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Abstract During the last two decades or so, studies on

the applications of the concepts of nonlinear dynamics and

chaos to hydrologic systems and processes have been on

the rise. Earlier studies on this topic focused mainly on the

investigation and prediction of chaos in rainfall and river

flow, and further advances were made during the sub-

sequent years through applications of the concepts to other

problems (e.g. data disaggregation, missing data estima-

tion, and reconstruction of system equations) and other

processes (e.g. rainfall-runoff and sediment transport). The

outcomes of these studies are certainly encouraging,

especially considering the exploratory stage of the concepts

in hydrologic sciences. This paper discusses some of the

latest developments on the applications of these concepts to

hydrologic systems and the challenges that lie ahead on the

way to further progress. As for their applications, studies in

the important areas of scaling, groundwater contamination,

parameter estimation and optimization, and catchment

classification are reviewed and the inroads made thus far

are reported. In regards to the challenges that lie ahead,

particular focus is given to improving our understanding of

these largely less-understood concepts and also finding

ways to integrate these concepts with the others. With the

recognition that none of the existing one-sided ‘extreme-

view’ modeling approaches is capable of solving the

hydrologic problems that we are faced with, the need for

finding a balanced ‘middle-ground’ approach that can

integrate different methods is stressed. To this end, the

viability of bringing together the stochastic concepts and

the deterministic concepts as a starting point is also

highlighted.

Keywords Hydrologic systems � Complexity �
Nonlinearity � Chaos � Scale � Model simplification

and integration � Catchment classification

1 Introduction

The inherent nonlinear nature of hydrologic systems and

the associated processes has been known for several dec-

ades now (e.g., Izzard 1966; Amorocho 1967; Amorocho

and Brandstetter 1971). However, much of early hydro-

logic research (especially during 1960s–1980s), largely

constrained by the lack of data and computational power,

resorted to linear (stochastic) approaches (e.g., Harms and

Campbell 1967; Klemes 1978; Salas and Smith 1981).

Although the linear approaches continue to be prevalent in

hydrology, advances in computational power and data

collection during the last twenty years or so have facilitated

proposal and application of nonlinear approaches as viable

alternatives. The nonlinear approaches include nonlinear

stochastic methods, artificial neural networks, data-based

mechanistic models, and deterministic chaos theory,

among others. The outcomes of applications of these

approaches for hydrologic modeling and prediction are

certainly encouraging, especially considering the fact that

we are still in the ‘exploratory stage’ in regards to such

approaches, as opposed to the much more established linear

stochastic approaches. For details on these nonlinear

approaches and their applications, the reader is referred to,

for example, Kavvas (2003) for nonlinear stochastic

methods, Govindaraju (2000) for artificial neural networks,

Young and Beven (1994) for data-based mechanistic
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models, and Sivakumar (2000) for deterministic chaos

theory.

Among the nonlinear approaches, deterministic chaos

theory, with its philosophy that complex and random-

looking behaviors could also be the result of even simple

nonlinear deterministic dynamics with sensitive depen-

dence on initial conditions (Lorenz 1963), seems to be ‘the

simplest’ yet also remains ‘the most controversial’ [see

Schertzer et al. (2002) and Sivakumar et al. (2002a) for a

discussion]. Amid this controversy, however, the theory

has also been finding increasing applications in hydrology

in recent times. Very early studies on chaos theory appli-

cations in hydrology essentially focused on the

investigation and prediction of chaos in rainfall, river flow,

temperature and lake volume data in a purely single-vari-

able data reconstruction sense (e.g., Rodriguez-Iturbe et al.

1989; Wilcox et al. 1991; Berndtsson et al. 1994; Jaya-

wardena and Lai 1994; Abarbanel and Lall 1996;

Koutsoyiannis and Pachakis 1996; Sangoyomi et al. 1996;

Puente and Obregon 1996; Porporato and Ridolfi 1997).

