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Abstract We develop methodologies to enable applica-

tions of reliability-based design optimization (RBDO) to

environmental policy setting problems. RBDO considers

uncertainty as random variables and parameters in an

optimization framework with probabilistic constraints.

Three challenges in environmental decision-making prob-

lems not addressed by current RBDO methods are efficient

methods in handling: (1) non-normally distributed random

parameters, (2) discrete random parameters, and (3) joint

reliability constraints (e.g., meeting constraints simulta-

neously with a single reliability). We propose a modified

sequential quadratic programming algorithm to address

these challenges. An active set strategy is combined with a

reliability contour formulation to solve problems with

multiple non-normal random parameters. The reliability

contour formulation can also handle discrete random

parameters by converting them to equivalent continuous

ones. Joint reliability constraints are estimated by their

theoretical upper bounds using reliability indexes and

angles of normal vectors between active constraints. To

demonstrate the methods, we consider a simplified airshed

example where CO and NOx standards are violated and are

brought into compliance by reducing the speed limits of

two nearby highways. This analytical example is based on

the CALINE4 model. Results show the potential of this

approach to handle complex large-scale environmental

regulation problems.

Keywords Reliability-based design optimization

(RBDO) � Non-normal uncertainty � Joint constraint

reliability � Environmental policy decisions

under uncertainty

1 Introduction

The field of reliability-based design optimization (RBDO)

considers a class of problems where uncertainty is treated

via random variables, parameters, and probabilistic con-

straints (Fletcher 1987, Tu et al. 1999). The objective

function is deterministic and typically includes moments of

the random variables. Equation 1 is a generalized single-

objective RBDO formulation with random design variables

X, random parameters P, deterministic design variables x

and deterministic parameters p. The objective f is a func-

tion of deterministic quantities, namely the mean values of

all random quantities in the formulation and K is the

constraint set.

min
lX;x

f ðlX; lP; x; pÞ

Pr½gjðX;P; x; pÞ[ 0� �Pf;j 8j 2 K
ð1Þ

Constraints with random variables are formulated so that

the probability of constraint violation is less than or equal

to an acceptable failure limit Pf;j . Deterministic constraints

(i.e., constraints that are not functions of any random

quantities) are considered in the probabilistic form as a

special case with the failure probabilities Pf;j being 0%, or

alternatively one can also treat deterministic quantities x, p

as special cases of X, P without variability. Equality
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constraints are not explicitly included in this formulation

though they can be addressed via several approaches [e.g.,

see Chapter 10 of Fletcher (1987)].

Although the RBDO formulation has been the subject of

numerous research investigations (for example, see Tu

et al. 1999; Rackwitz 2001), three challenges have pre-

vented the use of RBDO in environmental applications,

namely the treatments of (1) non-normally distributed

random parameters, (2) discrete random parameters, and

(3) joint reliability constraints (e.g., meeting CO and NOx

regulatory standards simultaneously with a single reliabil-

ity). In this paper we propose a general solution

methodology addressing these issues, and demonstrate the

applicability of the solution methodology to a simplified

airshed management problem summarized in Fig. 1.

In Fig. 1, we show the specific case of an airshed

within which a population is subject to vehicle pollutants

generated by two nearby roads. We assume that the air-

shed is subject to frequent violations of the National

Ambient Air Quality Standards (NAAQS) for both carbon

monoxide (CO) and nitrogen oxides (NOx) and that these

two roads are the exclusive sources of the emissions. To

reduce health risks to the exposed population, policy-

makers have several regulatory options to bring the

airshed into compliance with the NAAQS, including fuel

economy standards and incentives (National Highway

Traffic Safety Administration 2000; Internal Revenue

Service 2005), pollutant emissions standards (Office of

Mobile Sources 1999), taxation on polluting vehicles

(Office of Mobile Sources 1997), reducing traffic density

using tolls (Mekky 1995; Yildrim and Hearn 2005), and

modifying vehicle speed limits (Solomon 1964). Here we

consider a hypothetical case where the policymaker is

interested to regulate CO and NOx from these roads by

reducing speed limits such that the probability of com-

plying with both standards is achieved with a single

reliability (e.g., 90%). While speed limits could be

reduced to zero if the pollutant concentrations were the

only concern, the policymaker must simultaneously pro-

mote human health and economic activity. Therefore the

policymaking activity can be considered as an effort to

achieve stricter environmental standards with a given

reliability while minimizing impact on the economy,

consumer choice, safety, and transportation time.

The policymaker’s problem is structurally similar to the

class of RBDO problems described in the literature (Tu

et al. 1999; Siddall 1983), though this problem has a number

of features that distinguish it from previously investigated

formulations that have exclusively considered engineering

design variables that are continuous, time-invariant, and

with symmetric distributions, predominately normal ones.

Extending RBDO solution approaches to the airshed prob-

lem would require consideration of random parameters that

are non-normal (McWilliams et al. 1979; Nadarajah and

Kotz 2006; Flynn 2004), skewed (Zhang et al. 1994), time

and season dependent (National Climate Data Center

(NCDC) 2009), and sometimes discrete (Gilbert 1996). For

instance, it is evident that the CO and NOx concentrations

in the airshed depend on numerous factors, such as the

combustion and emissions control characteristics of the

vehicles on the road, driver responses to posted speed limits,

traffic density, location of roads and regulatory points of

interest, wind speed and direction, and atmospheric mixing

conditions that depend on temperature and season. It is not

appropriate to treat all of these uncertainties quantitatively

using normal distributions. For example, while driver

responses to posted speed limits might be reasonably

modeled using normal distributions (Berry and Belmont

1951; Hossain and Iqbal 1999; Katti and Raghavachari

1986; Kumar and Rao 1998), the combination of windspeed

and direction cannot be reasonably modeled using normal

distributions (McWilliams et al. 1979; McWilliams and

Sprevak 1980). Although methods for addressing non-nor-

mal variables within RBDO have been proposed, the

methods are computationally expensive to the point that

adding more constraints (as required to model large urban

areas) would not be practical (e.g., see Ditlevsen 1981;

Hohenbichler and Rackwitz 1981; Melchers 1987). In

addition, within environmental systems there can exist

discrete random variables that may be inherent to the

modeling approach, such as the treatment of pollutant

transport under discrete conditions (e.g., day, night, sum-

mer, winter, clouds, sun, etc.). To date, RBDO solution

Highway
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90% reliability to 
comply NAAQS 

Optimal speed 
limit to minimize 
societal costs
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Fig. 1 Optimal speed limit considering the compliance of the

receptor air quality under wind, traffic, ambient conditions

uncertainties
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methods have not addressed the treatment of such discrete

random parameters.

Several research articles considering environmental

uncertainty in decision-making have focused on the use of

simulation techniques and/or sensitivity analysis (e.g., see

Fine et al. 2003; Huang et al. 2000; Vardoulakis et al.

