j þ
X

n

j¼k1þ1

jarjj�Signða�rj Þxþj � bþr

8r; r 6¼ s

ð18bÞ

X

k1

j¼1

~asjðxÞ
�

�

�

�

þ
Sign ~aþsjðxÞ

� �

x�j

þ
X

n

j¼k1þ1

j~asjðxÞj�Signð~a�sjðxÞÞxþj � ~bþsðxÞðtÞ
ðpiÞ

8s; s 6¼ r ð18cÞ

x�j � 0; 8j ð18dÞ

x 2 X ð18eÞ

where jarjj� and jarjjþ represent the lower and upper bounds

of the absolute value of a�rj , respectively; Sign (a�rj ) is the

sign of a�rj [i.e., Sign (a�rj Þ ¼ 1 when a�rj C 0; Sign

(a�rj ) = -1 when a�rj \ 0]; xj
±, j = 1, 2,…,k1, are interval

variables with positive coefficients in the objective

function, and xj
±, j = k1 ? 1, k1 ? 2,…,n, are interval

variables with negative coefficients (Huang et al. 1995).

Then, submodel (18) can be transformed into a

deterministic linear programming model as follows:

Min
X

k1

j¼1

c�j x�j þ
X

n

j¼k1þ1

c�j xþj þ
X

m

i¼1

biE½kS
i ðxÞ

��

þ
X

m

i¼1

ciE½kI
i ðxÞ

�� ð19aÞ

subject to:

X

k1

j¼1

jarjjþSignðaþrj Þx�j þ
X

n

j¼k1þ1

jarjj�Signða�rj Þxþj � bþr 8r

ð19bÞ

Si

X

k1

j¼1

ðj~asjðxÞjþÞSignð~aþsjðxÞÞx
�
j þ

X

n

j¼k1þ1

ðj~asjðxÞj�Þ
 

� Signð~a�sjðxÞÞxþj ; ~bþsðxÞðtÞ
ðpiÞ
�

¼ kS
i ðxÞ

� 8s ð19cÞ

Ii
~b
þ
sðxÞðtÞ

ðpiÞ;
X

k1

j¼1

ðj~asjðxÞjþÞSignð~aþsjðxÞÞx
�
j

 

þ
X

n

j¼k1þ1

ðj~asjðxÞj�ÞSignð~a�sjðxÞÞxþj

!

¼ kI
i ðxÞ

� 8s ð19dÞ

x�j � 0 8j ð19eÞ

kS
i ðxÞ

�; kI
i ðxÞ

� � 0 i ¼ 1; 2; . . .;m ð19fÞ

x 2 X ð19gÞ

Solutions of xj
-

opt (j = 1, 2,…,k1) and xj
?

opt (j = k1 ? 1,

k1 ? 2,…,n) can be obtained through the above submodel.

Thus, the submodel corresponding to f? can be formulated

as follows (assuming that bi
± [ 0, and f± [ 0):

Min fþ ¼
X

k1

j¼1

~cþjðxÞx
þ
j þ

X

n

j¼k1þ1

~cþjðxÞx
�
j ð20aÞ

subject to:

X

k1

j¼1

jarjj�Signða�rj Þxþj þ
X

n

j¼k1þ1

jarjjþSignðaþrj Þx�j � b�r

8r; r 6¼ s

ð20bÞ

X

k1

j¼1

ðj~asjðxÞj�ÞSignð~a�sjðxÞÞxþj

þ
X

n

j¼k1þ1

ðj~asjðxÞjþÞSignð~aþsjðxÞÞx
�
j � ~b�sðxÞðtÞ

ðpiÞ

8s; s 6¼ r

ð20cÞ

x�j � 0 8j ð20dÞ

xþj � x�jopt j ¼ 1; 2; . . .; k1 ð20eÞ

x�j � xþjopt j ¼ k1 þ 1; k1 þ 2; . . .; n ð20fÞ

x 2 X ð20gÞ

Similarly, submodel (20) can be transformed into a

deterministic model as follows:

Min
X

k1

j¼1

~cþjðxÞx
þ
j þ

X

n

j¼k1þ1

~cþjðxÞx
�
j þ

X

m

i¼1

biE½kS
i ðxÞ

þ�

þ
X

m

i¼1

ciE½kI
i ðxÞ

þ� ð21aÞ

subject to:

X

k1

j¼1

jarjj�Signða�rj Þxþj þ
X

n

j¼k1þ1

jarjjþSignðaþrj Þx�j � b�r 8r

ð21bÞ

Si

X

k1

j¼1

ðj~asjðxÞj�ÞSignð~a�sjðxÞÞxþj þ
X

n

j¼k1þ1

ðj~asjðxÞjþÞ
 

� Signð~aþsjðxÞÞx
�
j ;

~b�sðxÞðtÞ
ðpiÞ
�

¼ kS
i ðxÞ

þ 8s ð21cÞ
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Ii
~b�sðxÞðtÞ

ðpiÞ;
X

k1

j¼1

ðj~asjðxÞj�ÞSignð~a�sjðxÞÞxþj

 

þ
X

n

j¼k1þ1

ðj~asjðxÞjþÞSignð~aþsjðxÞÞx
�
j

!