Subsequent studies attempted chaos theory applications on

other hydrologic problems, including scaling and data

disaggregation, missing data estimation, and reconstruction

of system equations (e.g., Sivakumar 2001a, b; Sivakumar

et al. 2001b; Elshorbagy et al. 2002a; Zhou et al. 2002),

and other processes, such as rainfall-runoff and sediment

transport (e.g., Sivakumar et al. 2001a; Sivakumar 2002;

Sivakumar and Jayawardena 2002). They also addressed

some of the important issues that had been, and continue to

be, perceived to significantly influence the outcomes of

chaos methods when applied to real hydrologic data,

including minimum data size, data noise, presence of zeros,

selection of optimal parameters, and multi-variable data

reconstruction (e.g., Wang and Gan 1998; Sivakumar et al.

1999a, b, 2002c; Jayawardena and Gurung 2000; Porporato

and Ridolfi 2001; Sivakumar 2001b; Elshorbagy et al.

2002b; Jayawardena et al. 2002; Phoon et al. 2002). Fur-

ther, they investigated the ‘superiority’ of chaos theory, if

any, over other theories, such as stochastic methods and

artificial neural networks, for prediction purposes (e.g.,

Jayawardena and Gurung 2000; Lambrakis et al. 2000; Lisi

and Villi 2001; Sivakumar et al. 2002b, c; Laio et al. 2003).

Extensive reviews of these studies are already available in

the literature (Sivakumar 2000, 2004a) and, therefore,

details are not reported herein.

The realization and recognition, in the aftermath of the

encouraging outcomes from most of the above studies, that

chaos theory could provide a new perspective and alter-

native avenues towards understanding the workings of

hydrologic systems and processes have been important

driving forces for its ever-increasing applications, despite

the continuing skepticisms (sometimes valid nevertheless)

being thrown away from some quarters of the hydrologic

community citing possible ‘blind’ applications of these

‘less-understood’ concepts without recognizing their

potential limitations for real hydrologic data (the result of

which could be ‘false claims’). Although this is indeed

heartening, we must also not lose sight of the fact that the

true potential of chaos theory in hydrology can only be

realized when it is attempted to solve the more challenging

problems we are faced with (e.g., hydrologic scaling and

model parameter estimation problems), rather than simply

chaos detection and prediction (for historical data, to be

more precise). Identification of these challenging problems

and evaluation of how chaos theory (either independently

or in combination with others in an integrated manner) can

be helpful towards solving them are crucial for true pro-

gress in hydrology. These issues are the motivation for the

present study.

To address these issues in an effective manner, it is

important foremost to be well aware of the latest devel-

opments in chaos theory applications in hydrology and the

significant inroads we have been able to make thus far. To

this end, a review of studies carried out in this area during

the last few years [especially since the reviews by

Sivakumar (2000, 2004a)] is first presented. With this

status quo, which already identifies some of the challenging

problems in hydrology and also hints at the utility and

appropriateness of chaos theory (e.g., Sivakumar 2004b),

potential scope and directions for further applications are

then highlighted. A strong case is finally made, from both

philosophical and scientific perspectives, for the urgent

need to formulate a ‘middle-ground approach’ towards a

more balanced and realistic representation of all the rele-

vant properties of hydrologic systems and processes (linear

or nonlinear, stochastic or deterministic), rather than

sticking to the ‘extreme views’ that unfortunately prevail in

our current research practice.

2 Latest developments on chaos in hydrologic systems

Since the reviews by Sivakumar (2000, 2004a), nonlinear

dynamic and chaos concepts have found their applications

not only continued along the directions of earlier studies

but also started in other areas of hydrology as well,

including scaling, groundwater contamination, parameter

optimization, and catchment classification. A brief review

of these studies is presented next.

2.1 Scale and scale-invariance

Hydrologic processes arise as a result of interactions

between climatic inputs and landscape characteristics that

occur over a wide range of space and time scales. Due to

the tremendous variabilities in climatic inputs (e.g. rainfall,
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temperature, wind velocity) and heterogeneities in land-