2002). These techniques typically utilize models of remote

sensing data from environmental parameter observations

created by either Taylor series expansions or sampling

techniques such as Monte Carlo Simulation (e.g., Stephens

1994; Andre and Hammarstrom 2000; Frey and Zheng

2002; Freeman et al. 1983; Bergin and Milford 2000;

Yegnan et al. 2002). However, these models are not

applicable to analytical formulations, such as RBDO, that

would hold several advantages for the problem posed in

Fig. 1. For instance, one can consider Fig. 1 as a basic

building block that could be extended to analyze an entire

city. As additional roads, road segments (Benson 1984),

and receptors are applied to the basic formulation, the use

of sampling techniques to evaluate probabilistic constraints

would require too much computation for practical appli-

cation. Even if the computations could be completed in a

reasonable amount of time, finding a means to integrate the

sampling techniques into an optimization algorithm would

pose a significant challenge and greatly increase compu-

tational complexity. A simulation-based approach would

also be less amenable to analytical post-optimality studies

that provide additional insight.

Here we propose using extensions of the RBDO meth-

odology developed in Chan et al. (2006, 2007) to study

environmental policy design problems. This requires using

realistic probability distributions that have been developed

to analyze pollutant emissions and transport. For instance,

Dabberdt et al. estimated the pollution density of a 3-h

H2SO4 release accident on a neighborhood using probabi-

listic distributions (Dabberdt and Miller 2000). Turaglioglu

et al. (2005) obtained the density of SO2 and the total

suspended particulate in Erzerum, Turkey using probabi-

listic approaches. Zhang et al. (1994) modeled actual on-

road CO and HC emissions data using C-distributions.

Kentel et al. (2004) analyzed health risks associated with

contaminated water probabilistically using both fuzzy and

random variables. Benekos et al. (2007) obtained the dis-

tribution of groundwater contaminations using a two-stage

Monte Carlo analysis.

Research activities that are the most relevant to the work

presented here have employed fuzzy and stochastic math-

ematical programming (FMP and SMP). FMP uses a fuzzy

membership function to quantify ‘vagueness’ of an

uncertain quantity and then applies possibility theory in

analyzing the uncertainty. For example, Lin et al. (2008)

developed a hybrid-fuzzy two-stage stochastic energy

systems planning model (IFTEM) to deal with various

uncertainties that can be expressed as fuzzy or interval

numbers. Guo et al. (2008) proposed a semidefinite pro-

gramming in municipal solid waste (MSW) management

under fuzzy uncertainty. SMP, on the other hand, is based

on probability theory with information acquired from field

measurements. For example, Cooper et al. (1996) surveyed

the application of SMP in air pollution managements.

Chance-constraints have been used extensively in SMP in

studying the impact of regional air quality under uncer-

tainty (Cooper et al. 1996; Liu et al. 2003). Although SMP

considers random variables/parameters within an optimi-

zation framework, linear chance-constrained formulations

have only limited application to environmental problems

since they tend to be highly nonlinear.

To address these limitations, in Chan et al. (2007) we

extended a filter-based sequential linear programming

algorithm to handle RBDO problems with uncertainties

modeled as random variables. As discussed in Fletcher and

Leyffer (2002), similar structure and convergence argu-

ments could be used in creating a filter-based SQP

algorithm. In Chan et al. (2006), we showed that active set

strategies can be integrated with the filter-SQP algorithm to

improve the efficiency of the algorithm by only calculating

constraints that are likely to be active in the next iteration.

For problems with a large number of constraints or com-

putational expensive constraints (such as the probability

constraints in RBDO), the active set based algorithm sig-

nificantly improves the computational efficiency. However,

the algorithm still focus on uncertainties that are modeled

as normal distributions. In addition, current RBDO for-

mulation handles constraints individually while in

environmental problems the decisions are made to consider

all constraint reliability jointly.

The main contribution of this paper is that the filter-

based SQP algorithm developed for RBDO problems in

Chan et al. (2007) and the active set strategies proposed in

Chan et al. (2006) are extended to handle a primary chal-

lenge in environmental decision-making, namely, handling

non-normal and discrete random parameters. A further

issue is the joint reliability of constraint satisfaction. This

issue is important in environmental policymaking since it

would be better for the population as a whole to establish a

90% reliability of compliance for all pollutants at all

receptor locations in the airshed than it would be to

establish a 90% reliability of compliance for each pollutant

at each receptor site. Mathematically speaking, at the

solution point to Eq. 1, the probability of violating any

given constraint is determined by Pf;j. The greater the

number of constraints considered, and the greater the

independence of these constraints, the greater is the prob-

ability that some constraint in the constraint set will be

violated. In other words, from the perspective of Fig. 1, the

importance to consider the joint reliability of the constraint
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set rather than the separate reliability of the individual

constraints increases with the number and independence of

receptors and pollutants, to the extent that this increases the

likelihood of a higher number of active constraints at the

optimum.

The reformulation of Eq. 1 to consider joint constraint

reliability is provided in Eq. 2. This type of problem is

often referred to as a system reliability problem in the

literature Kuo et al. (2000). While mathematically system

reliability and joint reliability are equivalent, in practice

system reliability is a term that is typically used in refer-

ence to mixed parallel and series systems (e.g., see Kuo

et al. 2000). Joint reliability on the other hand is a statis-

tical concept that can be used more generally to describe

min
lX;x

f ðlX; lP; x; pÞ

Pr
[

j

gjðX;P; x; pÞ[ 0

" #
�Pf 8j 2 K

ð2Þ

This paper solves the problem of Eq. 2 in a

computationally efficient manner using an algorithmic

approach that can be readily scaled up to large problems.

Section 2 solves Eq. 2 under discrete random parameters,

non-normal random parameters, and joint constraint

reliability building from the approach detailed in Chan

et al. (2006). The application of the extended RBDO

approach to the simplified airshed management problem of

Fig. 1 is described in Sect. 3 with results and discussion

provided in Sect. 4.

2 Methodology

2.1 Optimization algorithm

To solve Eq. 2, we begin with the sequential linear pro-

gramming (SLP) algorithm for RBDO developed in Chan

et al. (2006, 2007). Since the objective function is deter-

ministic, the real challenge of the algorithm lies in the

method of calculating the constraints. Let k be the iteration

counter and lk
X be the current design at the iteration. The

SLP algorithm iteratively updates and improves a design

until certain convergence criteria are satisfied. At the kth

iteration, each probabilistic constraint is converted into an

equivalent deterministic one using different reliability

methods depending on the curvatures of the constraint and

its relative importance on improving the design. This con-

version transforms the original nonlinear optimization

problem with probabilistic constraints (called the probabi-

listic NLP) to an equivalent deterministic nonlinear

optimization problem (called the deterministic NLP). The

SLP algorithm then linearizes the deterministic NLP at the

current design as a linear programming subproblem (LP).

By solving a sequence of LPs, we then solve the original

RBDO problems. A similar structure can be used in creating

a filter-based sequential quadratic programming algorithm

(SQP) as shown in Fletcher and Leyffer (2002). The main

difference is that instead of LP subproblems, QP subprob-

lems are created. The QP subproblems have linear

constraints, and SLP method developed in Chan et al. (2006,

2007) can be rapidly extended to SQP. A summary flowchart

for the method employed in this paper is provided in Fig. 2.

Once a deterministic QP is formed at lk
X, standard

methods such as those described in Luenberger and Ye

(2008) for solving QP problems can then be used. The

solution of the QP subproblem is the step vector sk. For

convergence purposes, lk
X þ sk is temporarily assigned as a

trial design. A trial design that either improves the objec-

tive function values or reduces the constraint violations

will formally become the updated design of the iteration

(k ? 1). The design therefore proceeds to the next design

value and iterates as shown in Fig. 2 until converged.