¼ kI
i ðxÞ

þ 8s

ð21dÞ

x�j � 0 8j ð21eÞ

xþj � x�jopt j ¼ 1; 2; . . .; k1 ð21fÞ

x�j � xþjopt j ¼ k1 þ 1; k1 þ 2; . . .; n ð21gÞ

kS
i ðxÞ

þ; kI
i ðxÞ

þ � 0 i ¼ 1; 2; . . .;m ð21hÞ

x 2 X ð21iÞ

Hence, solutions of xj
?

opt (j = 1, 2,…,k1) and xj
-

opt

(j = k1 ? 1, k1 ? 2,…,n) can be obtained from submodel

(21). By combining solutions from the two submodels, we

have the final solution for model (17): f�opt ¼ ½f�opt; f
þ
opt� and

x�jopt ¼ ½x�jopt; x
þ
jopt�. The above algorithm can be summarized

as follows:

• Step 1: Formulate the SI-IFSCCP model according to

(17).

• Step 2: Select a significance level pi, and ~�b
�
s ðtÞ

ðpiÞ

values can then be obtained according to the given

distribution information of ~�b
�
s ðtÞ and ~�b

þ
s ðtÞ.

• Step 3: Formulate f- submodel:

(a) formulate the objective function according to (18a);

(b) formulate the constraints according to (18b) and

(18c).

• Step 4: Convert f- submodel to an equivalent deter-

ministic one:

(a) calculate superiority and inferiority degrees for

the constraints with FRBI coefficients [i.e., those

corresponding to (18c)] according to (19c) and

(19d).

(b) introduce penalty coefficients and formulate new

objective function for f- submodel according to

(19a).

• Step 5: Solve f- submodel:

(a) obtain x�jopt (j = 1, 2,…,k1) and xþjopt (j = k1 ? 1,

k1 ? 2,…,n);

(b) obtain f�opt.

• Step 6: Formulate f? submodel:

(a) formulate the objective function according to

(20a);

(b) formulate the first set of constraints according to

(20b) and (20c);

(c) formulate the second set of constraints for the

bounds of decision variables according to (20e)

and (20f).

• Step 7: Convert f? submodel to an equivalent deter-

ministic one:

(a) calculate superiority and inferiority degrees for

the constraints with FRBI coefficients [i.e., those

corresponding to (20c)] according to (21c) and

(21d).

(b) introduce penalty coefficients and formulate new

objective function for f? submodel according to

(21a).

• Step 8: Solve f? submodel:

(a) obtain xþjopt (j = 1, 2,…,k1) and x�jopt (j = k1 ? 1,

k1 ? 2,…,n);

(b) obtain fþopt.

• Step 9: The final solutions can be obtained as:

f�opt = [f�opt, fþopt] and x�jopt = [x�jopt, xþjopt].

• Step 10: Stop.

4 Application

4.1 Overview of the study system

The developed methodology is applied to a long-term

MSW management problem, wherein regional waste

managers are responsible for allocating waste flows from

three cities to two treatment/disposal facilities, as shown in

Fig. 5. This case is developed based on representative cost

and technical data obtained from a number of solid waste

management literature (Huang et al. 1995, 2001; Chang

and Wang 1997; Maqsood et al. 2004; Nie et al. 2007; Li

et al. 2007). The planning horizon is 15 years, which is

further discretized into 3 time periods with 5 years each.

Over the planning horizon, an existing landfill and a waste-

to-energy (WTE) facility are available to serve the waste

treatment/disposal needs. The landfill has an overall

cumulative capacity of [4.58, 4.63] 9 106 ton, while the

WTE has a daily capacity of [550, 590] ton/day. The WTE

facility generates residues of approximately 20–40% (on a

mass basis) of the incoming waste stream; these residues

are transported to the landfill for final disposal. Revenue

from the produced energy of the WTE facility is approxi-

mately $[15, 25] per tonne combusted.

The costs for waste transportation and treatment change

temporally and spatially. In this study, they are available as

interval numbers according to historical data and empirical

experience. For example, the operating cost of the WTE
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facility in period 1 would be $[55, 75] per tonne; the cost

for shipping the waste from city 1 to the landfill in period 1

would be $[12.1–16.1] per tonne. Table 1 contains the

operating costs of the two facilities and the transportation

costs for waste flows from the cities to the facilities as well

as for residues from the WTE facility to the landfill during

the three periods.

Also, the waste generation rates vary among different

cities and different periods. Since waste-generation rates

are of significant importance for the identification of

desired waste allocation plans, many decision makers and

stakeholders should be involved to estimate their values.

During data sampling, each stakeholder would be enquired

for the lower bound of the waste generation rate in city j

during period k (i.e., gWG�jk) under three scenarios: (a) low

waste generation level (with a probability of 20%); (b)

medium waste generation level (with a probability of

60%); (c) high waste generation level (with a probability of

20%). Thus, the information provided by each stakeholder

would then be expressed as a fuzzy random variable

(gWG
�
jk). When sufficient data of gWG

�
jk are sampled from a

large number of stakeholders, a probability distribution

function for the lower bound of waste generation rate in

city j during period k could be obtained as gWG
�
jkðtÞ.

Similarly, the upper bound of the waste generation rate in

city j during period k can also be obtained as a probability

distribution of fuzzy random variables (i.e., gWG
þ
jkðtÞ). In

Tables 2 and 3, the cumulative distribution functions for

the lower- and upper-bounds of waste generation rates in

the three cities over the planning horizon are displayed,

respectively.

