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Abstract In this article, we propose a new stochastic

downscaling method: provided a numerical prediction of

wind at large scale, we aim to improve the approximation

at small scales thanks to a local stochastic model. We first

recall the framework of a Lagrangian stochastic model

borrowed from Pope. Then, we adapt it to our meteoro-

logical framework, both from the theoretical and numerical

viewpoints. Finally, we present some promising numerical

results corresponding to the simulation of wind over the

Mediterranean Sea.
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1 Introduction

Near-surface wind speeds are acknowledged as having

particular importance on society (e.g., the insurance

industry, coastal erosion, forest and infrastructure dam-

age, storm surges, and air–sea exchange). Estimating

near-surface wind speeds also has relevance for appli-

cations such as pollutant diffusion evaluation, wind

energy resource estimation and construction issues.

Surface wind speeds however exhibit variability at much

smaller spatial scales than that resolved by atmospheric

global circulation models and hence there is a need to

develop tools for downscaling methods to generate finer

scale near-surface wind climatologies. Two major

methods are used to generate fine scale wind: dynamical

downscaling and statistical downscaling. The dynamical

downscaling consists in resolving with a numerical

model the conservation equations of the physics over a

specific geographical region with spatial scales ranging

from few kilometers to tens of kilometers (Salameh

et al. 2007; Žagar et al. 2006). Statistical downscaling

of wind empirically estimates fine scale wind speed

(Pryor et al. 2006) or wind components (Salameh et al.

2008) by deriving statistical relationships between

observed small-scale (often station level) variables and

larger scale variables from atmospheric global circula-

tion models.

In this paper, we propose a new method for the simu-

lation of wind at small scales. Based on an existing

numerical weather prediction (NWP) model, we introduce

a system of stochastic differential equations (SDEs) as a

local model in order to implement a downscaling method:

given a coarse prediction provided by the NWP model, the

Stochastic Downscaling Method (SDM) is aimed to esti-

mate the wind distribution at small scales.
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The development of SDM is motivated by its capacity to

refine mean atmospheric winds, which are solved at a

rather coarse resolution (at best about 10 km horizontal

resolution and 50 m vertical resolution in the first 1,000 m

of the atmosphere) by NWP models, and estimate their

associated uncertainties.

The NWP model solves the equations for the atmo-

sphere (momentum and mass conservation, equation of

state, thermodynamics law, and water vapor continuity).

The evolution of the model circulation is computed by time

integration of those equations starting from an initial con-

dition and forced at its boundaries by atmospheric re-

analyses which are projections of the state of the atmo-

sphere as known from the finite set of imperfect, irregularly

distributed observations onto a regular grid. The NWP

model used in this study is the fifth generation Penn State-

National Center for Atmospheric Research MM5 model,

version 3.6 (Dudhia 1993).

Given the coarse prediction (provided here by MM5),

SDM consists in simulating numerous fluid particles in a

chosen domain of computation D; in order to refine the

numerical prediction over it. The associated Lagrangian

model introduces some randomness in order to fit the tur-

bulent behavior of the fluid particle with the turbulence

closure of the NWP model. We borrow and adapt models

first introduced by Pope (1994) that have been widely used

in the framework of multiphasic flows.

The article is organized as follows: in Sect. 2, we give a

general description of Pope models, recall some recent

mathematical studies related to these models, and set a

numerical framework that will be used in the sequel. In

Sect. 3, we give a description of the SDM algorithm. We

adapt the Lagrangian stochastic models to our specific

case: issues of turbulence closure and boundary conditions

are addressed. Finally, we end with an application to wind

refinement, for which we present some encouraging

numerical results in Sect. 4.

2 Lagrangian models and associated algorithm

2.1 General description

We now give a general description of Lagrangian sto-

chastic models for turbulent flows. For more details, the

reader is referred to Pope (1994, 2003) and the related

bibliography.

