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Abstract In this technical note, we investigate the

hypothesis that ‘non-linearity matters in the spatial

mapping of complex patterns of groundwater arsenic

contamination’. The spatial mapping pertained to data-

driven techniques of spatial interpolation based on

sampling data at finite locations. Using the well known

example of extensive groundwater contamination by

arsenic in Bangladesh, we find that the use of a highly non-

linear pattern learning technique in the form of an artificial

neural network (ANN) can yield more accurate results

under the same set of constraints when compared to the

ordinary kriging method. One ANN and a variogram model

were used to represent the spatial structure of arsenic

contamination for the whole country. The probability for

successful detection of a well as safe or unsafe was found

to be atleast 15% larger than that by kriging under the

country-wide scenario. The probability of false hopes,

which is a serious issue in public health monitoring was

found to be significantly lower (by more than 10%) than

that by kriging.

Keywords Spatial mapping � Artificial neural networks �
Ordinary kriging � Uncertainty � Arsenic contamination �
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1 Introduction

Extensive groundwater contamination by arsenic is

observed in many alluvial aquifers of the world today.

Some examples are: West Bengal (Mazumder et al. 1998),

Taiwan (Tseng et al. 1968), Vietnam (Berg et al. 2001),

Bangladesh (Nahar et al. 2008) and Mexico (Del Razo

et al. 1990). The problem is also widespread in many parts

of the United States (US). A recent risk assessment study

by Twarakavi and Kaluarachchi (2006) has shown that

rural regions in southern California, Arizona, Florida,

Washington states and a few others scattered throughout

the US currently face a high risk from arsenic exposure

through untreated ground water consumption. However,

the case of Bangladesh stands out because of the serious-

ness of contamination. Estimates show that about 103

million (70% of the Bangladesh rural population) depend

on shallow wells that have been excavated at a depth of less

than 150 m (Ahmed 2003), and more than half of the

Bangladesh population may be at risk due to the high levels

of arsenic in these groundwaters (Yu et al. 2003).

High levels of arsenic in the groundwater can cause

numerous health concerns among the public if left

untreated after extraction from the aquifer and prior to

public consumption. Soluble arsenic compounds are

generally rapidly absorbed into the body from the gastro-

intestinal tract (Hindmarsh and McCurdy 1986). Studies

have shown that twenty years of sustained consumption of

contaminated water exceeding 50 lg/l of arsenic can cause

internal cancers (lung, kidney, liver and bladder) and affect

10% of all exposed (Tseng et al. 1968; Schwartz 1997).

Thus, detection of groundwater arsenic contamination

can prevent widespread diseases which could otherwise be

very costly to treat. Spatial mapping of arsenic contami-

nation on the basis of sparse in situ sampling data can be
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considered one such cost-effective and non-structural

method of contamination detection at non-sampled loca-

tions. In particular, rural regions with isolated ground water

supply systems lacking central treatment facilities (i.e.,

parts of the US or most regions of developing countries)

stand to benefit tremendously because of the high level of

cost-effectiveness offered by spatial mapping schemes.

Because each one of the vast number of drinking wells

(exceeding 10 million for Bangladesh) cannot be fre-

quently and directly tested, a spatial mapping scheme

based on limited field measurements can bridge the gap

between lack of adequate testing resources and the urgency

of quarantining unsafe zones or identifying regions of the

aquifer unaffected by contamination.

Conventional methods for spatial mapping of ground-

water contamination based on linear geostatistical theory

(such as kriging) can however have high uncertainty at

non-sampled locations (Hossain et al. 2007). In these

geostatistical methods, the spatial characteristics of the

‘random’ function (contaminant concentration) are descri-

bed at most by the second order moment (covariance).

Hence, these conventional approaches are optimum for

representing multi-Gaussian random fields. In the presence

of complex subsurface heterogeneities and given the non-

linearity of the contaminant transport process, it is highly

unlikely that the contaminant distribution will exhibit a

multi-Gaussian characteristic (Faybishenko 2002).