The methods in Chan et al. (2006, 2007) transform

probabilistic constraints into deterministic ones using dif-

ferent approaches depending on the activity and the

curvature of the constraint. Figure 3 illustrates the decision

process for using different approaches, namely the reliability

contour approach proposed in this paper, the first order

reliability method (FORM), and the second order reliability

method (SORM). When constraints are functions of non-

Probabilistic NLP

Create Equivalent 
Deterministic NLP

Create QP Subproblem

Solve QP Subproblem

Acceptable?

Reduce
the Trust
Region

NO

Update
Design
Point

Converged?
NO YES

Optimum

YES

Current
Design

Trial
Design
Point

step

Update
Working and 

Extended
Active Sets

Fig. 2 Flowchart of the active-set SQP algorithm
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normal random parameters, the proposed reliability contour

approach will be used. For constraints that are functions of

normal random design variables and/or parameters, we will

first check whether the constraint is in the current extended

active set. Constraints in the extended active set are possibly

violated and therefore have larger influences in the next

iteration. Principal curvatures of these constraints are then

calculated and compared with a predetermined value. When

curvatures of these constraints are greater than the prede-

termined value, using FORM will result in significant errors

and therefore SORM is used instead. For constraints that are

either unimportant (not in the extended active set) or rela-

tively linear (small curvatures), FORM is used.

Converting probabilistic constraints into deterministic

ones requires the majority of computation time. To reduce

the computational burden, the active set strategies in Chan

et al. (2006) assure that intense calculations are reserved

only for constraints that are likely to be active at potentially

optimal points being tested. The rest of the constraint set is

only approximated to the level needed to determine whe-

ther constraints might become active in the next iteration.

A design is feasible when it satisfies all constraint

requirements. The satisfaction of a joint reliability con-

straint at lk
X requires calculating the values of all m

constraints and the interactions between them. As will be

discussed in Sec. 4, the calculation of reliability for joint

constraints does not yield analytical solutions and therefore

must be evaluated using a computationally intensive sam-

pling approach such as Monte Carlo. Fortunately, the upper

and lower bounds within which the exact reliability value

should be located can be analytically estimated. Here we

use as the feasibility index of the current design point the

upper bound of the joint constraint reliability. A design with

upper bound less than or equal to a preset value is likely

feasible. Then the resultant design can be verified using a

simulation technique such as Monte Carlo Analysis.

2.2 Random and discrete parameter uncertainty

Parameters remain fixed during optimization but stochastic

parameters (e.g., windspeed and direction) will vary. To

clearify our treatment of random parameters, we consider

Eq. 3.

Pr½gðX;PÞ[ 0� ¼
Z

gðX;PÞ[ 0

� � �
Z

fX;Pðx; pÞ dx dp ð3Þ

The failure probability of a constraint with both random

design variables X and random parameters P is calculated

by integrating the joint probability density function fX;P

over the failure domain g(X, P) [ 0 as shown in Eq. 3.

Since at a given design point the nominal values of X

(i.e., lX) are fixed, one can treat a random design

parameter as a random design variable with a fixed

nominal value. Therefore, when treating parameters as

design variables, here we will simply assign a new design

vector X0 ¼ ½X;P�. Given the ability to treat parameters as

‘‘unchanging variables’’ in an optimization routine, random

parameters P will be included within X in the rest of this

paper for notational simplicity.

To illustrate how we will treat discrete random param-

eters, we now consider the simple example of

gðXÞ ¼ X1 þ X2. Let X1 have a standard normal distribu-

tion and let X2 have the following discrete distribution:

X2 ¼
1; 10%

2:5; 40%
3; 50%

8
<

: ð4Þ

The probability of constraint violation is calculated

using total reliability theory (Ang and Tang 2007) as:

Pr½gðXÞ[ 0� ¼ Pr½gðXÞ[ 0jx2 ¼ 1� � 10%

þ Pr½gðXÞ[ 0jx2 ¼ 2:5� � 40%

þ Pr½gðXÞ[ 0jx2 ¼ 3� � 50%

ð5Þ

To represent X2 in a continuous optimization algorithm,

a scaled delta function hðx; l; rÞ ¼ e�
x�l
2rð Þ

2

is used to

approximate the probability mass function (PMF) of X2 as

a continuous probability density function (PDF) via Eq. 6.

fX2
� hðx; 1; rÞ � 10%þ hðx; 2:5; rÞ � 40%

þ hðx; 3; rÞ � 50%
ð6Þ

The accuracy of this approximation depends on the value

of r. The smaller r is, the better approximation it becomes.

The conceptual approach is summarized in Fig. 4. The

Create Equivalent Deterministic NLP

yes

no

no
yes

no yes

any non-normal 
parameters?

constraint in 
the active set ?

local
curvatures too 

large ?
FORM

SORM

Reliability
Contour

FORM

Fig. 3 Different approaches in creating equivalent deterministic

constraints
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choice of r is problem dependent and we suggest that r is

small enough such that the equivalent continuous PDF can

be viewed as a reasonable approximate to the discrete PMF.

For example in Fig. 4, the PDF for r = 0.2 smoothes out

the discrete behavior of the original PMF as compared with

r = 0.05. In addition the ‘modes’ of the equivalent PDF

disconnected with each other when r = 0.05. Therefore

r = 0.05 is a good PDF approximate to Eq. 5.

As we implemented the proposed method to treat dis-

crete random variables, we found that the converted

continuous distributions can have numerical challenges

that prevent the arbitrarily small assignment of r. In short,

the selection of the r for each h in Eq. 6 will affect the

approximation accuracy directly. Appropriate r values

need to be determined for different problems by conducting

a pre-processing sensitivity analysis. This is computation-

ally straightforward and only must be conducted one time.

2.3 Non-normal uncertainty

The calculation of probabilistic constraints in Eq. 1 repre-

sents the majority of function evaluations during

optimization. Several methods have been proposed to

improve the efficiency and accuracy of calculating con-

straint probabilities (Rackwitz 2001). Importantly, each of

these methods has essentially focused on Gaussian distrib-

uted variables. The presence of non-Gaussian distributions

makes calculating the constraint in Eq. 3 more challenging.

Methods for dealing with non-Gaussian distributed random

quantities have been discussed in the literature (Ditlevsen

1981; Melchers 1987; Hohenbichler and Rackwitz 1983),

but they are computationally expensive and not well-suited

for large problems as we discuss below.

In existing RBDO solution strategies, significant

advantages in computing probabilities follow from the

rotational symmetry of a Gaussian distribution. Due to

this symmetry, no matter which direction a linear con-

straint is with respect to the current design point, the

shortest distance from the design point to the constraint

can be used to calculate the constraint probabilities. As

described extensively in the literature (e.g., see Hohenb-

ichler and Rackwitz 1981; Melchers 1987; Hohenbichler

and Rackwitz 1983), the first order reliability method

(FORM) and the second order reliability method (SORM)

use this characteristic of a normal distribution by first

converting a normal distribution X *N(lX, rX
2) into a

standard normal distribution U *N(0, 12) via

U ¼ X � lX

rX
: ð7Þ

After this conversion, the premise of the FORM method

is that a constraint probability can be approximated as

U(-b) where b is the shortest distance from the origin to

the constraint function in U-space. The point that lies on

the constraint boundary (also called the limit state function)

having the shortest distance to the origin is called the most

probable point (MPP). Each constraint has its own MPP

and therefore the number of MPPs is the same as the

number of limit state functions (constraints), m. SORM

extends FORM by providing a more accurate estimation of

constraint probabilities by considering the principal

curvatures j of each constraint as shown in Eq. 8.