scape properties (e.g. basin area, soil type, land use, slope),

hydrologic processes may have high variability at all scales

and across scales. However, hydrologic systems and pro-

cesses have also been shown (e.g., Gupta and Waymire

1990; Blöschl and Sivapalan 1995; Rodriguez-Iturbe and

Rinaldo 1997; Gupta 2004) to exhibit scaling or scale-

invariance (i.e. properties of the system/process at different

scales are independent of the scale of observation), which

serves as an important basis for transformation of data from

one scale to another, among others. In this context,

Regonda et al. (2004) investigated the type of scaling

behavior (stochastic or chaotic) in the temporal dynamics

of river flow, employing the correlation dimension method

(Grassberger and Procaccia 1983). Analyzing daily, 5-day,

and 7-day flow data from each of three rivers in the United

States, they reported the presence of chaotic scaling

behavior in the flow dynamics of the Kentucky River

(Kentucky) and the Merced River (California), and sto-

chastic scaling behavior in the flow dynamics of the

Stillaguamish River (Washington state). They also

observed an increase in the dimensionality (or complexity)

of the flow dynamics with the scale of aggregation; in other

words, dynamics changing from a less complex (more

deterministic) behavior to a more complex (more stochas-

tic) behavior with aggregation in time. Similar results on

the effects of scale on hydrologic process complexity (i.e.

increase in complexity or change from determinism to

stochasticity with increasing time scale) were also

observed by a few other studies as well (e.g., Sivakumar

et al. 2004, 2006, 2007; Salas et al. 2005; Sivakumar and

Chen 2007), albeit in different contexts and employing

different methodologies to different systems and processes

(including rainfall, river flow and sediment load). There

may indeed be exceptions to this situation with no trend

possibly observed in the ‘scale versus complexity’ rela-

tionship [see Sivakumar et al. (2001b) for details], since

this relationship essentially depends on, for example,

rainfall characteristics (e.g. intensity, duration) and catch-

ment properties (e.g. size of basin, land use). While further

investigation is obviously needed for a more reliable

interpretation and conclusion on this relationship one way

or another, the presence of chaotic dynamics in flow and

rainfall scaling has important implications in hydrology,

since it has been a common practice to employ stochastic

(random) cascade approaches for scaling investigations and

for data transformation (e.g. disaggregation).

2.2 Groundwater contamination

As noted by Sivakumar (2004a), the field of subsurface

hydrology had largely eluded the attention of earlier chaos

studies [with the exception of the study by Faybishenko

(2002)]. To this end, especially with the experience gained

with the surface hydrologic problems and the encouraging

outcomes, Sivakumar et al. (2005) investigated the poten-

tial use of chaos theory to understand the dynamic nature of

solute transport process in subsurface formations. They

analyzed, using the correlation dimension method, time

series of solute particle transport in a heterogeneous aquifer

medium (which was simulated using an integrated transi-

tion probability/Markov chain model, groundwater flow

model, and particle transport model, for varying hydro-

stratigraphic conditions), with the western San Joaquin

Valley aquifer system in California as a reference system.

The results generally indicated the nonlinear deterministic

nature of solute transport dynamics (dominantly governed

by only a very few variables, on the order of three), even

though more complex behavior was found to be possible

under certain extreme hydrostratigraphic conditions. Later,

Hossain and Sivakumar (2006) studied the spatial patterns

of arsenic contamination in the shallow wells (\150 m) of

Bangladesh, employing the correlation dimension method.

Particular emphasis was given to the role of regional

geology (Pleistocene vs. Holocene) on the spatial dynamics

of arsenic contamination. The results, with correlation

dimensions ranging between 8 and 11 depending on the

region, suggested that the arsenic contamination dynamics

in space is a medium- to high-dimensional problem. These

results were further verified using logistic regression, with

an attempt to explore possible (physical) connections

between the correlation dimension values and the mathe-

matical modeling of risk of arsenic contamination (Hill

et al. 2008). Eleven variables were considered as indicators

of the aquifer’s geochemical regime with potential influ-

ence on arsenic contamination, and a total of 2,048 possible

combinations of these variables was included as candidate

logistic regression models to delineate the impact of the

number of variables on the prediction accuracy of the

model.