For the case of groundwater contamination in resource-

limited settings, a high level of uncertainty can hamper

cost-effective management and remediation efforts. As an

example, if the unbiased estimation uncertainty of kriging

(comprising only random error) for a contaminant variable

is observed to be greater than the Environmental Protection

Agency (EPA)-specified safe limit, then it is likely that

many non-sampled regions could be predicted by kriging

as uncontaminated and hence, safe for public consumption.

Sustainable water resources management in resource-poor

settings (such as developing countries) therefore requires

us to explore alternative approaches that seek to minimize

these well-known limitations of linear geostatistical tech-

niques such as kriging.

In this technical note, the objective of our study is to

explore the validity of the hypothesis that ‘non-linearity

matters in the spatial mapping of complex patterns of

groundwater arsenic contamination’. Herein, spatial map-

ping refers exclusively to the data-driven technique of

spatial interpolation based on sampling data at finite

locations. Using the well known example of extensive

groundwater contamination by arsenic in Bangladesh, we

compare the results obtained from spatial mapping using

two common mapping techniques. The essential algorith-

mic distinction between these two techniques is in non-

linearity of the spatial behavior that can or cannot be

modeled. The two methods are: (1) ordinary kriging (a best

linear unbiased estimator) and (2) artificial neural network

(ANN; a learning technique capable of generalizing non-

linear spatial pattern for non-sampled locations).

2 Study region, data and mapping tools

2.1 Study region and data

Our study region was Bangladesh excluding the dense for-

ests in the Southwest and Southeast (Fig. 1). Geologically,

the region is made up of mainly old oxic Pleistocene deposits

in the north and relatively young anoxic Holocene deposits

in the south. Arsenic data were obtained from the British

Geological Survey (BGS) which, in collaboration with local

authorities in Bangladesh, surveyed randomly selected wells

from 1998 to 2000. Hereafter, this survey is referred to as the

BGS-DPHE (2001) survey. The main dataset comprised

Fig. 1 Mean arsenic concentration shown on a district (county) basis

in Bangladesh. Note that most district’s mean arsenic concentration in

groundwater exceed the EPA safe limit of 10 ppb. This map was

reproduced from Rahman and Hossain (2008)
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3,534 wells and is freely available from the internet at

http://www.bgs.ac.uk/arsenic/. The wells sampled were

constructed between 1962 and 1999. Measurement of

arsenic was taken at a single depth close to the screen for

each well, wherein the depths varied from 10–300 ft below

the surface. In our study we excluded data pertaining to well

depths larger than 100 ft as the arsenic problem is mostly

confined to depths less than 100 ft (Hossain et al. 2007).

In the overall scheme of our investigation, the BGS-

DPHE (2001) survey currently represents the most quality-

controlled database of arsenic measurements available for

any kind of country-wide management analyses (Kinniburg

and Smedley 2001). Arsenic measurements of BGS-DPHE

(2001) survey were based on the Atomic Absorption Spec-

tro-photometric (AAS) method, which can be considered a

very reliable method for arsenic testing (Rahman et al.

2002). Some distinct patterns of arsenic contamination are

apparent with this data. The highest levels of contamination

usually occur in the Southern regions comprising Holocene

deposits, while the lowest contaminations are observed in

the Northern regions of Pleistocene deposits (Fig. 1).

2.2 Spatial mapping tools

Our focus was on the investigation of two spatial mapping

tools based on distinct spatial interpolation methodologies.

The first mapping tool is the commonly known geo-sta-

tistical ordinary kriging (OK) technique; based on the

linear paradigm of mapping. The second mapping tool is

the ANN based on the non-linear paradigm of mapping.

ANNs work in a similar fashion as the human brain learns

from a trained pattern. For each mapping technique, the

goal was to spatially interpolate the arsenic concentration

at a non-sampled well location using sampled data from

wells in the study region. The spatial coordinates and

arsenic concentration of wells were considered as the input

and output of each mapping technique, respectively. In the

following, we provide a brief description of each mapping

tool to highlight the distinct linear or non-linear aspect

associated with each method.