Although waste generation rates are available as

imprecise data, it would be unrealistic to assume that a city

could capture all of its generated waste for treatment and

disposal. It is acknowledged that, not all of the estimated

waste would be actually collected or transported to the

treatment/disposal facilities. This can be attributed to:

(a) the implementation of policies promoting recycling and

reusing; (b) the advancement of source reduction/minimi-

zation measures; and (c) the inefficiency in waste

collection and transportation systems. To reflect the

reductions in waste flows caused by the above reasons, a

waste collection factor is introduced in this study as a

modification coefficient. Waste collection factors may be

affected by a number of impact factors. For example, the

implementation of recycling and reusing strategies would

lead to an increase in waste collection factors, while the

improvement in the efficiency of waste collection/trans-

portation systems would decrease their values. In this case,

waste collection factors of the three cities in the three time

periods are obtained as fuzzy-random boundary intervals as

listed in Table 4.

Therefore, the problem under consideration can be

described as follows: given the quantities of waste gener-

ated in the cities, the locations and capacities of existing

facilities, and the cost structure (including the costs for

transportation and operation, as well as the revenues from

energy recovery), find out how waste should be routed,

processed and disposed so that the overall cost of the

system can be minimized under a number of environmen-

tal, economic and treatment/disposal constraints. Since

multiple formats of uncertainties exist within the system in

terms of intervals, possibilistic and probabilistic distribu-

tions, as well as their combinations, the SI-IFSCCP method

is considered to be a feasible approach for tackling this

planning problem.

WTE 
facility

Landfill

City 1

City 2

City 3

MSW

MSW

MSW

MSW

MSW

MSW

Residue

Fig. 5 The study system

Table 1 Transportation costs and facility-operation costs

Time period

k = 1 k = 2 k = 3

Cost of waste transportation to landfill, TR1jk
± ($/ton):

City 1 [12.1, 16.1] [13.3, 17.7] [14.6, 19.5]

City 2 [10.5, 14.0] [11.6, 15.4] [12.8, 16.9]

City 3 [12.7, 17.0] [14.0, 18.7] [15.4, 20.6]

Cost of waste transportation to landfill, FTk
± ($/ton):

Waste-to-energy facility [9, 11] [11, 13] [13, 15]

Cost of waste transportation to WTE facility, TR2jk
± ($/ton):

City 1 [9.6, 12.8] [10.6, 14.1] [11.7, 15.5]

City 2 [10.1, 13.4] [11.1, 14.7] [12.2, 16.2]

City 3 [8.8, 11.7] [9.7, 12.8] [10.6, 14.0]

Operating cost, OPik
± ($/ton):

Landfill [30, 45] [40, 60] [50, 80]

Waste-to-energy facility [55, 75] [60, 85] [65, 95]
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Table 3 Distribution information of gWG
þ
jkðtÞ

Pi

value

0 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99 1

Period 1
gWG

þ
11

L g231a
g238 g254 g266 g282 g294 g305 g322 g334 g350 g355

M g237 g244 g260 g272 g288 g300 g311 g328 g340 g356 g361

H g243 g250 g266 g278 g294 g306 g317 g334 g346 g362 g367
gWG

þ
21

L g131 g138 g154 g166 g182 g194 g205 g222 g234 g250 g255

M g137 g144 g160 g172 g188 g200 g211 g228 g240 g256 g261

H g143 g150 g166 g178 g194 g206 g217 g234 g246 g262 g267
gWG

þ
31

L g231 g238 g254 g266 g282 g294 g305 g322 g334 g350 g355

M g237 g244 g260 g272 g288 g300 g311 g328 g340 g356 g361

H g243 g250 g266 g278 g294 g306 g317 g334 g346 g362 g367

Period 2
gWG

þ
12

L g281 g288 g304 g316 g332 g344 g355 g372 g384 g400 g405

M g287 g294 g310 g322 g338 g350 g361 g378 g390 g406 g411

H g293 g300 g316 g328 g344 g356 g367 g384 g396 g412 g417
gWG

þ
22

L g156 g163 g179 g191 g207 g219 g230 g247 g259 g275 g280

M g162 g169 g185 g197 g213 g225 g236 g253 g265 g281 g286

H g168 g175 g191 g203 g219 g231 g242 g259 g271 g287 g292
gWG

þ
32

L g231 g238 g254 g266 g282 g294 g305 g322 g334 g350 g355

M g237 g244 g260 g272 g288 g300 g311 g328 g340 g356 g361

H g243 g250 g266 g278 g294 g306 g317 g334 g346 g362 g367

Period 3
gWG

þ
13

L g331 g338 g354 g366 g382 g394 g405 g422 g434 g450 g455

M g337 g344 g360 g372 g388 g400 g411 g428 g440 g456 g461

H g343 g350 g366 g378 g394 g406 g417 g434 g446 g462 g467
gWG

þ
23

L g181 g188 g204 g216 g232 g244 g255 g272 g284 g300 g305

M g187 g194 g210 g222 g238 g250 g261 g278 g290 g306 g311

H g193 g200 g216 g228 g244 g256 g267 g284 g296 g312 g317
gWG

þ
33

L g281 g288 g304 g316 g332 g344 g355 g372 g384 g400 g405

M g287 g294 g310 g322 g338 g350 g361 g378 g390 g406 g411

H g293 g300 g316 g328 g344 g356 g367 g384 g396 g412 g417

L a low waste generation level at a probability of 20%, M a medium

waste generation level at a probability of 60%, H a high waste

generation level at a probability of 20%
a Triangular fuzzy set ~d ¼ d; a; bð Þ, where a = b = 2. For example,
~d = g137 = (137, 2, 2), where d = 137 when a = 1; d = 135 and