2.3 Parameter estimation and optimization

With the ever-increasing complexities of hydrologic mod-

els, which require more details about processes and more

parameters to be calibrated, parameter estimation and

optimization has become an extremely challenging problem

[see, for example, Beven (2002) for details]. Constructive

discussions and debates on this issue, especially on the

identification of the best optimization technique and on the

estimation of uncertainty in hydrologic models, are starting

to come to the fore (e.g., Beven and Young 2003; Gupta

et al. 2003; Beven 2006; Sivakumar 2008b). While these

are certainly positive signs to the long-term health of

hydrologic sciences, the basic problem lies essentially

with our tendency (and often driven by our technological
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and methodological advances) to develop more complex

models than that may actually be needed (Sivakumar

2008a). In an attempt towards simplification in our model-

ing practice, Sivakumar (2004b) proposed an approach that

incorporates and integrates the chaos concept with expert

advice and parameter optimization techniques. The sim-

plification was brought out essentially through the

determination (using the correlation dimension method) of

the ‘number’ of dominant variables governing the system

under study, with the use of only a limited amount of data

(often data corresponding to a single variable) representing

the system. Hossain et al. (2004), in their study of Bayesian

estimation of uncertainty in soil moisture simulation by a

land surface model (LSM), presented a simple and

improved sampling scheme (within a Monte Carlo simula-

tion framework) to the generalized likelihood uncertainty

estimation (GLUE) by explicitly recognizing the nonlinear

deterministic behavior between soil moisture and land sur-

face parameters in the stochastic modeling of the

parameters’ response surface. They approximated the

uncertainty in soil moisture simulation (i.e. model output)

through a Hermite polynomial chaos expansion of normal

random variables that represent the model’s parameter

(model input) uncertainty. The new scheme was able to

reduce the computational burden of random Monte Carlo

sampling for GLUE in the range of 10–70%, and it was also

found to be about 10% more efficient than the nearest-

neighborhood sampling method in predicting a sampled

parameter set’s degree of representativeness.

2.4 Catchment classification

The realization that hydrologic models are often developed

for specific situations and thus that their extensions and

generalizations to other situations are difficult has recently

motivated some researchers to call for a catchment clas-

sification framework (Woods 2002; Sivapalan et al. 2003;

McDonnell and Woods 2004). These researchers also

suggest, largely motivated by the proposal of the dominant

processes concept (Grayson and Blöschl 2000), that iden-

tification of dominant processes may help in the formation

of such a classification framework. With this idea,

Sivakumar (2004b) introduced a classification framework,

in which the extent of complexity or dimensionality

(determined using nonlinear tools, such as the correlation

dimension method) of a hydrologic ‘system’ was treated as

a representation of the (number of) dominant processes.

Following up on this, Sivakumar et al. (2007) explored the

utility of the phase space reconstruction concept (e.g.

Packard et al. 1980; Takens 1981), in which the ‘region of

attraction of trajectories’ in the phase space was used to

identify the data as exhibiting ‘simple’ or ‘intermediate’ or

‘complex’ behavior and, correspondingly, classify the

system as potentially low-, medium- or high-dimensional.

The utility of this reconstruction concept was first dem-

onstrated on two artificial time series possessing

significantly different characteristics and levels of com-

plexity [a purely random series with independent and

identically distributed numbers and a deterministic chaotic

series generated using the two-dimensional Henon map

(Henon 1976)], and then tested on a host of river-related

data (flow, suspended sediment concentration and sus-

pended sediment load) representing different geographic

regions, climatic conditions, basin sizes, processes and

scales. The ability of the phase space to reflect the river

basin characteristics and the associated mechanisms, such

as basin size, smoothing, and scaling, was also observed.

2.5 Others

There have also been several other studies that have, in one

way or another, looked into the applications of nonlinear

dynamic and chaos theories in hydrology. These include:

applications to yet other hydrologic processes, proposals of

new ways for hydrologic data analysis, and investigations

on the reliability of chaos methods to hydrologic data. A

very brief account of such studies is presented next, not

necessarily in any specific order.

Manzoni et al. (2004) studied the soil carbon and

nitrogen cycles from a dynamic system perspective,

wherein the system nonlinearities and feedbacks were

analyzed by considering the steady-state solution under

deterministic hydro-climatic conditions. Laio et al. (2004)

employed the deterministic versus stochastic (DVS)

method (e.g. Casdagli 1992) to daily river discharge from

three Italian rivers in their investigation of nonlinearity

in rainfall-runoff transformation. Dodov and Foufoula-

Georgiou (2005) studied the nonlinear dependencies of

rainfall and runoff and the effects of spatio-temporal dis-

tribution of rainfall on the dynamics of streamflow at flood

time scales. They proposed a framework based on

‘hydrologically-relevant’ rainfall-runoff phase space

reconstruction, but with specific acknowledgment that

rainfall-runoff is a stochastic spatially extended system

rather than a deterministic multivariate one. Khan et al.