2.2.1 Ordinary kriging (OK)

Ordinary kriging is a spatial interpolation estimator Ẑðx0Þ
used to find the best linear unbiased estimate (at non-

sampled location) of a second-order stationary random

field with an unknown constant mean as follows:

Ẑðx0Þ ¼
Xn

i¼1

kiZðxiÞ ð1Þ

where Ẑðx0Þ= kriging estimate at non-sampled location x0;

Z(xi) = sampled value at location xi; and ki = weighting

factor for Z(xi).

The estimation error is

Ẑðx0Þ � Zðx0Þ ¼ Rðx0Þ ¼
Xn

i¼1

kiZðxiÞ � Zðx0Þ ð2Þ

where Z(x0) = unknown true value at x0; and

R(x0) = estimation error. For an unbiased estimator, the

mean of the estimation error must equal zero. Therefore,

E Rðx0Þf g ¼ 0 ð3Þ

and
Xn

i¼1

ki ¼ 1 ð4Þ

Minimum variance of estimation error is required for

solving the interpolation problem by kriging. The

minimization of the estimation error variance under the

constraint of unbiasedness leads to a set of equations for the

weighting factors, ki, which can be solved by an optimization

routine. For details on the ordinary kriging technique and its

application to ground water or related problems, the reader is

referred to works of Goovaerts et al. (2005). For specific

details on the software routines used in this study, the reader

is referred to the Geostatistical Software Library (GSLIB)

and Users Guide (Deutsch and Journel 1998).

2.2.2 Artificial neural networks

Artificial neural networks (ANN) are made up of intercon-

nected artificial neurons which are an imitation of biological

neurons (Govindaraju and Rao 2000). Given sufficient

training data, ANNs can learn, to a high degree of accuracy,

any complex mapping between the input and output data.

ANNs are also capable of generalization which makes them

very attractive when it comes to limited measurement data.

Contrary, to linear estimation techniques ANN does not

impose any constraint on the statistical properties of the

process to be modeled. ANNs are useful when one does not

have an idea about the complexity nor the structure of the

input/output map. In this study, the multi-layer supervised

back-propagation (MLBP) architecture was used. Two

hidden layers were used to adjust the weights of neuron to

achieve our target output (Fig. 2).The weights were trained

using the back propagation (BP) algorithm. The essential

feature of the ANN in contrast to kriging was in its ability to

decipher and generalize highly non-linear patterns in the

complex dataset as input–output mapping functions.

The ANN model mapped the arsenic contamination

(output) at a given well location with the coordinates of the

well location (input). As a result, the ANN was able to

‘learn’ the dependence of the geographical location on the

arsenic concentration. The output of ANN was categorized

into one of the following three classes: Class (1) predicted

concentration is less than 10 parts per billion (ppb, or lg/l);

Class (2) predicted concentration is between 10 and
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50 ppb; and Class (3) predicted concentration is higher

than 50 ppb. Note that the 10 and 50 ppb are the safe limits

prescribed by the World Health Organization (WHO) and

Bangladesh Government, respectively.

It is important to note at this stage, that classification of

output by ANN is commonly addressed in literature by

using the self organizing map (SOM) method. Due to the

nature of the data (discussed in Sect. 3), we found it dif-

ficult to adopt the SOM approach. While this deviation

may raise concerns, which are understandable, we believe

that such potential limitations alone should not hamper our

ability to investigate the hypothesis that ‘non-linearity

matters in the spatial mapping of complex patterns of

groundwater arsenic contamination’.

2.2.2.1 Algorithms for ANN training In this study, we

used the Levenberg–Marquardt (LM) algorithm for training

of ANN (Nocedal and Wright 1999). The LM algorithm,

which is a blend of gradient descent and Gauss–Newton

iteration, is probably the most widely used optimization

method. It takes lager steps down the gradient at location

where the gradient is small and conversely, takes smaller

steps when the gradient is large, so as not to miss the minima.