Consider an open set D of R3: We are interested in the

behavior of an incompressible fluid in D; with constant

mass density q. The case where q could possibly vary is

left to further studies (see e.g. Pope 1994). At any time

t [ 0 and position x in D; the fluid has a velocity U in R
3;

and a pressure P in R; both ruled by the Navier–Stokes

equations:

otU þ U � rð ÞU ¼ � 1

q
rP þ mMU; ð1aÞ

r � U ¼ 0; ð1bÞ
Boundary conditions; ð1cÞ
Initial data: ð1dÞ

To take into account the turbulent behavior of the fluid

when the Reynolds number is high (i.e. the viscosity m is

tiny), the physical fields are not only supposed to depend

on position x and time t, but they are also considered as

random variables. The fields can thus be written, following

the so-called Reynolds decomposition, as the sum of a

deterministic part and a x-dependent part, namely:

Uðt; x;xÞ ¼ hUiðt; xÞ þ uðt; x;xÞ; ð2Þ
Pðt; x;xÞ ¼ hPiðt; xÞ þ pðt; x;xÞ; ð3Þ

where x is a random state living in a set of possible reali-

zations X, equipped with a set of events F ; measured by a

probability P:

Reynolds averaging is described as a linear operator

applied to random fields, which is assumed to commute

with spatial and times derivatives. Applying the Reynolds

operator to the Navier Stokes equations (1) leads to the so-

called Reynolds Averaged Navier Stokes (RANS)

equations:

othUðiÞiðt; xÞ þ hUiðt; xÞ � rð ÞhUðiÞiðt; xÞ

¼ mMhUðiÞiðt; xÞ � 1

q
oxi
hPiðt; xÞ

�
X3

k¼1

oxk
huðiÞuðkÞiðt; xÞ; ð4aÞ

r � hUiðt; xÞ ¼ 0; ð4bÞ

where U(i) stands for the ith component of U for i = 1, 2, 3,

and hPi is solution of the following Poisson equation:

� 1

q
DxhPi ¼

X3

i;j¼1

oxj
hUðiÞioxi

hUðjÞi þ o2
xixj
huðiÞuðjÞi

� �
; ð5Þ

and where the matrix {hu(i)u(j)i}1 B i,j B 3, called the

Reynolds tensor, is defined as:

huðiÞuðjÞi ¼ hUðiÞUðjÞi � hUðiÞihUðjÞi; 81� i; j; � 3:

The system (4–5) is not closed. One needs to provide

additional parametric models for the Reynolds tensor,

based both on theory and experimental observations. As

examples, we mention the turbulent–viscosity models and

related Smagorinsky closures or k–e closures, or Reynolds–

stress models like Rotta’s model. The interested reader is
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referred to Mohammadi and Pironneau (1994), Pope (2003)

for further details on the closure of the RANS equations.

Starting from 1985, Pope proposes an alternative

approach to the RANS equations. His idea consists in

describing the fluid as an ensemble of Lagrangian particles,

and computing by a particle method the averaged fields

solution to the RANS equations. In the case of an incom-

pressible fluid, with constant density q, we assume that

there exists a probability density fE(t, x; V, h) that governs

the Eulerian dynamic. In that case, the Reynolds operator

writes:

hUiðt; xÞ ¼
Z

R
3�R

VfEðt; x; V ; hÞdVdh;

hUðiÞUðjÞiðt; xÞ ¼
Z

R
3�R

V ðiÞV ðjÞfEðt; x; V ; hÞdVdh:

Pope describes fE by modeling a Lagrangian fluid particle,

introducing some randomness in what becomes a stochastic

dynamic whose state variable is ðXt; U t; /tÞ: These three

stochastic processes respectively correspond to the

position, the velocity and, possibly, some other physical

scalar characteristics of the fluid particle at time t. The

fundamental idea of Pope is to construct processes whose

laws allow the reconstruction of the moments of the

physical quantities, up to a given order. To this aim, the

dynamic of the fluid particle is ruled by a system of

stochastic differential equations (SDEs) of the form:

dXt ¼ U tdt; ð6aÞ

dU t ¼ �
1

q
rxhPiðt;XtÞdt þ DUðt;Xt;U t;/tÞdt

þ BUðt;Xt;U t;/tÞdWt; ð6bÞ

d/t ¼ D/ðt;Xt;U t;/tÞdt þ B/ðt;Xt;U t;/tÞd eWt; ð6cÞ

where (Wt, t C 0) is a 3D Brownian motion and ð eWt; t� 0Þ
is a 1D Brownian motion independent of W (see e.g.