d = 139 when a = 0

Table 2 Distribution information of gWG
�
jkðtÞ

Pi

value

0 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99 1

Period 1
gWG

�
11

L g181a
g188 g204 g216 g232 g244 g255 g272 g284 g300 g305

M g187 g194 g210 g222 g238 g250 g261 g278 g290 g306 g311

H g193 g200 g216 g228 g244 g256 g267 g284 g296 g312 g317
gWG

�
21

L f81 f88 g104 g116 g132 g144 g155 g172 g184 g200 g205

M f87 f94 g110 g122 g138 g150 g161 g178 g190 g206 g211

H f93 g100 g116 g128 g144 g156 g167 g184 g196 g212 g217
gWG

�
31

L g181 g188 g204 g216 g232 g244 g255 g272 g284 g300 g305

M g187 g194 g210 g222 g238 g250 g261 g278 g290 g306 g311

H g193 g200 g216 g228 g244 g256 g267 g284 g296 g312 g317

Period 2
gWG

�
12

L g231 g238 g254 g266 g282 g294 g305 g322 g334 g350 g355

M g237 g244 g260 g272 g288 g300 g311 g328 g340 g356 g361

H g243 g250 g266 g278 g294 g306 g317 g334 g346 g362 g367
gWG

�
22

L g106 g113 g129 g141 g157 g169 g180 g197 g209 g225 g230

M g112 g119 g135 g147 g163 g175 g186 g203 g215 g231 g236

H g118 g125 g141 g153 g169 g181 g192 g209 g221 g237 g242
gWG

�
32

L g181 g188 g204 g216 g232 g244 g255 g272 g284 g300 g305

M g187 g194 g210 g222 g238 g250 g261 g278 g290 g306 g311

H g193 g200 g216 g228 g244 g256 g267 g284 g296 g312 g317

Period 3
gWG

�
13

L g281 g288 g304 g316 g332 g344 g355 g372 g384 g400 g405

M g287 g294 g310 g322 g338 g350 g361 g378 g390 g406 g411

H g293 g300 g316 g328 g344 g356 g367 g384 g396 g412 g417
gWG

�
23

L g131 g138 g154 g166 g182 g194 g205 g222 g234 g250 g255

M g137 g144 g160 g172 g188 g200 g211 g228 g240 g256 g261

H g143 g150 g166 g178 g194 g206 g217 g234 g246 g262 g267
gWG

�
33

L g231 g238 g254 g266 g282 g294 g305 g322 g334 g350 g355

M g237 g244 g260 g272 g288 g300 g311 g328 g340 g356 g361

H g243 g250 g266 g278 g294 g306 g317 g334 g346 g362 g367

L a low waste generation level at a probability of 20%, M a medium

waste generation level at a probability of 60%, H a high waste

generation level at a probability of 20%
a Triangular fuzzy set ~d ¼ d; a; bð Þ, where a = b = 2. For example,
~d = g137 = (137, 2, 2), where d = 137 when a = 1; d = 135 and

d = 139 when a = 0
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This problem will be firstly formulated and solved

through a SI-IFSCCP model, and then the SI-IFSCCP

solutions will be compared with those obtained from sev-

eral alternative methods to show the advantage of the

developed methodology.

4.2 Modeling formulation

For such a municipal solid waste management system, the

decision variables represent waste flows from city j to

waste management facility i in period k, denoted as xijk

(ton/day). The objective is to minimize net system cost

through aptly allocating the waste flows from the three

cities to the two management facilities. The total system

cost equals to the summation of waste collection/trans-

portation costs and facility operating costs minus the

revenues of the recovered energy from the WTE facility.

The constraints involve all of the relationships among the

decision variables and the waste generation/management

conditions. Consequently, based on data availability, a

SI-IFSCCP model can be formulated as follows:

1. Objective function

Min f� ¼ 1; 825
X

3

j¼1

X

3

k¼1

�

X

2

i¼1

x�ijkðTR�ijk þ OP�ikÞ

þx�2jk½FE�ðFT�k þ OP�1kÞ � RE�k �
	

ð22aÞ

2. Constraints

(1) Waste disposal demand constraints

X

2

i¼1

ð1þ ~�h
�
jkÞx�ijk �

gWG
�
jkðtÞ

ðpiÞ 8j; k ð22bÞ

(2) Landfill capacity constraint

1; 825
X

3

j¼1

X

3

k¼1

ðx�1jk þ x�2jkFE�Þ� TL� ð22cÞ

(3) WTE facility capacity constraints

X

3

j¼1

x�2jk � TE� 8k ð22dÞ

(4) Non-negativity and technical constraints

x�ijk � 0 8i; j; k ð22eÞ

where I is the index for the facilities (i = 1 for the landfill,

and i = 2 for the WTE facility); J is the index for the three

cities (j = 1, 2, 3); K is the index for the time periods (k = 1,

2, 3); xijk
± is the waste flow rate from city j to facility i in period

k (ton/day); TRijk
± is the transportation cost from city j to

facility i during period k ($/ton); OPik
± is the operating cost of

facility i in period k ($/ton); FE± is the residue flow from the

WTE facility to the landfill (% of incoming mass to WTE

facility); FTk
± is the transportation cost of waste flow from

the WTE facility to the landfill in period k ($/ton); RE�k is the

revenue from the WTE facility in period k ($/ton); ~�h
�
jk is

the waste collection factor for city j in period k; gWG
�
jkðtÞ

ðpiÞ is

the waste generation rate in city j during period k with the

probability of violating constraint (20b) being equal to pi

(ton/day); TL± is the capacity of the landfill (ton); TE� is the

capacity of the WTE facility (ton/day).

5 Result analysis

5.1 Solutions of SI-IFSCCP

Table 5 presents the solutions obtained from the SI-IFS-

CCP model under a set of significance levels (pi) including

0.01, 0.05 and 0.1. It is indicated that, the three sets of

solutions under the three different pi levels demonstrate

similar waste allocation patterns. However, the specific

waste-flow-allocation plans would vary with the change in

pi levels due to the temporal and spatial variations of waste

management conditions.

Table 4 Waste collection factors (~�h
�
ijk) of the three cities in the three periods

Collection factor Generation level Probability Period 1 (k = 1) Period 2 (k = 2) Period 3 (k = 3)

~�h
�
1k (city 1)a Low 20% ½g0:12; g0:22� ½g0:07; g0:17� ½g0:02; g0:12�

Medium 60% ½g0:15; g0:25� ½g0:10; g0:20� ½g0:05; g0:15�
High 20% ½g0:18; g0:28� ½g0:13; g0:23� ½g0:08; g0:18�

~�h
�
2k (city 2)a Low 20% ½g0:14; g0:24� ½g0:12; g0:22� ½g0:08; g0:18�

Medium 60% ½g0:17; g0:27� ½g0:15; g0:25� ½g0:11; g0:21�
High 20% ½g0:20; g0:30� ½g0:18; g0:28� ½g0:14; g0:24�

~�h
�
3k (city 3)a Low 20% ½g0:16; g0:26� ½g0:13; g0:23� ½g0:10; g0:20�

Medium 60% ½g0:19; g0:29� ½g0:16; g0:26� ½g0:13; g0:23�
High 20% ½g0:22; g0:32� ½g0:19; g0:29� ½g0:16; g0:26�

a Triangular fuzzy set ~d ¼ d; a; bð Þ, where a = b = 0.01. For example, ~d = g0:15 = (0.15, 0.01, 0.01), where d = 0.15 when a = 1; d = 0.14

and d = 0.16 when a = 0

158 Stoch Environ Res Risk Assess (2010) 24:147–164

123



To explain waste allocation trends of the three cities, the

modeling solutions obtained under pi = 0.01 is analyzed

below, while those under pi = 0.05 and 0.1 can be simi-

larly interpreted based on Table 5. Under a significance

level of pi = 0.01, over the planning horizon, waste from

cities 1 and 3 would be shipped to either the landfill or the

WTE facility, and city 2 would contribute all of its waste to

the landfill. For city 1, all of its waste would be transported

to the landfill in period 1, while no waste would be shipped

to the WTE facility in this period. Thus, waste flowing

from city 1 to the landfill would be [197, 264] ton/day in

period 1, which indicates that 197 ton/day of the waste

would be shipped to the landfill under advantageous con-

ditions and 264 ton/day would be shipped under demanding

conditions. However, with increasing waste generation

rates during periods 2 and 3, the majority of the waste from

city 1 (i.e., 245 and 298 ton/day in periods 2 and 3,

respectively) would be transferred to the WTE facility. In

comparison, only a small portion of the waste, i.e., [0, 74]

and [0, 83] ton/day, would be allocated to the landfill in

periods 2 and 3, respectively. This is probably because that

the differences in operating costs between the landfill and

WTE facility are steadily shrunk from period 1 to period 3,

which makes the advantage of the WTE facility in trans-

portation costs becomes more significant. For city 2, it

would contribute all of the generated waste to the landfill

over the planning horizon. This means that, the waste

flowing from city 2 to the landfill would be [129, 193],

[151, 217] and [178, 247] ton/day in periods 1, 2 and 3,

respectively. This could be attributed to many factors, such

as its vicinity to the landfill compared to the other two

cities and the low operating costs of the landfill. As for city

3, all of the generated waste (i.e., [190, 256] and [195, 261]

ton/day, respectively) would be shipped to the landfill in

periods 1 and 2 due to the lower operating costs for land-

filling. However, in period 3, the majority of the waste

from this city (i.e., 240 ton/day) would be transported to

the WTE facility, while the waste allocated to the landfill

would be merely [0, 72] ton/day. This climb of the waste

flows from city 3 to the WTE facility could be attributed to

the city’s vicinity to the WTE facility as well as the

diminished advantage of the landfill over the WTE facility

in operating costs. It is indicated by Table 5 that, the waste

allocation patterns for the three cities under the other two

significance levels would be similar to those under

pi = 0.01, while slight variations in specific waste-flow-

allocation plans do exist among different pi levels. For

example, city 1 would contribute all of its waste to the

landfill in period 1 under all of the three pi levels, while the

quantities of transported waste would vary with different

waste management conditions associated with different pi

levels (i.e., [197, 264], [187, 251] and [177, 241] ton/day of

Table 5 Solutions of the SI-IFSCCP and IFSP models

Waste flow (ton/day) IFSP model SI-IFSCCP model under different pi values

pi = 0.01 pi = 0.05 pi = 0.1

X111
± [201, 268] [197, 264] [187, 251] [177, 241]