This algorithm is a trust region based method with hyper-

spherical trust region that has proved to be a better solution

in searching for the minima. The algorithm employs damped

Gauss–Newton method utilizing a damping parameter l. We

provide further details on the selection of the damping

parameter l and other algorithmic features in Appendix.

3 Data preprocessing, calibration and training

In order to elicit the essential features of the spatial pattern of

arsenic data and thereby facilitate the modeling equally for

each mapping tool, data preprocessing was performed. For

both the ANN and the kriging method, this preprocessing

step may be considered analogous to data quality assessment

to reduce noise in the data. Although, the BGS-DPHE (2001)

data was of the best quality available, the data preprocessing

(described below) helped generalize the complexity in the

data that could otherwise undermine the performance of a

technique. In the un-preprocessed format, the spatial nature

of arsenic data is known to be highly irregular in the southern

and south central regions of Bangladesh (Hossain et al.

2007). Since the discovery of arsenic contamination in

Bangladesh during the early nineties, it has been noted that

two adjacent wells can occasionally contradict each other in

terms of exceeding the safe limit (Rahman et al. 2002) due to

‘hard-to-resolve’ micro-level differences in factors such as

sediment type, geology, well depth and geochemistry of the

aquifer. To reduce this irregularity and to maximize the

effectiveness of mapping accuracy equally for both tech-

niques we performed filtering of data which is described next.

Data from each well was grouped in 5 9 5 km grids.

Each well in a grid was converted to a single class-based

numeric value for management as already described in

Sect. 2. Three classes were used as follows. Class One

(Safe): 0–10 ppb; Class Two (Unsafe according to WHO

limit): 10–50 ppb; and Class Three (Unsafe according to

Bangladesh safe limit):[50 ppb (note: ppb is equivalent to

lg/l; WHO and Bangladesh safe limits are 10 and 50 ppb,

respectively). To arrive at a single class-based numeric

value for all wells in a 5 9 5 km grid, the absolute values

of arsenic data were converted to a class value and then

filtered to create a representative value for the grid. In each

gridbox, higher frequency of occurrence of any class was

assigned as the class arsenic of all the wells inside the

gridbox. In case when the frequencies of two classes were

similar, the higher numerical value of the class was

assigned as the ‘winner’. This filtering resulted in a more

generalizable spatial pattern of arsenic concentration for

both kriging and ANN (see Fig. 3 with respect to Fig. 1).

As mentioned earlier, for the ANN technique, a 2 hidden

layers (with two input nodes for spatial coordinates) network

was set up and trained using the back propagation algorithm.

For the kriging technique, empirical variograms were

modeled using the exponential variogram function (see

Hossain et al. 2007 for an example). Training of ANN and

derivation of kriging variograms was performed on two-

thirds data randomly selected. The remaining one-third was

used for an independent validation. The convergence criteria

for terminating training of the ANN was set at 10-2 (root

mean squared error). In the topology of the ANN, 50 and 25

neurons were used in the first and second (hidden) layers,

respectively.

4 Comparision of ANN versus ordinary kriging

A fair competition was set up between ANN and kriging to

test the validity of our hypothesis. Both schemes were given

the task of predicting arsenic concentration at non-sampled

Hidden Layer 

Input Layer 

Output Layer 

x

y

C

Fig. 2 Architecture of Artificial neural network (x, y are the spatial

coordinates as input while C is the class value as output)
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locations using as input, only the spatial coordinates of the

location of wells. The calibration of the kriging scheme and

the training of the ANN scheme used equal amounts and

exactly the same data (i.e., spatial coordinates of the wells

and the corresponding arsenic concentration-class value).

The variogram modeled for kriging is shown in Fig. 4.

For assessing the accuracy of each method for spatial

interpolation of arsenic concentration at non-sampled

locations, the following three metrics were used:

1. Probability of successful detection: This is the prob-

ability that the predicted class value matches with the

in-situ class value of a non-sampled well.