Øksendal (1995) for details on SDEs driven by Brownian

motion). The averaged pressure hPiðt; xÞ is closed by the

Poisson equation (5).

Now we precise the generic relation between the

Lagrangian and Eulerian quantities involved by the previ-

ous Lagrangian model (6) and the original Eulerian model

(4).

We assume that there exists a Lagrangian density fL(t; x,

V, h), such that, at every time t, the measure fL(t; x, V,

h)dx dV dh is the law of the random variables ðXt;U t;/tÞ
solution of (6).

In the case of an incompressible fluid with constant

density q, we must have, for any x in D;

Z

R
3�R

fLðt; x;V ; hÞdV dh ¼ q; ð7Þ

and the link between fE(t, x; V, h) and fL(t; x, V, h) is the

conditional relation (see e.g. Pope 1993):

fEðt; x; V ; hÞ ¼ fLðt; x;V ; hÞR
R

3�R fLðt; x;V; hÞdV dh
¼ 1

q
fLðt; x;V; hÞ:

ð8Þ

In other words, fE is the conditional density of ðXt;U t;/tÞ;
knowing that Xt = x. Equivalently, for any Lagrangian

field Q depending on the velocity and the scalar

characteristic,

hQðU;/Þiðt; xÞ ¼ E QðU t;/tÞ=Xt ¼ xð Þ;

where E denotes the mathematical expectation, related to

the underlying probability space ðX;F ;PÞ associated to

the Lagrangian model (6). The expected velocity is

evaluated conditionally to the position of the Lagrangian

particle. As a consequence, the coefficients of the

Lagrangian SDEs (6), DU ; BU ; B/ and D/; must be

designed such that the Lagrangian law (in particular the

first and second conditional momentum of the velocity)

is consistent with the RANS equations submitted to a

given closure. This methodology, referenced as pdf

method in papers, selects a family of equations (6) and

proposes a one-to-one construction between a Lagrangian

stochastic model and closed RANS equations. Here,

one-to-one correspondence means almost-equivalent

description of momentums up to a given closure order;

the SDEs coefficients are chosen according to the

closure, with the help of Kolmogorov theory and

experimental observations for calibration consideration

(see Pope 1993, 2003 for more details). The choice is

not unique. For instance, for the velocity equation (6b),

the selected family equations is the following Mean-

Reverting SDE

dUðiÞt ¼ �
1

q
oxðiÞ hPiðt;XtÞdt þ mo2

xðjÞ;xðjÞ hUðiÞiðt;XtÞdt

þ Gij UðjÞt � hUðjÞiðt;XtÞ
� �

dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0eðt;XtÞ

p
dW

ðiÞ
t ;

ð9Þ

for a specified model constant C0 and a relaxation tensor

Gij, and where e is the turbulent kinetic energy dissipation

rate. A straightforward computation shows that the first

order momentum hU(i)i of ((6a), (9)) solves exactly (4b).

For the SDM methodology, our particular choice is dis-

cussed in Sect. 3.1.
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2.2 Mathematical studies of stochastic Lagrangian

models

The study of SDEs such as (6) raises many strong mathe-

matical difficulties, as for the RANS equations in the

framework of turbulent flows.

A study of the well-posedness of a simplified Lagrangian

model can be found in Bossy et al. (2008). Though simple,

the model under study has a Langevin structure and the

spatial dependency in the coefficients of the velocity equa-

tion is a conditional expectation with respect to the position:

Xt ¼ X0 þ
Z t

0

Usds;

U t ¼ U0 þ
Z t

0

EðQðUsÞ=XsÞdsþ rWt;