Pr½gjðXÞ[ 0� � Uð�bjÞ
Y

i

ð1þ bjjiÞ�1=2 ð8Þ

For independent non-normal random variables, it has

been shown that a transformation T can be applied to X

such that

Ui ¼ TðXiÞ:

Several such transformations are available in the

literature (Melchers 1987). The simplest transformation is

given by Eq. 9 and requires that the cumulative distribution

function (CDF) of the ith random variable Xi at xi should be

the same as the CDF of a standard normal variable at ui.

UðuiÞ ¼ FXi
ðxiÞ ! ui ¼ U�1ðFXi

ðxiÞÞ ð9Þ

Due to the nonlinearity of the transformation, a linear

constraint in the X-space will become nonlinear in the U-

space. Then applying the first order Taylor series expansion

to Eq. 9 around a point xi
e, one can get the following result:

ui � U�1½FXi
ðxe

i Þ� þ
o

ox
fU�1½FXi

ðxiÞ�gðxi � xe
i Þ

¼ xi � fxe
i � U�1½FXi

ðxe
i Þ�/fU�1½FXi

ðxe
i Þ�g=fXi

ðxe
i Þg

/fU�1½FXi
ðxe

i Þ�g=fXi
ðxe

i Þ
ð10Þ

0 1 2 3 4
0

1

2

3

4
PDF

Fig. 4 Probability density function of X2 approximates for r = 0.05,

0.1, 0.2
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If the following assignments are made,

le
X ¼ xe

i � U�1½FXi
ðxe

i Þ�/fU�1½FXi
ðxe

i Þ�g=fXi
ðxe

i Þ;
re

X ¼ /fU�1½FXi
ðxe

i Þ�g=fXi
ðxe

i Þ
ð11Þ

then the standard FORM and SORM techniques can be

extended to non-normal variables (Melchers 1987;

Hohenbichler and Rackwitz 1983).

It can be shown that xi
e mathematically is the MPP of a

design (Melchers 1987). The typical solution approach for

non-normal random variables then involves using the

equivalent normal distribution in finding MPPs and then

using the MPP to update equivalent normal parameters. In

practice this problem has convergence difficulties and is

computationally intensive since calculating the location of

the MPP for a nonlinear function is by itself an optimiza-

tion process. The conversion of constraints from the X-

space to the U-space via the nonlinear relationship of Eq. 9

is also computationally intensive.

To reduce the number of required calculations in Eq. 3,

we start by applying an active set strategy which reduces the

number of constraints that must be considered during any

iteration of the optimization process. Following the

approach detailed in Chan et al. (2006), a working set of

constraints Gk is established at each design iteration k which

only includes constraints that are active or possibly active.

For constraints inside the working set, we propose a

means to improve the efficiency of calculating Eq. 3 rela-

tive to the approach represented by Eqs. 10 and 11.

However, before describing this alternative solution

approach for non-normal distributions, we define a reli-

ability contour surface W = 0. For standard normal

random variables U, we define a reliability contour surface

as a contour satisfying

WðlU; uÞ ¼ 0 8lU : fPr½lðlUÞ[ 0� ¼ Pfg ð12Þ

for any linear constraint l. FORM states that the shortest

distance from the origin to limit states l must be

b ¼ U�1ðPfÞ. Hence a contour with radius b around the

origin is formed in the U-space as Eq. 13.

Xn

i¼1

u2
i ¼ b2: ð13Þ

When design variables are not normal, this common

radius contour only exists in the standard U-space. By

mapping this common radius contour from U-space to X-

space using Eq. 9, a reliability contour surface in the X-

space as shown in Eq. 14 is created.

Xn

i¼1

U�1ðFXi
ðxiÞÞ

� �2¼ b2 ð14Þ

This surface remains constant around the design point

and therefore once the contour is created, the

computational time at each iteration is reduced

dramatically. Therefore, in contrast to previous RBDO

approaches, we propose to use this X-space reliability

contour surface W(lX, x) = 0 to identify probabilistic

constraint feasibility.

As an example, consider a constraint Pr[g(X1, X2) [ 0]

B Pf where both design variables have Weibull distribu-

tions, their PDF being in Eq. 15.

fX1
ðxÞ ¼ fX2

ðxÞ ¼ agaxa�1e�ð
x
gÞ

a

ð15Þ

where g = 1, a = 1.5. This two dimensional Weibull

reliability contour can be written as Eq. 16.

W : U�1 e
�ð

x1�lX1
g1
Þa1

� �� �2

þ U�1 e
�ð

x2�lX2
g2
Þa2

� �� �2

� �U�1ðPfÞ
� �2¼ 0

ð16Þ

Figure 5 shows this Weibull reliability contour with

Pf ¼ 1% . Obtaining Eq. 14 only requires that all CDFs are

analytical, which was also necessary using the method of

finding equivalent normal distributions using Eq. 9.

However, the reliability contour method has an advantage

since the calculations only need to be performed one time,

as a pre-processing step, rather than at each design

iteration.

The accuracy of using the reliability contour surface

approach is the same as using FORM and SORM. At every

design point, the limit state function is transferred from the

X-space to the U-space. In FORM, if the U-space limit state

function, gj
U, is tangent to the b-sphere, the tangent point is

the MPP and the probability is equivalent to the probability

of its linearization at the MPP point. A similar statement is

true for SORM when the curvature corrected equivalent

reliability index be is used instead of b. The transformation

in Eq. 9 ensures that when the MPP in U-space is mapped

X1

X
2

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 5 99% Reliability contour for Weibull distributions presented in

Eq. 16
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back to the X-space it will still be the tangent point between

the reliability contour surface and the X-space limit state,

gj. Let the linearization of the limit state at the MPP in X-

space be ĝj and in the U-space be ĝU
j . The probability of

violating the constraint in X-space is approximated as the

probability of violating ĝj which translates to ĝU
j in U-

space. Hence, using the reliability contour surface method,

we can obtain the same accuracy as FORM (via b) and

SORM (via be).

We can achieve further computational efficiency by not

considering constraints that can be proven to be inactive. In

the optimization routine, the number of required compu-

tations is reduced significantly because the reliability

contour method is integrated with an active set strategy,

such that only constraints in the working set are considered.

In addition the transformation of Eq. 9 is not calculated

during any iteration and instead the reliability contour

surface in the X-space (Eq. 14) is only calculated once.

At the current design step, a constraint gj is active if it

has a common tangent with the reliability contour surface;

it is inactive if lX is feasible and does not intersect with

W = 0; it is infeasible if lX is infeasible or lX is feasible

but it has more than one intersection with W = 0. The point

that lies on the reliability contour with the minimal dis-

tance to a constraint is called an MPP estimate. The MPP

estimate will be the actual MPP for an active constraint,

and will be an estimate of the actual MPP for an inactive

constraint. Although the MPP estimate and the actual MPP

can be significantly different for an inactive constraint, the

constraint value at the MPP estimate will always provide

correct feasibility information (i.e., ‘‘yes’’ or ‘‘no’’) for the

probabilistic constraint it considers. This is all that solving

the problem requires.