2. Probability of false hope: This is the probability that

the predicted class value is underestimated signifi-

cantly leading to an unsafe well being predicted

wrongly as safe for a non-sampled well.

3. Probability of false alarm: This is the probability that

the predicted class value is overestimated significantly

leading to a safe well being predicted wrongly as

unsafe for a non-sampled well.

Because our focus was on assessing spatial mapping for

management, the performance metrics were computed

against class values of each well in the validation set (and not

against actual arsenic concentrations). Table 1 shows the

comparative performance of the ANN versus ordinary kri-

ging. A single ANN model and a variogram was used for the

entire country. We clearly observe that ANN, by virtue of its

ability to generalize the spatial pattern using a highly non-

linear network, shows considerably more accuracy when

compared to ordinary kriging subject to the same breadth

and constraints in data. The probability for successful

detection is at least 15% higher than that by kriging for the

country as a whole. This is a significant improvement con-

sidering that more than 80% of the Bangladesh population is

projected to be at risk from arsenic contamination from

drinking well water. More importantly, the probability of

false hopes, which is a serious issue in public health moni-

toring (Nahar et al. 2008), is clearly lower (by about 10%)

than that by kriging for most regions. Finally, the fact that

one ANN model is conveniently able to demonstrate clear

improvements over the kriging method for the whole

country is a clear testament to accuracy of the global-scale

generalization of learning the complex patterns.

5 Conclusion

Our study provided evidence in support of the hypothesis

that ‘non-linearity matters in the spatial mapping of com-

plex patterns of groundwater arsenic contamination.’

Although the use of learning-type tools for spatial mapping

is not new (Besaw and Rizzo 2007), successful applications

reported in literature so far pertain mostly to the mapping of

geophysical parameters. These parameters exhibit spatially

much smoother patterns in the timescales of interest (such
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Table 1 Comparative performance of ANN and kriging for spatial

mapping of arsenic concentration in Bangladesh. Comparison is

shown for independent data that was not used in calibration or

training of the techniques

Probability of

successful detection

Probability of

false hope

Probability of

false alarms

ANN Kriging ANN Kriging ANN Kriging

67.23% 50.65% 14.39% 25.47% 18.38% 23.88%
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as hydraulic conductivity, soil porosity etc.). Consequently,

the mapping (spatial interpolation) is made relatively easier

by a technique. Our study demonstrated that ANNs can also

be used to map with noticeably higher accuracy than kriging

the complex and seemingly erratic spatial pattern of

groundwater contamination provided that reasonable data

preprocessing and exploratory data analysis are performed.

A natural extension of our work is now to explore ways

to leverage knowledge of the physics of the contamination

process in non-linear mapping schemes like ANNs. Tradi-

tional ANNs are black-box tools and are often criticized as

lacking in the ability to provide or ingest physical insights

(ASCE Task Committee 2000). Using the theory of chaos,

we have recently demonstrated that the spatial randomness

of arsenic in Bangladesh may indeed be deterministic

(Hossain and Sivakumar 2006) and therefore has promise to

be deterministically modeled (Hill et al. 2008). The chal-

lenge now is to find practical ways to leverage the

information gained from chaos analysis towards the robust

design of ANN-type mapping schemes that can build upon

conventional kriging methods. Such an effort can poten-

tially blend the recently acquired knowledge on the physical

factors governing contamination and act as a bridge

between the data-based spatial mapping community and the

process-based contamination community. So far, both

communities have advanced their fields rather indepen-

dently and we believe it is now time to explore a merger to

minimize mapping uncertainty in resource-poor settings.
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Appendix