8
>><

>>:
ð10Þ

for a given bounded and smooth function Q and a fixed

r[ 0. Equation (10) has a unique solution constructed as

the limit of a smoothed system, working with a smoothed

version of the conditional expectation such that

E QðU tÞ/dðXt � xÞð Þ
E /dðXt � xÞð Þ tends to EðQðU tÞ=Xt ¼ xÞ

¼ hQðUÞiðt; xÞ

as d tends to 0, where (/d(x), d[ 0) is any regular

approximation of the Dirac mass at the origin. The smoothed

system is approximated itself as the limit equation of a system

of weakly interacting particles ðXi;Np

t ;U i;Np

t ;Np 2 NÞ :

X
i;Np

t ¼ X
i;Np

0 þ
Z t

0

U i;Np
s ds; ð11aÞ

U i;Np

t ¼ U i;Np

0 þ
Z t

0

1
Np

PNp

j¼1 Q U j;Np
s

� �
/d X

i;Np
s � X

j;Np
s

� �

1
Np

PNp

j¼1 /d X
i;Np
s � X

j;Np
s

� � ds

þ rWi
t ; ð11bÞ

where ðWi
� ; i 2 NÞ is a family of independent 3D-Brownian

motions. Equation (11) can be viewed as a kind of spatial

discretization of Eq. (10) and the particle summations in

(11) are Monte Carlo approximations of the conditional

expectation in (10), excepted that here, a propagation of

chaos result (see Bossy et al. 2008) replaces the law of large

number that induces the Monte Carlo convergence and

1
Np

PNp

j¼1 Q U j;Np

t

� �
/d x� X

j;Np

t

� �

1
Np

PNp

j¼1 /d x� X
j;Np

t

� � ð12Þ

is a converging estimator of EðQðU tÞ=Xt ¼ xÞ; as N tends to

? and d tends to 0. We refer the interested reader to Bossy

(2005) for a review on convergence results and rate of con-

vergence results for mean field particles approximations.

For our downscaling method in a given bounded domain

D; we need to construct a Lagrangian model confined in D
and that admits a prescribed velocity at the boundary oD:
As an example, Bossy and Jabir (2008) show that a

Lagrangian model like (10) satisfies the no-permeability

condition at the boundary oD
E U t �noD=Xt¼ xð Þ¼ 0; for any ðt;xÞ 2 ½0;T��oD ð13Þ

if its dynamic is modified at the boundary as

Xt ¼ X0 þ
Z t

0

Usds;

U t ¼ U0 þ
Z t

0

bðUsÞdsþ rWt

�
X

0\s� t

2ðUs� � noDðXsÞÞnoDðXsÞ llfXs2oDg:

8
>>>>>>><

>>>>>>>:

ð14Þ

The vector noD above denotes outward normal at the

boundary. The term with jumps
P

0\s� t 2ðUs� � noDðXsÞÞ
noDðXsÞ llfXs2oDg corresponds to a symmetrization of the

normal velocity, when the particle reaches the boundary.

Showing that (14) satisfies (13) requires some a priori

existence result for the trace problem associated to the

probability density function of the particle. Such result is

obtained in Bossy and Jabir (2008) for some smooth drift

function b(u).

2.3 Numerical methodology

In this section, we present the generic numerical algorithm

that will be specifically implemented for SDM (see Sect. 3).

The objective is to discretize Eqs. (6), (7) and (16). To this

aim, according to the initial data, we drop Np fluid particles

in the domain D and mesh D into cells ðCi; i ¼ 1; . . .;NcÞ:
The approximated Eulerian quantities hQ(U,/)i (where

Q(U,/) stands for any Lagrangian field) are computed

thanks to the following average: for all x 2 D;

hQðU;/Þiðt; xÞ ’ 1

Np

XNp

k¼1

Q Uk;Np

t ;/k;Np

t

� �

�
G X

k;Np

t ; x
� �

1
Np

PNp

j¼1 G X
k;Np

t ;X
j;Np

t

� � ;

where G is a function that quantifies the contribution of the

particles to the Eulerian local information. For the Nearest

Grid Point method, G(�,x) is the indicator function lCix
ð�Þ

where ix is such that x 2 Cix and

hQðU;/Þiðt; xÞ ’
XNp

k¼1

Q Uk;Np

t ;/k;Np

t

� �

� lCix
ðXk;Np

t Þ
#fXj;Np

t 2 Cix ; j ¼ 1; . . .;Npg
:
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Note that this smoothing function G is an efficient

numerical choice for the function /d in the estimator (12).