The relationship between actual MPP values and MPP

estimates is illustrated in Fig. 6 with two constraints g1 and

g2. Constraint g1 is active at the current design point lX

while g2 is inactive. Actual MPPs, denoted as xMPPj
; are

shown as triangles; MPP estimates, x̂MPPj
are shown as

circles. The actual MPPs are on the constraint boundary

and the MPP estimates are on the reliability contour. Since

g1 is active, xMPP1
¼ x̂MPP1

:

The location of the MPP estimate on the reliability

contour is found by matching the normal vectors (Eq. 17a)

and values (Eq. 17b) of the reliability contour and con-

straint boundary.

WðlX; xMPPj
Þ ¼ gjðxMPPj

Þ ð17aÞ

o

ox
WðlX; xÞjxMPPj

¼ o

ox
gjðxÞ

		
xMPPj

ð17bÞ

To reduce the computational burden in solving Eq. 17a

and 17b, we propose the following. For inactive

constraints, the exact locations of MPP estimates are not

critical as long as they provide the correct feasibility

information. Therefore we create a ‘‘safe zone’’ of

feasibility that is computationally less intensive than

finding the MPP estimate directly on the reliability

contour. This safe zone is created with a common radius

emanating from the design point that is constant in all

directions and equal to the maximum distance from the

design point to the reliability contour (radius = q in Fig. 6).

If the constraint is found to intersect the safe zone

reliability contour, then the constraint is included in the

active set and the MPP estimate for that constraint is

calculated on the actual reliability contour to determine

feasibility of the constraint. The radius of the safe zone

reliability contour is obtained by solving Eq. 18, with the

point xt in Fig. 6 illustrating the maximal radius point that

defines the value q.

max
x

q ¼ jjx� lk
Xjj

s.t. Wðlk
X; xÞ ¼ 0

ð18Þ

The safe zone reliability contour is centered at the

current design point and shown in Fig. 6.

For highly skewed distributions, the actual reliability

contour surface will be very asymmetric and therefore

using a constant radius safe zone will be conservative. This

conservative estimate may result in additional constraints

in the active set, but the net computational burden will

usually be much lower given that considerable gains are

made by avoiding unnecessary MPP calculations on the

actual reliability surface. Overall, the method has signifi-

cant speed advantages with equivalent accuracy to existing

methods.

Actual MPP

MPP Estimate

Maximum Radius Point

Reliability Contour
Safe Zone

Fig. 6 Relationships between MPP values and MPP estimates
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The solution approach using a reliability contour surface

and its safe zone can be summarized as follows:

Step 1 At the current point lX
k , find the gradient of each

constraint;

Step 2 Use Eq. 14 to construct the analytical form of

reliability contours given all random quantities;

Step 3 Find the safe zone reliability contour radius using

Eq. 18;

Step 4 For each constraint, use the constraint gradient to

find the MPP estimate on the safe zone reliability

contour;

Step 5 For inactive constraints, the safe zone reliability

contour is used for calculating MPP estimates;

Step 6 For active constraints, the actual reliability contour

surface is used to locate the MPP estimates;

Step 7 Constraint feasibilities are determined via com-

parison to their values at the MPP estimates.

Consider constraint gj. The first two steps require cal-

culating rgj and Wðlk
X; xÞ ¼ 0 at lX

k . In Step 3, q is

calculated via Eq. 18 and the safe zone reliability contour is

formed as Eq. 19.

Ŵqðlk
X; xÞ ¼

Xn

i¼1

ðxi � lXi
Þ2 � q2 ¼ 0 ð19Þ

The MPP estimate xMPPj
is calculated as Eq. 20 in

Step 4.

x̂MPPj
¼ lX þ q

rgj

krgjk
ð20Þ

In Step 5, if gjðx̂MPPj
Þ\0, gj is inactive. Otherwise it is

active and the actual xMPPj
needs to be calculated in Step 6 via

Eq. (17a–17b). If gjðxMPPj
Þ� 0, the current design point lX

k

is feasible to Eq. 1. Otherwise it is infeasible and the

feasibility results are sent back to the optimizer. Compared

with the standard RBDO approach for handling non-normal

random parameters, reliability contours need only be

calculated once as a preprocessing step. Another benefit of

the process is that the integration of reliability contours in

optimization algorithms will not have the convergence

problems existing in the standard approach between using

MPPs to update equivalent normal distributions.

2.4 Joint constraint reliability

Constraints in standard RBDO formulations are written

such that the probability of violating each constraint does

not exceed an acceptable limit.

giðXÞ[ 0ð Þ \ gjðXÞ[ 0
� �

¼ ; 8i; j 2 K ð21Þ

Therefore in a hypothetical RBDO formulation with 100

independent constraints (whose constraint sets are mutually

exclusive) and a reliability target of 99% in Eq. 4, the

expected number of constraint violations out of the 100

constraints is one. Even though this is a very unlikely

example, it demonstrates the usefulness of being able to

optimize for joint reliability in critical problems such as

those considering human and ecosystem health.

In the problem represented by Fig. 1, it is best to con-

sider the probability of any constraint being violated,

regardless of whether that constraint corresponds to mul-

tiple receptor points or pollutants. If we consider the

probability that any constraint is violated, then we must

consider a union of events. Let Fj be the infeasible (failure)

domain of constraint gj. The problem is then written as

Eq. 22:

min
lX

f ðlXÞ

s.t. Pr
[

j2K
Fj

" #
�Pf

ð22Þ

Calculating the constraint feasibility in Eq. 22 is

challenging. In the simplest case with only linear

constraints and normally distributed random variables,

the probability of union of failure events yields the

multivariate normal integral in Eq. 23 (Hohenbichler and

Rackwitz 1983).

Umðh;RÞ ¼
1

ð2pÞm=2kRk1=2

Zhm

�1

� � �
Zh1

�1

e�
1
2
xT R�1x

� dx1 � � � dxm ð23Þ

Calculating the exact solutions of Eq. 23 is impractical

in most cases. Ditlevsen proposed a method in estimating

the upper and the lower bounds within which the exact

values of Eq. 23 will be located (Ditlevsen 1979). He

calculates the general upper and lower bounds as

Pr
[

j

Fj

" #
�
Xm

j¼1

Pr½Fj� �
Xm�1

j¼2

max
k\j

Pr Fj \ Fk

� �� �
ð24Þ

Pr
[

j

Fj

" #
� Pr½F1� þ

Xm

j¼2

max Pr½Fj� �
Xj�1

k¼1

Pr Fj \ Fk

� �
 !

ð25Þ

The union of multiple failure domains becomes

increasingly difficult to calculate with an increasing

number of constraints. One advantage of using the upper

and lower bounds is that they are calculated from unions of

any two failure domains. Once the relationship between

two failure surfaces is known, Eq. 24 and 25 are much

easier to calculate.