Training of artifical neural network

The algorithm for training of ANN employs damped Gauss–

Newton method utilizing a damping parameter l as follows,

ðJT J þ lIÞhlm ¼ �g ð5Þ
with g ¼ JT f and l� 0 ð6Þ

where, J [ R is a Jacobian Matrix, which contains the first

partial derivatives of the function component f ðxÞk k; that

need to be minimized,

ðJðxÞÞi;j ¼
ofi
oxj
ðxÞ

and FðxÞ ¼ 1

2

Xm

i¼1

ðfiðxÞÞ2 ¼
1

2
f ðxÞk k2¼ 1

2
f ðxÞT f ðxÞ

ð7Þ

f has continuous second partial derivatives, that can be

written from Taylor expression as follows,

f ðxþ hÞ ¼ f ðxÞ þ JðxÞhþ Oð hk k2Þ

Here, hlm is the step used in this LM method and g is a

variable which depends on step size (hlm) and damping

parameter (l).

Also, J = J(x) and f = f(x). The damping parameter l
has several effects as follows:

For all l[ 0 the coefficient matrix is positive definite.

This ensures that hlm is a direction downhill. For large

values of l we get, hlm � � 1
l g ¼ � 1

l F0ðxÞ i.e. a short step

in the steepest descent direction. This is good if the current

iteration is far from the solution. If l is very small, then

hlm & hgn; hgn = Gauss–Newton step. This is beneficial in

the final stages of the iteration, when x is close to x*. If

F(x*) = 0 (or very small), then we can get (almost) qua-

dratic final convergence.

The damping parameter l influences both the direction

and the size of the step. The choice of initial l value should

be related to the size of the elements in A0 = J(x0)T J(x0),

e.g. by letting l0 = s.maxi {aii
(0)}, where s is chosen by

user.1

Updating of the damping parameter l is controlled by

the gain ratio,

n ¼ FðxÞ � Fðxþ hlmÞ
Lð0Þ � LðhlmÞ

ð8Þ

Here,

f ðxþ hÞ � ‘ðhÞ � f ðxÞ þ JðxÞh ð9Þ

Inserting Eq. 9 in Eq. 7 we find that

Fðxþ hÞ � LðhÞ � 1

2
‘ðhÞT‘ðhÞ

¼ 1

2
f T f þ hTJT f þ 1

2
hT JT Jh

¼ FðxÞ þ hT JT f þ 1

2
hT JT Jh ð10Þ

The denominator of Eq. 8 is the gain predicted by the

linear model of Eq. 10 as follows,

Lð0Þ � LðhlmÞ ¼ �hT
lmJT f � 1

2
hT

lmJT Jhlm

¼ � 1

2
hT

lmð2gþ ðJT J þ lI � lIÞhlmÞ

¼ 1

2
hT

lmðlhlm � gÞ ð11Þ

Both hlm
T hlm and -hlm

T g are positive definite, so L(0) -

L(hlm) is guaranteed to be positive.

A large value of gain ratio, n indicates that L(hlm) is a

good approximation to F(x ? hlm), and we can decrease l

1 This algorithm is not very sensitive to the choice of s, but a rule of

thumb, a small value is used, e.g. s = 10-6 if x0 is believed to be a

good approximation of x*.
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so that the next Levenberg–Marquardt step is closer to the

Gauss–Newton step. If n is small (may be even negative),

then L(hlm) is a poor approximation, and we should

increase l with the twofold aim of getting closer to the

steepest descent direction and reducing the step length.

The stopping criteria for the algorithm should reflect that

at a global minimizer we have F0(x*) = g(x*) = 0 so we

can use,

gk k1 � e1

Another relevant criterion is to stop if the change in x is

small,

xnew � xk k� e2ð xk k þ e2Þ:

This expression gives a gradual change from relative

step size e2 when xk k is large to absolute step size e2
2 if x is

close to 0. Finally, as in all iterative processes we need a

safeguard against an infinite loop,

k� kmax:

Also e2 and kmax are chosen by the user.

The last two criteria come into effect e.g. if e1 is chosen

so small that effects of rounding errors have large influ-

ence. This will typically reveal itself in a poor accordance

between the actual gain in F and the gain predicted by the

linear model and will result in l grows fast, resulting in

small hlmk k and the process will be stopped by following

the stopping criterion.
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