The above notation Yk;Np ; for Y = X, U or /, stands for the

property Y of the particle k among the Np particles.

Adapted from the ideas of Pope (1985), the main steps

of our numerical algorithm are the following (from time

tn = n Dt to time tn?1 = tn ? Dt). Given the values of the

processes ðXðnÞ;UðnÞ;/ðnÞÞ at time tn, we:

1. Compute new values of velocity and physical quanti-

ties /. To this aim, we compute ðeUðnþ1Þ;/ðnþ1ÞÞ thanks

to Eq. (6c) and the following modified Eq. (6b)

dU t ¼ DUðt;Xt;U t;/tÞdt þ BUðt;Xt;U t;/tÞdWt; ð15Þ

which does not take the pressure gradient into account.

This will be done in the correction step for the velocities

(see item 4).

The simulation of such stochastic differential equations

inside D can be done thanks to an Euler scheme (e.g. Talay

1996). Since we are considering the long time behavior of a

potentially stiff problem, we have to implement a so-called

exponential scheme (based on a local linearization of the

drift and diffusion terms). We refer the interested reader to

Mora (2005) and references therein.

In the particular case of SDM, where the domain D is

bounded, a particular care must be taken for the boundary

conditions, namely when the particles reach the boundary

of D (see Sect. 3.2).

2. Move particles: compute eX ðnþ1Þ according to Eq. (6a).

3. Modify the positions from eX ðnþ1Þ to X(n?1), in order to

satisfy (7). Note that (7) implies that the law of the

particle position at any time must be uniform in the

bounded domain D: This step is not classical at all and

concerns the particle positions. The aim is to correct

the particle positions in the domain such that:

• Their probability density is uniform on D; which is

insured numerically by maintaining the same

number Npc = Np/Nc of particles in each cell;

• The ‘‘transport cost’’ is minimum.

This is a problem of discrete optimal transportation,

which is known to be nonlinear and numerically very dif-

ficult in dimension 3 (see Benamou and Brenier 2000;

Villani 2003; McCann 1995), whereas the 1D corres-

ponding problem is linear, and easy to handle from the

numerical viewpoint. In Chauvin et al. (2007), we also

studied another method for the discrete optimal transpor-

tation problem, based on the Auction Algorithm introduced

by Bertsekas (1991, 1992). One forthcoming goal would be

to plug the Auction Algorithm routines into SDM.

By then, the present implemented method is based on a

kill/build procedure. Namely, each cell is investigated

independently of the others, in order to point out the cells

that contain more (resp. less) than Npc particles. In each

supernumerary cell, we kill particles so that the resulting

number of particles in this cell is exactly Npc. Calling Nkilled

the total number of killed particles, we then drop Nkilled new

particles in the other (subnumerary) cells. Finally, all the

cells contain exactly Npc particles. This procedure is per-

formed so that the local Eulerian quantities are not modified.

4. Modify the velocities from eUðnþ1Þ to Uðnþ1Þ in order to

satisfy the divergence free constraint

rx � hUiðt; xÞ ¼ 0: ð16Þ

This correction seems a standard issue in computational fluid

dynamics (Guermond and Quartapelle 1997): the aim is to

obtain a divergence free velocity field. This could be done

thanks to the resolution of the following Poisson problem:

DP ¼ 1

Dt
r � h eU ðnþ1Þi: ð17Þ

For the SDM methodology, additional compatibility

constraint with the MM5 boundary values is added

insuring well-posedness of our Poisson problem. Note

that the problem above only concerns Eulerian unknowns,

and hence does not contribute significantly to the numerical

cost of the algorithm. Then we compute Uðnþ1Þ thanks to

Uðnþ1Þ ¼ eUðnþ1Þ � DtrP: ð18Þ

The Eulerian velocity field is then such that divhU(n?1)i = 0.