X112
± [0, 75] [0, 74] [0, 70] [0, 69]

X113
± [0, 83] [0, 83] [0, 78] [0, 77]

X121
± [133, 197] [129, 193] [103, 161] [93, 151]

X122
± [156, 221] [151, 217] [125, 186] [115, 176]

X123
± [182, 252] [178, 247] [151, 216] [140, 205]

X131
± [194, 260] [190, 256] [181, 242] [171, 233]

X132
± [199, 265] [195, 261] [185, 248] [176, 238]

X133
± [0, 72] [0, 72] [0, 68] [0, 67]

X211
± [0, 0] [0, 0] [0, 0] [0, 0]

X212
± [249, 249] [245, 245] [236, 236] [226, 226]

X213
± [302, 302] [298, 298] [288, 288] [278, 278]

X221
± [0, 0] [0, 0] [0, 0] [0, 0]

X222
± [0, 0] [0, 0] [0, 0] [0, 0]

X223
± [0, 0] [0, 0] [0, 0] [0, 0]

X231
± [0, 0] [0, 0] [0, 0] [0, 0]

X232
± [0, 0] [0, 0] [0, 0] [0, 0]

X233
± [243, 243] [240, 240] [230, 230] [221, 221]

f�opt ($106) [175.37, 397.07] [171.96, 391.00] [159.05, 364.71] [150.85, 350.14]
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waste would be transported from city 1 to the landfill in

period 1 under a pi level of 0.01, 0.05 and 0.1,

respectively).

As presented in Table 5, under each pi level, only the

landfill would be utilized for waste disposal in period 1.

This demonstrates that, in period 1, operating costs of

waste-management facilities would be the dominant factor

for waste flow allocation, while the impacts of transpor-

tation costs might be minor. In comparison, in periods 2

and 3, both the landfill and WTE facility would be jointly

utilized for waste treatment and disposal. Compared to the

allocation plans in period 1, the WTE facility would

replace the landfill as the primary facility disposing the

waste of city 1 in period 2; in period 3, the WTE facility

would be more heavily used as the dominating treatment/

disposal facility for the waste from both cities 1 and 3,

whereas the landfill would merely be utilized to dispose a

small portion of waste from these two cities under

demanding conditions. It is well acknowledged that,

landfilling is confronting with more and more objections

from public due to its adverse environmental impacts

(e.g., air pollution due to greenhouse gas emissions, as

well as groundwater contamination attributed to landfill

leachates) and the scarcity of land near urban areas.

Hence, along with the rising waste generation rates

over the planning horizon, the steady decline in the

waste flowing to the landfill would be favored by local

authorities and residents.

Table 5 also indicates that, since varied pi levels cor-

respond to different waste generation rates, any changes in

pi levels would yield different waste-flow-allocation plans.

Figure 6 displays the relationship between pi levels and

system costs. It is denoted that, when pi ascends, both the

lower and upper bounds of system costs would be

decreased, and vice versa. For example, when pi = 0.01,

f�opt = $[171.96, 391.00] 9 106; comparatively, when

pi = 0.05, f�opt = $[159.05, 364.71] 9 106. Since higher pi

levels correspond to optimistic waste-generation cases (i.e.,

lower waste generation rates), lower system costs could be

obtained due to the relaxed constraints (i.e., expanded

decision spaces). However, the risk of system violation

would ascend with raised pi levels, and the reliability of

meeting treatment/disposal demands and environmental

requirements would descend at the same time. In com-

parison, lower pi levels correspond to higher waste

generation rates. The increased strictness for the constraints

would lead to higher system costs but lower risk of system

violation. Therefore, pi levels represent probabilities at

which the constraints will be violated, and a tradeoff

between economic efficiency and system risk could be

reflected by the relationship between f�opt and pi.

The results also indicate that, through the SI-IFSCCP

model, uncertain information could be directly communi-

cated into the optimization process and thus generate

interval solutions. Under each significance level, the solu-

tions for the objective function and most of the non-zero

decision variables are intervals, demonstrating that the

related decisions might be sensitive to the uncertain mod-

eling inputs. Unlike the deterministic solutions obtained

from conventional linear programming (LP) models, these

interval solutions from SI-IFSCCP would help generate a

range of decision alternatives rather than a sole one. This

feature would be favored by waste managers due to the

increased flexibility and applicability in practical applica-

tions. Through adjusting waste flow values within the

ranges of these interval solutions, a number of decision

alternatives could be generated according to projected

applicable conditions. Generally, lower decision variable

values should be adopted under advantageous conditions

(e.g., lower waste generation rate and higher available

capacity); in contrast, higher decision variable values

would correspond to more demanding conditions (e.g.,

higher waste generation rate and lower available capacity).