We propose here to use a conservative approach: stating

that as long as the upper bound in Eq. 24 is less than or
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equal to an acceptable failure probability Pf, then the

overall system has feasible joint reliability (i.e., it is

probabilistically feasible for the joint constraint case). To

incorporate this approach within the active set strategy, the

upper bound of the joint constraint reliability Eq. 24 is

calculated only for constraints in the working set Gk. For

constraints that do not have the potential to be violated, it is

assumed that their contribution to joint reliability is neg-

ligible. The overall process of considering joint constraint

reliability in the active set strategy is as follows:

1. Obtain the working set Gk at the kth iteration from the

optimizer;

2. Calculate individual constraint violations for j 62 Gk;

3. Calculate the upper bound of joint constraint reliability

for j 2 Gk;

4. Return all constraint results to the optimizer.

2.5 Example with non-normal random variables and

joint constraint reliability

This section provides a simple example pulling together the

concepts from Sects. 3 and 4 for illustration. First we

reiterate that the importance of calculating the joint con-

straint reliability depends on how much the failure domains

of active constraints overlap with each other. For problems

with a large portion of overlapping failure domains, con-

sidering joint reliability might not make a significant

difference. However, for problems without overlapping

failure domains of active constraints, joint reliability can

change results quite significantly.

Figure 7 illustrates a simple problem with two variables

and two linear constraints, Eq. 26, where the random

variables X1 and X2 both have Weibull distributions with

shape and scale parameters being 1.

min
lX1

;lX2

f ðlXÞ ¼ lX1
þ lX2

s.t. Pr½X1 [ 6� � 10%

Pr½X2 [ 6� � 10%

ð26Þ

With the probability of failure for each constraint set at

10% in Eq. 26, the optimum is found at [4.697, 4.697]. In

this case, the probability of violating both constraints is

negligible, in other words the quantity Pr[g1 [ 0 \ g2 [ 0]

is approximately zero. The probability of violating either

constraint becomes

Pr½g1 [ 0 [ g2 [ 0� ¼ Pr½g1 [ 0� þ Pr½g2 [ 0�
� Pr½g1 [ 0 \ g2 [ 0� ð27Þ

and it is actually 20%, making the joint constraint

reliability at this design point only 80%. This means that

while there is a 10% chance of violating the first constraint

and a 10% chance for violating the second constraint, there

is actually a 20% chance of violating either constraint. To

achieve a 10% chance of violating either constraint (i.e., to

set the joint constraint reliability at 10%), the problem is

reformulated as Eq. 28.

min
lX1

;lX2

f ðlXÞ ¼ lX1
þ lX2

s.t. Pr½X1 [ 6 [ X2 [ 6� � 10%
ð28Þ

The optimum is now [4.004, 4.004] with a joint

reliability being 90%. The failure probability of each

constraint in this case is 5%. Figure 7 shows the reliability

contours for the two problems. The probability of being in

the joint failure domain of both constraints simultaneously

is small. Therefore, to achieve a high joint reliability the

reliability contour becomes larger and the design becomes

more conservative.

3 Air pollution demonstration study: model

development

To demonstrate the concepts developed in Sect. 2 and to

evaluate their performance in a small-scale example

problem with similarity to real-world modeling, we con-

sider the case introduced in Fig. 1 with the angle x = 50�.

In this case study we are interested in reducing tailpipe

emissions from vehicles on the highways to bring the area

into compliance with the NAAQS by reducing speed limits.

Vehicle operational speed has significant impact on tail-

pipe emissions (Joumard 1986) and fuel consumption

(Kenworthy et al. 1986). These relationships are highly

nonlinear and subject to inter-vehicle variability as well as
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Fig. 7 Example of non-normal random variables considering joint

constraint reliability from Eq. 26
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operational uncertainties. Setting an appropriate speed

limit is inherently a trade-off between driver safety, time

savings, vehicle emissions, and fuel economy (Sinha

2000). In what follows, we create a scenario for the

objective function and constraints and then apply the

methods from Sect. 2. We validate the optimum using

Monte Carlo simulation with one million samples.

3.1 Objective function

Several studies have focused on the effects of regulatory

speed limits on safety and other economic metrics (e.g., see

TRB 1998). Equation 29 describes an objective that con-

siders safety and time savings as a function of speed limit

(Ashenfelter and Greenstone 2004).

f ðvÞ ¼ 1000� DðvÞ þ cðvÞ ð29Þ

where

DðvÞ ¼ 2:11� 10�6v4 � 5:03� 10�4v3 þ 0:0454v2

� 1:838vþ 32:2189 ð30Þ

Here D(v) is a measure of safety in terms of property

damage (in 1,000 dollars) per 100 million vehicle-miles

and is defined as the probability of being involved in a

crash multiplied by the severity of each crash at different

speeds. Solomon (1983) and Hauer (1971) found that the

probability of being involved in a crash per vehicle-mile as

a function of on-road vehicle speeds follows a U-shaped

curve. Speed values around the median speed have the

lowest probability of being in a crash. Crash severity is

measured by speed differences before and after the crash

(Joksch 1993). Assuming the final speed after the crash is

zero, this crash severity measure is proportional to the

speed before the crash. Fitting the data from Solomon

(1983), we obtain the safety measure given in Eq. 30 as an

example of the overall price society might be willing to pay

to avoid each accident.

The measure c(v) reflects the value of time savings

associated with increased vehicle velocity. Assuming the

average wage per person is w (dollars/h), c(v) is used as the

cost of an hour spent travelling without working. The

overall traveling time for a trip of length s (in km) is

t ¼ s=v ð31Þ

where v(km/h) is the speed of an on-road vehicle. The

overall cost (dollars) for trip s is then

c ¼ w� t: ð31Þ

Combining the societal costs of property damage

(medical and social welfare) and cost of time spent on

travelling, the objective function in Eq. 29 represents an

economic measure of the pros and cons of driving at a

specific speed.

3.2 Constraint functions

The constraints reflect the desire to keep overall emissions

of CO and NOx from on-road vehicle tailpipe emissions

within the values set by the NAAQS. Here we will consider

only the one-hour standard. The current NAAQS states that

the one-hour concentration of CO cannot exceed 40 mg/m3

and the annual average concentration of NOx cannot

exceed 100 lg/m3. The NAAQS does not include a 1 h

limit for NOx, and therefore in this example the one-hour

ambient air quality standard for NOx (470 lg/m3) in

California is considered here. For the demonstration

problem of Fig. 1, we use the infinite line source dispersion

model Eq. 33 as described by Gilbert (1996) while recog-

nizing that this simplistic infinite line source can be readily

replaced with more complex modeling approaches such as

found in CALINE4 (Benson 1984).

gjðxÞ ¼
X2

i¼1

2qiffiffiffiffiffiffi
2p
p

rzi
Uhi

ð33Þ

In Eq. 33, the index i represents the two highway

(infinite line source) systems in Fig. 1, j represents

different pollutants (CO and NOx), and q is the emission

rates of the pollutants on the roads that are a product of the

emissions factors (EF) from the vehicles and the vehicle

traffic density T in Eq. 34:

qðg=sÞ ¼ EFðg=vehicleÞ � Tðvehicle=sÞ ð34Þ

We assume that all vehicles on both highway systems

are identical mid-size gasoline-powered passenger

vehicles (it is readily possible to add variation here, but

for this demonstration example we avoid it). The

advanced vehicle simulator (ADVISOR) (Markel et al.

2002) was used to obtain the emission factors for the

baseline vehicle at different speeds. A relationship

between speed and emissions factors for CO and NOx

was estimated as Eqs. 35 and 36 with the norms of the

residuals (Montgomery 2005) being 0.0025 and 1.83

9 10-4, respectively.