Beside PDF methods have been widely used in the

context of multiphasic turbulent flows, few analytical

works exist from our knowledge on the convergence of the

method. In Xu and Pope (1999), numerical experiments

show that the statistical error converges as Npc
-1/2, where we

recall that Npc denotes the number of particles per cell. For

the convergence rate analysis of stochastic particle meth-

ods, see Bossy (2005) and references therein.

3 Description of SDM

In this section, we adapt the generic Lagrangian fluid

particle model (6) to the framework of wind simulation at

small scales.

3.1 Turbulence closure

In the work of Dreeben and Pope (1997), the mean turbulent

frequency is determined after solving an equation on the

mean dissipation (see Eqs. (11) and (12), p. 2 in the quoted

reference). This would lead, in our generic equation (6), to

substitute / with the turbulent frequency x. This has been

done in Rousseau et al. (2007), but it is not well adapted to
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the physical configuration that we are facing, since the

involved time scales are far too tiny. Here, we proceed

differently, and only consider equations for the position and

velocity fields:

dXt ¼ U tdt; ð19aÞ

dU t ¼ �
1

q
rxhPiðt;XtÞdt

� 1

2
þ 3

4
C0

� �
hxiðt;XtÞ U t � hUiðt;XtÞð Þdt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0eðt;XtÞ

p
dWt; ð19bÞ

where e is the turbulent kinetic energy dissipation rate.

Compared to Eq. (9), the kinematic viscosity m is set to

zero, since the Reynolds number is very high.

Naturally, it remains to provide an equation for hxi,
which is defined in Dreeben and Pope (1997) as:

hxiðt; xÞ ¼ eðt; xÞ
kðt; xÞ: ð20Þ

We start with the definition of the turbulent kinetic energy

k, which can be calculated from the first and second

moments of the velocity:

kðt; xÞ ¼ 1

2

X3

j¼1

hUðjÞ2ðt; xÞi � hUðjÞðt; xÞi2: ð21Þ

A direct dissipation calculation, as suggested in Dreeben

and Pope (1997), requires that all scales experiencing

dissipation must be resolved. These scales include eddies at

the Kolmogorov microscale which are typically less than a

millimeter. The time increment Dt required to resolve

eddies on that scale is less than 10-3 seconds (e.g. Piper

and Lundquist 2004). This value for Dt is far too small in

the context of atmospheric wind refinement on typical

integration periods of few hours to few days. We thus use a

closure relation which is classically used in meteorology

(Cuxart et al. 2000), and assumes that turbulent eddies in

the inertial range are resolved. This closure links the

turbulent kinetic energy to the dissipation e:

�ðt; xÞ ¼ Ce

L
k3=2ðt; xÞ; ð22Þ

where Ce is to be chosen and L is a characteristic length

scale. For free-stream turbulence, using spectral argu-

ments, it can be shown that L = (Dx Dy Dz)1/3 (L is the

mesh grid size with Dx, Dy, and Dz the mesh sizes in the

x, y and z directions, respectively) (Schmidt and Schu-

mann 1989). Redelsperger and Sommeria (1981) use

Ce = 0.7 and Schmidt and Schumann (1989), Ce = 0.845.

In terms of a commonly used closure based on the

turbulent–viscosity model where m ¼ CkL
ffiffiffi
k
p

; we have

Ce/Ck = p2 (Schmidt and Schumann (1989)). The values

of Ck found in the literature vary but Krettenauer and

Schumann (1992) found a weak sensitivity of numerical

results to the values of Ck in the commonly used range.

Redelsperger and Sommeria (1981) use Ck = 0.067,

Schmidt and Schumann (1989), Ck = 0.086 and Deardorff

(1980), Ck = 0.1. These values are valid far from the

ground, but in the absence of stratification, Redelsperger

et al. (2001) and Drobinski et al. (2006) show that the

standard closure scheme, using the same constants as for

free-stream turbulence, matches the Monin–Obukhov

similarity laws (i.e. the wall law) providing that the

mixing length is taken as L = Az, where A = jCe
1/4Ck

-3/4 =

2.8 (with j = 0.4 is the Von Karman constant). This length

scale is thus taken much larger than the Prandtl mixing

length L = jz, which is physically explained by the

anisotropic nature of near-surface turbulence (Carlotti and

Drobinski 2004).