Along with the variations in the values of decision vari-

ables (xijk
± ), the net system cost would correspondingly

change within its solution interval. In detail, lower decision

150.85
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variable values would lead to a lower system cost, while

higher decision variable values would result in a rise in

system cost. Moreover, the relationship between decision

makers’ preferences and system-reliability levels could

also be reflected by these interval solutions. Willingness to

pay a higher cost would correspond to a conservative

strategy, guaranteeing a higher level of system reliability.

On the contrary, a strong desire to reduce costs would run

into the raised risk of system instability (i.e., the risk of

unforeseen conditions increases), representing an optimis-

tic strategy. Therefore, the decisions could be adjusted

within the interval solutions according to actual conditions

and policy inclination, allowing waste mangers, interest

partners and facility managers to incorporate implicit

knowledge within the decision process and thus obtain

satisfactory decision schemes.

Particularly, through the proposed SI-IFSCCP approach,

decision makers’ subjective judgments with the character-

istics of fuzziness and two-layer randomness could be

effectively addressed, avoiding over-simplification of

uncertain parameters into deterministic numbers or con-

ventional pure intervals. Various subjective judgments

upon a parameter from many stakeholders with different

interests and preferences could be extensively investigated

and incorporated into the modeling formulation, which

could guarantee a lower degree of biases during data

sampling and a higher degree of public acceptance for the

generated plans. Thus, the complexities in real-world

MSW management problems associated with multiple

uncertainties could be realistically reflected and effectively

handled.

Moreover, two levels of system-violation risk could

be reflected by SI-IFSCCP. The first-level risk is asso-

ciated with a range of significance levels. Violations for

waste-generation constraints are allowed under a set of

acceptable significance levels. Within an acceptable

range of pi (i.e., admissible risk range of violating the

constraints), lower pi levels would lead to increased

system reliability but decreased system efficiency (i.e.,

higher system cost); on the contrary, higher pi levels

would result in increased system efficiency but higher

system-violation risk. This could help examine the

relationship between system cost and system reliability

of satisfying constraints under uncertainty. The second-

level risk is related with the violations of the superiority/

inferiority relationship between the constraint’s left- and

right-hand sides. Through applying a set of penalty costs,

the economic penalties for violating waste-generation

constraints could be quantified. Under an acceptable pi

level, since satisfactory waste flow plans are identified

with the comprehensive considerations over potential

economic penalties caused by any variations in fuzziness
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Table 6 Solutions obtained through the ICCP model

Waste flow

(ton/day)

pi = 0.01 pi = 0.05 pi = 0.1

X111 [197, 266] [184, 252] [174, 242]

X112 [0, 77] [0, 76] [0, 75]

X113 [0, 86] [0, 84] [0, 83]

X121 [131, 193] [118, 179] [109, 169]

X122 [153, 218] [140, 204] [130, 194]

X123 [179, 249] [165, 234] [155, 223]

X131 [191, 257] [178, 244] [169, 234]

X132 [195, 264] [183, 250] [173, 240]

X133 [0, 74] [0, 73] [0, 72]

X211 [0, 0] [0, 0] [0, 0]

X212 [247, 247] [233, 233] [223, 223]

X213 [301, 301] [287, 287] [277, 277]

X221 [0, 0] [0, 0] [0, 0]

X222 [0, 0] [0, 0] [0, 0]

X223 [0, 0] [0, 0] [0, 0]

X231 [0, 0] [0, 0] [0, 0]

X232 [0, 0] [0, 0] [0, 0]

X233 [241, 241] [228, 228] [218, 218]

fopt ($106) [172.91, 394.82] [162.05, 374.94] [153.91, 360.03]
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and randomness, system robustness could be highly

enhanced.

In general, SI-IFSCCP exhibits the following strengths:

(a) it is capable of addressing probability distributions of

fuzzy random variables (i.e., fuzzy sets with two-layer

randomness), and thus various subjective judgments of

many decision makers and stakeholders could be directly

communicated into the optimization process, leading to a

more realistic reflection of real-world MSW management

problems; (b) it could reflect the two-level risk of system

violation, supporting in-depth analyses of the relationship

between system cost and system reliability; (c) since it does

not generate complicated intermediate models and onerous

variables, its computational efficiency is significantly

improved compared to conventional fuzzy mathematical

programming methods (e.g., robust programming), making

it applicable to practical problems. The case study also

suggests that, useful solutions could be obtained from SI-

IFSCCP. A range of decision alternatives could be gener-

ated through adjusting the decision variable values within

their interval solutions. These alternatives could allow

decision makers to single out satisfactory waste flow plans

according to projected system conditions and varied policy

preferences, such that the flexibility and applicability could

be improved. In addition, these alternatives could help gain

in-depth analyses for the tradeoff between system opti-

mality and reliability.

5.2 Comparison of SI-IFSCCP with IFSP, ICCP

and FSCCP

If the lower and upper bounds of the waste generation rate of

city i in period k are simplified into only one set of fuzzy

random variables, the study case would then turn into an

interval-parameter fuzzy-stochastic programming (IFSP)

problem. The solutions obtained from the IFSP model are

presented in Table 5. Since ~�b
�
s ðtÞ is substituted by a fuzzy-

random boundary interval (~�b
�
s ), IFSP has several short-

comings compared to SI-IFSCCP. Firstly, IFSP can only

generate one set of interval solutions without information

about the risk of violating the waste generation constraints.