EFCOðvÞ ¼ 1:55� 10�7v4 � 1:59� 10�5v3 þ 5:89

� 10�4v2 � 9:50� 10�3vþ 0:062 ð35Þ

EFNOxðvÞ ¼ 4:26� 10�9v4 � 2:27� 10�7v3 þ 4:40

� 10�6v2 � 3:85� 10�5vþ 6:65� 10�4

ð36Þ

Although emission rates may differ between vehicles

due to operational variation and maintenance, these

uncertainties were not considered in this example.

Highway traffic is modeled as constant flow per second

with each highway having four lanes in each direction. The

constant-flow traffic is shown in Fig. 8 and modeled as Eq.
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2. This source of variation is also not modeled for

demonstration purposes but could be included on the

basis of traffic studies.

TðvÞ ¼ vðm=sÞ � ð3þ 15Þðm=vehicleÞ ð37Þ

3.3 Quantification of uncertainties

In Eq. 33, we consider uncertainties that arise from four

sources: wind speed and direction, dispersion coefficient

and driver speed responses to posted speed limits. The

modeling of each of these uncertainties is described below.

3.3.1 Wind speed and direction

The probability density functions of wind speed and wind

directions are modeled based on (McWilliams et al. 1979;

McWilliams and Sprevak 1980). Unlike the method of

Ramirez which uses a two-parameter Weibull distribution

(Ramirez and Carta 2005), McWilliams et al. decompose

wind speed into two components: one along the prevailing

wind direction and one perpendicular to it. We assign the

actual wind speed as Uh, the prevailing wind direction as w,

the wind speed along the prevailing wind direction as Uy,

and the wind speed perpendicular to the prevailing wind

direction as Ux. Figure 9 illustrates the relationship

between the wind components. McWilliams et al. (1979)

used this model with the wind speed distributions Uy and

Ux being normally distributed as Eq. 38.

Uy	Nðl; rÞ; Ux	Nð0; rÞ ð38Þ

According to McWilliams and Sprevak (1980), the

distributions for the observed wind speed Uh and wind

direction h (which is the wind direction relative to the

prevailing wind direction w) can then be calculated since

Uh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

x þ U2
y

q
and h = tan(Ux/Uy). Equation 39 is the

resulting PDF for Uh and h, where I0 is the modified Bessel

function of the first kind.

fUh
ðvÞ ¼ 1

r2
ve�

v2

2r2

� �
� e�

l2

2r2 � I0

l
r2

v
� �

fhðhÞ ¼
1

2p
e�

l2

2r2 1þ l
r

ffiffiffiffiffiffi
2p
p

sinðhÞ
h

�U � l
r

sinðhÞ
� �

� e1
2

l
r sinðhÞð Þ2

i
ð39Þ

Using the method described in McWilliams and Sprevak

(1980), we obtained wind speed and direction data data

from the NCDC (2009) for Detroit, Michigan during the

summer evening rush hour (5 pm–6 pm). The data indicate

that the prevailing wind direction is at 215� with l =

-0.825 and r = 3.177 that can be utilized in Eq. 39. The

evening rush hour is selected as it is expected for the

situation in Fig. 1 that this is the time period when

the constraints are most likely to be violated in the

hypothetical airshed. Therefore, the 90% reliability can be

considered a worst case since it is calculated using the

most vulnerable time for the airshed. Figure 10a and b

Fig. 8 Constant highway traffic flow modeling used in example

problem

N

Fig. 9 The relationships between the prevailing wind direction, w,

the prevailing wind speed, Uy, and the observed wind speed Uh
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Fig. 10 Data histograms and analytical PDF predictions for wind

speeds and wind directions for Detroit, MI, during summer between 5

and 6 pm
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demonstrate a reasonable agreement between data

histograms and the PDF predictions using Eq. 39.

3.3.2 Dispersion coefficient

In a Gaussian dispersion model, the dispersion coefficients

rz for both roads are a function of the distance from the site

to the line source L. The dispersion coefficient rz is typi-

cally represented by three parameters c, d, f (Martin 1976).

rz ¼ cLd þ f ð40Þ

Values of c, d, f depend on an ambient atmospheric

condition called ‘stability class’. Stability class describes

the effective vertical mixing of a parcel of air existing in

the airshed and can be determined as shown in Table 1.

Table 2 shows the values of c, d, f for different stability

classes (Gilbert 1996). Solar insolation from NCDC data is

quantified as cloudiness or sky cover, which is measured

from 0/8 to 8/8 with 0/8 being clear sky and 8/8 being

overcast. 0/8 to 3/8 is considered as strong insolation, 3/8

to 6/8 is considered as moderate insolation, and above 6/8

is considered considered as slight insolation. The data for

the Detroit area reveal that solar insolation in summer is

independent of wind speed and reasonably modeled as a

uniform distribution.

Given distributions of solar insolation from (NCDC 2009)

and the wind speed from this study, distributions of c, d, f can

be obtained by the stability class distribution from Table 1

and the corresponding dispersion coefficient values from

Table 2. The resulting distribution of the c, d, f are discrete

and the dispersion coefficient rz is calculated as shown in Eq.

41. The existence of discrete variables in the Gaussian dis-

persion model means that a probabilistic constraint will be

formulated as Bayesian conditional probability such that

continuous distributions are used to approximate the distri-

butions of c, d, f as discussed in Sect. 2.

frz
ðzÞ �

X7

i¼1

hðz; lzi
; 0:12Þ � pi% ð41Þ

where

lz ¼ ½15:96; 25:87; 32:44; 42:69; 51:37; 100:08; 124:07�
p ¼ ½18:00; 4:64; 27:19; 13:05; 21:83; 10:93; 4:36�

3.3.3 Vehicle speed

A Federal Highway Administration report (FHWA 1995)

indicates that for highways with speed limit 55 MPH, an

average speed of 56.9 MPH and a SD of 7 are observed.

Many studies in the literature also show that the observed

vehicle speeds can be reasonably modeled using normal

distributions (Berry and Belmont 1951; Hossain and Iqbal

1999; Katti and Raghavachari 1986; Kumar and Rao 1998).

Based on these studies, we assume that the actual vehicle

speeds on both roads follow normal distributions with

mean equaling to the speed limit and a standard deviation

rV = 7 MPH (FHWA 1995). The original speed limits on

both highways are 70 MPH.

4 Air pollution study: results and discussions

In this study, we have two design variables (speed limits of

two nearby highways), one joint reliability with two

probabilistic constraints on CO and NOx emissions regu-

lations. Four random parameters are considered including

wind speed, wind direction, on-road vehicle speeds and

dispersion coefficient. Three different scenarios are for-

mulated using the objective function and constraints as

described in Sect. 3. The first scenario is a deterministic

optimization problem, as shown in Eq. 42, that does not

consider uncertainties. The second scenario considers

uncertainties from wind speed, wind direction, dispersion

coefficient as well as actual on-road vehicle speeds with

constraint probabilities formulated separately as shown in

Eq. 43. The third scenario, as shown in Eq. 44, is the

RBDO formulation with joint probabilities. In all scenar-

ios, the speed limits of both highways are set to be

identical. In practice speed limits can be set independently.

Policy makers can even partition one road into several

segments and then assign each segment its own speed limit

to match real-world problems.