The parameter Ce, which we set to 0.7 in the following,

is the only degree of freedom of our model, and L = 2.8 z.

3.2 The MM5 boundary conditions

We denote by oD the boundary of D: To take into account

the (Eulerian) boundary conditions given by the NWP

model MM5, it is necessary to add some terms in

Eq. (19b). To lighten the notations, we rewrite it under the

form (6b) and then modify it by:

U t ¼ U0þ
Z t

0

DUdsþ
Z t

0

BUdWs

� 2
X

0� s� t

Us�llfXs 2 oDg þ
X

0� s� t

VMM5ðs;XsÞ llfXs 2 oDg;

ð23Þ

where VMM5(t, x) denotes the MM5 velocity field on oD:
The process U is no more a time continuous process, and

U t� denotes the left limit at time t. These two new terms,

involving sums indexed by the boundary hitting times of

the particle, lead to the following Eulerian property satisfied

by the Lagrangian velocity (see Bossy and Jabir 2008):

hUiðt; xÞ ¼ VMM5ðt; xÞ; x 2 oD: ð24Þ

The time-discretization of (23) is sketched between tn
and tn ? Dt as follows:

1. A prediction step is performed, computing

ð eX ðnþ1Þ; eUðnþ1ÞÞ as in the free-case (see the points 1

and 2 of Sect. 2.3) by a discretization of the stochastic

differential equation dU t ¼ DUdt þ BUdWt;
2. A correction step is needed if the predicted position

eX ðnþ1Þ is outside D: In such a case, we denote by xout

the point of oD which is the intersection of the

segment XðnÞ; eX ðnþ1Þ� 	
and oD: The velocity eUðnþ1Þ is

then updated by:
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eUðnþ1Þ
new ¼ VMM5ðtn; xoutÞ � eUðnþ1Þ: ð25Þ

With xout, we compute the hitting time and we integrate the

new velocity eUðnþ1Þ
new on the remaining time step to compute

eX ðnþ1Þ
new : If the position eX ðnþ1Þ

new is outside D or the velocity
eUðnþ1Þ

new is outcoming (its inner product with the outward

normal vector of D at xout is non-negative) we do not apply

the update (25). Instead, we kill the particle and reinject it

in a cell belonging to Cincom; where Cincom is the set of

boundary cells for which the MM5 velocity is incoming.

The choice of such a cell is determined by a random

sampling according to the following discrete probability

law. Its support is Cincom and the weight for each cell

Ck 2 Cincom is proportional to the (incoming) normal part of

the MM5 velocity associated to Ck.

4 Numerical experiments: application

to wind refinement in a realistic case

In this section, we compare simulations of stochastic and

deterministic downscaling methods to an instrumented

buoy. First, we detail the deterministic downscaling with

the NWP model MM5. This model is used both to provide

coarse resolution boundary data to SDM, and to run the

small-scale simulations for comparison. Next, we give

some criteria for the numerical convergence of SDM. We

end this section with a discussion on the results of the

performed numerical simulations.

4.1 Deterministic downscaling with MM5

The NWP model MM5 is run for three days between March

23 and 25 1998, over the area shown in Fig. 1, with three

embedded domains whose horizontal resolution is respec-

tively 27, 9 and 3 km. The initial and boundary conditions

are taken from reanalyses provided by the European Centre

for Medium Range Weather Forecast (ECMWF). An

instrumented buoy (ASIS) measuring wind speed and

direction at 7 m above the sea-surface, is located at 4.25�E/

43.0�N, as shown in the bottom right picture of Fig. 1.

Experiments done on the buoy’s performance showed its

capability of measuring momentum fluxes, wind profiles, and

wave directions of high quality, in open seas as well as under

severe oceanic and wind conditions (greater than 18 m s-1),

(Graber et al. 1999). A detailed description of the NWP model

and the meteorological data available for the NWP model

validation at this period can be found in Salameh et al. (2007).

4.2 Stochastic downscaling with SDM

We split the computational domain into Nx 9 Ny 9 Nz cells.