For example, in IFSP, the solution for the waste flow from

city 3 to the landfill in period 2 (x132) is [199, 265] ton/day;

comparatively, in SI-IFSCCP, they are [195, 261], [185, 248]

and [176, 238] ton/day under the pi levels of 0.01, 0.05 and

0.1, respectively. Secondly, since no relaxation on waste

generation rates is allowed in IFSP, the system cost from

IFSP is higher than those obtained from the SI-IFSCCP

method under a range of pi levels. As illustrated in Fig. 6,

IFSP provides two extremes for the expected system costs

(i.e., f�opt = $[175.37, 397.07] 9 106), and thus may result in

wasted resources. Generally, without the chance constraints,
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Table 7 Solutions obtained through the FSCCP model

Waste flow (ton/day) pi = 0.01 pi = 0.05 pi = 0.1

X111 229 216 206

X112 0 0 0

X113 337 323 313

X121 159 146 136

X122 184 170 160

X123 212 198 188

X131 222 209 200

X132 227 214 205

X133 274 261 251

X211 0 0 0

X212 281 268 257

X213 0 0 0

X221 0 0 0

X222 0 0 0

X223 0 0 0

X231 0 0 0

X232 0 0 0

X233 0 0 0

fopt ($106) 260.23 245.87 235.01
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the IFSP model is unable to support in-depth analyses for the

tradeoff between system cost and system violation risk.

The problem can also be solved through a conventional

inexact chance-constrained linear programming (ICCP)

model by substituting the fuzzy-random boundaries of

intervals in left- and right-hand sides of SI-IFSCCP with

deterministic values. In ICCP, the fuzzy-random lower and

upper bounds of the FRBI (i.e., fuzzy-random boundary

intervals) coefficients are generally replaced by the values

with the highest probability (i.e., 60%) and highest mem-

bership grade (i.e., 1), representing only one of the

numerous potential alternatives (based on the information

of probability levels and confidence grades). Thus, ICCP is

unable to reflect various subjective judgments from a

number of decision makers that are presented as fuzzy

random variables, leading to the losses of significant

uncertain information. Consequently, as shown in Table 6

and Fig. 7, the system costs of ICCP under all pi levels are

higher than those of the SI-IFSCCP solutions.

Letting all of the coefficients that are expressed as

intervals (including pure intervals, fuzzy-random boundary

intervals, and intervals with fuzziness and two-layer ran-

domness at their bounds) in SI-IFSCCP be equal to their

mid-values, this problem would be converted into a fuzzy-

stochastic chance-constrained linear programming

(FSCCP) method. The solutions from FSCCP are provided

in Table 7. As illustrated by Fig. 8, the system costs from

the FSCCP solutions lie within the SI-IFSCCP solution

intervals, demonstrating the stability of the SI-IFSCCP

solutions. Within FSCCP, only one set of deterministic

solutions corresponding to each pi level is generated, since

the model’s cost coefficients (cj) and left-/right-hand side

coefficients (aij and bi) are assumed to be deterministic

numbers or fuzzy random variables. Therefore, compared

with FSCCP, the SI-IFSCCP method can incorporate more

uncertain information within its modeling framework. The

obtained interval solutions under different risk levels of

violating the waste-generation constraints can be used to

generate decision alternatives and help MSW managers

identify desired policies under various environmental,

economic and system-reliability constraints.

6 Conclusions

In this study, a superiority-inferiority-based inexact fuzzy-

stochastic chance-constrained programming (SI-IFSCCP)

approach has been developed for supporting long-term

municipal solid waste management under uncertainty.

Through SI-IFSCCP, multiple uncertainties expressed as

intervals, possibilistic and probabilistic distributions, as

well as their combinations, could be directly communi-

cated into the optimization process, avoiding over-

simplification of real-world problems. Various subjective

judgments of many decision makers and stakeholders with

different interests and preferences could be extensively

reflected, guaranteeing a lower degree of biases during data

sampling and a higher degree of public acceptance for the

generated plans. In addition, SI-IFSCCP has an advantage

in computational efficiency as its solution method does not

lead to complicated intermediate models.

The developed SI-IFSCCP method has been applied to a

long-term municipal solid waste management problem to

demonstrate its applicability. Useful interval solutions have

been obtained. These solutions can help generate a range of

decision alternatives within their interval ranges, which is

favorable for decision makers due to the increased flexi-

bility and applicability. Satisfactory waste flow plans could

be identified according to policy inclination and system

conditions, facilitating in-depth tradeoff analyses between

system optimality and reliability. Moreover, two levels of

system-violation risk could be reflected by SI-IFSCCP.

Varied significance levels correspond to different risk

levels of constraint violation, reflecting the relationship

between economic efficiency and system reliability; under

each significance level, since satisfactory waste flow plans

are identified with comprehensive considerations over

potential penalties caused by constraint violations, system

robustness could be highly enhanced. As the first attempt

for planning waste management systems through the

developed SI-IFSCCP approach, the case study also sug-

gests that this inexact optimization technique be applicable

to many other environmental problems that involve mul-

tiple uncertainties, such as the problems of water resources

management and air quality management.
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