Table 1 Atmospheric stability classifications (Gilbert 1996)

Surface wind speed (m/s) Day solar insolation Night

cloudiness

Strong Moderate Slight Cloudy Clear

\2 A A–B B E F

2–3 A–B B C E F

3–5 B B–C C D E

5–6 C C–D D D D

[6 C D D D D

Table 2 Values of the constants a, c, d and f in Eq. 40 (Gilbert 1996)

L B 1 km L C 1 km

Stability a c d f c d f

A 213 440.8 1.941 9.27 459.7 2.094 -9.6

B 156 06.6 1.149 3.3 108.2 1.098 2.0

C 104 61.0 0.911 0 61.0 0.911 0

D 68 33.2 0.725 -1.7 44.5 0.516 -13.0

E 50.5 22.8 0.678 -1.3 55.4 0.305 -34.0

F 34 14.35 0.740 -0.35 62.6 0.180 -48.6
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min
v

Society Cost (Eq. (29))

s.t. CO concentration� 40 mg=m3

NOx concentration� 470 lh=m3

ð42Þ

min
lV

Society Cost (Eq. (29))

s.t. Pr½CO concentration [ 40 mg=m3� � 10%

Pr½NOx concentration [ 470 lh=m3� � 10%

ð43Þ

min
lV

Society Cost (Eq. (29))

s.t. Pr CO concentration [ 40 mg=m3
� �

\
�

NOx concentration [ 470 lh=m3
� ��

� 10%

ð44Þ

Scenario 1: Deterministic optimal speed limit without

considering uncertainties

Solving Scenario 1 (Eq. 42), it is found that none of the air

quality constraints are active and the optimum is v* = 81.9

MPH (36.6 m/s). At this speed limit, pollution concentra-

tions during rush hour at the receptor location of Fig. 1 are

12 mg/m3 for CO and 470 lg/m3 for NOx with the NOx

constraint being active. After adding the uncertainties of

wind speed, wind direction, stability class, and actual on-

road vehicle random design variables/parameters to this

deterministic optimum, it is found that the reliability of

satisfying NAAQ standards is only 72.0% with respect to

the CO standard and only 48.0% with respect to the NOx

standard. The overall societal cost is $597,910. The

example demonstrates that when significant variability in

system parameters exists, constraint violations can occur

even when constraints are not active deterministically.

Therefore, without incorporating uncertainty into design

optimization, the compliance of NAAQS using determin-

istic optimization may not be sufficiently reliable.

Scenarios 2 and 3: Probabilistic optimal speed limit

considering uncertainties

If the desired compliance reliability is 90% for each con-

straint (Scenario 2, Eq. 43), the optimum speed limit is

reduced to 62.9 MPH (28.1 m/s). The overall societal cost

increases to $725,180, an approximately 21.3% increase

relative to the 70 MPH speed limit associated with the

constraint to achieve the NAAQS standards. By consider-

ing joint constraint reliability in Scenario 3 at 90%, the

optimal speed limit is reduced to 44.3 MPH (19.8 m/s).

Table 3 compares the results between the different sce-

narios. The probabilistic optimum of Eq. 43 has reliability

to comply to current NAAQS of NOx and CO as 89.9 and

90.1%, respectively. The joint reliability at this speed limit

is 79.9%. The probabilistic optimum of Eq. 44 has the

desired joint reliability (90.0%). The example demonstrates

that extensions of the active set SQP algorithm can inte-

grate with reliability contour approach in solving problems

with non-normal and/or discrete distributed random

parameters with joint constraint reliability.

After solving this problem, we note that the complexity

of the CDFs and PDFs in the problem makes sampling

methods challenging to apply in this example. Typically,

random samples are created by generating N random

samples ni from [0,1] uniformly. Inverse CDFs are then

used to find the corresponding random sample via Eq. 45.

xi ¼ F�1
Xi
ðniÞ ð45Þ

Obtaining the inverse of CDF is computationally

intensive and a large number of random samples need to

be generated to maintain high accuracy. Our experience in

this example shows that the computational requirement for

generating random samples prohibit many sampling

techniques from being plausible.

Overall, this example has shown that the RBDO meth-

odology outlined in Sect. 2 is straightforward and efficient

to apply. Running the case study which has two design

variables (speed limits for both highways) and one joint

reliability with four constraints takes 32 s on an Windows

quad-core 2.4GHz with 4GB of memory. One issue we

encountered is that calculating the maximum radius in Eq.

18 as a pre-processing step in the approach appears to be

dependent on the algorithm used. For a gradient-based

algorithm, a good starting point must be selected such that

the problem can converge while satisfying the equality

constraint. On the other hand, non-gradient based algo-

rithms do not require the starting point knowledge as an

a priori but can have difficulties satisfying the equality.

Therefore we found that a combination of both algorithms

with good reliability. A non-gradient based algorithm is

first applied and the optimum is selected as the starting

point for the gradient based algorithm. Although it is a

Table 3 Probabilistic results with and without considering joint reliability

Optimal speed limit Scenario 1 (Eq. 42) Scenario 2 (Eq. 43) Scenario 3 (Eq. 44)

81.9 MPH (%) 62.9 MPH (%) 44.3 MPH (%)

NOx compliance reliabilitya 72.0 89.9 99.5

CO compliance reliabilitya 48.0 90.1 90.0

Joint constraint reliabilitya 42.1 79.9 90.0

a Using Monte Carlo Simulation with 1 million samples
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process requiring significant effort, Eq. 18 needs only to be

executed once for the entire problem. This modest amount

of pre-processing opens the door to rapid calculation of

design optima for large scale problems with non-normal

variables/parameters and joint reliability.

The results of this case study naturally depend on the

assumptions made in the model and are only presented here

to show the feasibility of the approach and to suggest that

the method can be applied to problems of a larger scale.

For instance, consider a large city with q number of roads.

Let the speed limits of all road be the policy decisions to be

made, therefore the size of q. If r types of pollutants are of

concern, the overall constraints have size r 9 q. The main

difference from the demonstrated two-road example is the

construction of the reliability contour. If one speed limit is

assigned to each road, the overall design freedom is q. As a

pre-processing step, a reliability contour and ‘safe zone’

surface of dimension q need to be formed. Once the reli-

ability contour and the safe zone are both obtained, the

policy decision problem simply scales up by the demon-

stration by q. Compared with the existing approach where

adding one constraint would require an additional equiva-

lent normal distribution finding process, the proposed

method becomes more advantageous with the increase of

problem dimensions. As the number of policy decision

variables increases, complicated environmental regulation

setting in airsheds and watersheds can still be efficiently

treated using the RBDO extensions proposed in this paper.

In this way analytical RBDO approaches can be applied to

important stochastic environmental research problems.

5 Conclusions

In this research, we proposed a reliability contour approach

for solving RBDO problems with non-normally distributed

random parameters and discrete random parameters, and a

approach that calculates the upper bound of the joint reli-

ability in constraint evaluation. Both approaches are

integrated in a modified sequential quadratic programming

algorithm with active set strategies to solve problems with

a large number of constaints efficiently. The proposed

methodology was demonstrated on a simplified airshed

example where CO and NOx standards are violated and to

be brought into compliance by changing the speed limits of

two nearby highways. The extended RBDO framework

developed here can be applied to complex environmental

regulations setting in airsheds and watersheds given its

computational efficiency and accuracy.
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