The initial and boundary conditions of SDM are provided

by the NWP model at the eight corners of the computational

domain. The boundary data are updated every hour.

The SDM time step is 1 second and is run over 24 h on

24 March 1998. A spin-up of a few iterations is necessary

for SDM to reach an equilibrium state, this spin-up is thus

not computationally expensive. In each cell, the Eulerian

(a)

(c)

(b)Fig. 1 MM5 coarse domain

(horizontal spatial resolution 27

km) limited by the external

dashed lines on figure (a). (b)

and (c) respectively represent

middle (9 km) and fine (3 km)

domains. Diamond on (c)

represents the location of the

buoy ASIS
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fields (mean wind components, variances, turbulent kinetic

energy) are evaluated thanks to an averaging over Npc

particles. Recall that for mean field particle approxima-

tions, we have a propagation of chaos result (see Sect. 2.2).

Nevertheless, the convergence speed of the first and second

moment estimators should behave (at least asymptotically)

as a Monte Carlo method (independent sampling). Thus,

we expect the 95% confidence interval for the mean wind

components to be driven by the local turbulent variance

�r2 ¼ hu2i; hv2i; hw2ið Þ in each cell, where u,v and w are the

random part of the velocity (see Eq. (2)). The error between

the numerical velocity hUiSDM and the reference solution

hUi in each cell can be quantified with the help of the law

of large numbers and the central limit theorem as:

P hUi � hUiSDM 2 � 2�rffiffiffiffiffiffiffi
Npc

p ;
2�rffiffiffiffiffiffiffi
Npc

p
" # !

� 95%:

In our experiments, the value of �r tends to stabilize for

Npc [ rsim 400; the maximum value of each component

of �r being smaller than 1.

In addition, let us recall that SDM requires no stability

(CFL) condition, and that it can be run over any domain of

any size (even a domain corresponding to one single cell of

a NWP model).

4.3 Discussion

We force SDM with boundary data provided by the low-

ermost NWP model cell of dimensions

9 km 9 9 km 9 24 m, on 24 March 1998. For the com-

putation, we take Nx = Ny = Nz = 3, such that the horizontal

resolution in SDM is 3 km, i.e. the smallest MM5 hori-

zontal resolution in Fig. 1. To obtain a confident interval,

we run SDM with Npc = 800.

We compare the zonal and meridional components

obtained for this SDM configuration (solid line), to the

components of the wind from the instrumented buoy (dashed

line) in Fig. 2. We also add the results from the NWP model

with resolution of 9 km (stars) and 3 km (crosses).

We first emphasize the ability to evaluate, inside SDM,

some statistics such as the standard deviation, as shown in

Fig. 2. SDM is thus a powerful tool that can improve the

realism of the results, by modeling the wind variability

(Mass et al. 2002). The variability shown in Fig. 2 is physi-

cally relevant, and validates the SDM model, in particular

the turbulent closure approach discussed in Sect. 3.1.

Moreover, this variability seems to be linked to the fluid

dynamics, and not to the magnitude of the wind components.

However, and not surprisingly, Fig. 2 shows that the

comparison between the deterministic (MM5 3 km) and

the SDM in this present version is premature and needs

further developments discussed in the next section.

5 Perspectives and future works

This paper describes a new method based on the

Lagrangian stochastic model by Pope and adapted to

meteorological applications, which allows the refinement

of wind field and gives access to the different statistical

moments of the wind components. This preliminary

development needs to be carried on in order to implement

blocking by the surface or by complex orography and

effect of vertical thermal stability as suggested by Das and

Durbin (2005).

The stochastic downscaling method could also be

implemented for other types of applications, such as

oceanographic problems, for which the involved phenom-

ena are smoother and possibly better fitted to Lagrangian

simulations. This will be the object of future works.

Fig. 2 Wind components (hUi, hVi) measured with the buoy (dashed
lines), modeled with MM5 with resolution 3 km (red stars) and

modeled with SDM guided by MM5 with resolution 9 km (solid
line)); every 30 min, we plot the SDM components with symmetric

error bars of two standard deviation long
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