(2005), Sivakumar (2005b), and Koutsoyiannis (2006)

investigated the reliability of the correlation dimension

method in the detection of chaos in hydrologic time series.

They addressed, among others, the effects of data size,

random and seasonal components, zeros, intermittency, and

high autocorrelations. Jin et al. (2005) studied the nonlinear

relationships between southern oscillation index (SOI) and

local precipitation and temperature (in Fukuoka, Japan), by

representing this joint hydro-climatic system using a non-

linear multivariate phase space reconstruction technique.

Regonda et al. (2005) presented a nonparametric approach
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based on local polynomial regression for ensemble forecast

of time series, and demonstrated its effectiveness on the

biweekly series of the Great Salt Lake volume, among

others. Nordstrom et al. (2005) proposed the construction

of a dynamic area fraction model (DAFM) that contains

coupled parameterizations for all the major components of

the hydrologic cycle involving liquid, solid and vapor

phases. Using this model, which shares some of the char-

acteristics of an Earth system model of intermediate

complexity, they investigated the nature of feedback pro-

cesses in regulating Earth’s climate as a highly nonlinear

coupled system. Still other studies of interest are those by

Phillips and Walls (2004), Tsonis and Georgakakos (2005),

She and Basketfield (2005), Gaume et al. (2006), Phillips

(2006), and Sivakumar (2007), among others.

3 Challenges ahead

It must be clear by now that we have made some sincere

efforts to explore the potential of nonlinear dynamic and

chaos concepts for modeling and prediction of hydrologic

systems and processes. The outcomes of these efforts are

certainly encouraging, considering that we are still in the

state of infancy in regards to these concepts when com-

pared to the much more mature and prevalent linear

stochastic concepts [this is not to say that we have achieved

the ‘full-fledged’ status with the stochastic concepts]. The

additional inroads we have made in recent years in the

areas of scaling, groundwater contamination, parameter

estimation and optimization, and catchment classification,

among others, are significant, albeit their preliminary nat-

ure, since these are arguably some of the most important

topics in hydrology at the current time.

With these positives, however, we must not forget the

challenges that lie ahead on our way to further progress.

Among these challenges, two are noteworthy: (1) improving

our understanding of these largely less-understood chaos

concepts for hydrologic applications; and (2) finding ways

to integrate these concepts with the others, either already

in existence or emerging in the future. The former is

important for avoiding ‘blind’ applications of the related

methods (simply because the methods exist and are there

to apply!) and ‘false’ claims (either in support of or

against their utility); and the latter is important for taking

advantage of the merits of the different approaches for

their ‘collective utility’ to solve hydrologic problems

rather than for their ‘individual brilliance’ as perceived.

The rest of this section presents some examples to the

potential limitations of the above studies and to the

challenges ahead.

The studies by, for example, Regonda et al. (2004) and

Salas et al. (2005) provide interesting insights into the

problem of scaling and effects of data aggregation. Their

message, in essence, is that complexity of the system

dynamics increases (often from a more deterministic nature

to a more stochastic nature) with aggregation in time scale.

Although this may indeed be the case in certain situations,

its generalization is often difficult to make, since the sys-

tem’s dynamic complexity depends on the climatic inputs

and the catchment characteristics. For example, the

catchment area (and, hence, the time of concentration, not

to mention the rainfall characteristics) plays a vital role in

defining the relationship between scale and dynamic

complexity. In fact, depending upon the catchment, the

dynamic complexity may increase with aggregation in time

up to a certain point (probably, somewhere close to the

concentration time) and then decrease with further aggre-

gation [see Sivakumar et al. (2001b) for some details, in a

rainfall disaggregation context].

The attempts by Sivakumar et al. (2005) and Hossain and

Sivakumar (2006) to search for possible nonlinear deter-

ministic dynamics in solute transport in a heterogeneous

aquifer and arsenic contamination in shallow wells are cer-

tainly interesting. However, these studies are, at best, crude

one-dimensional approximations to the complex three-

dimensional groundwater flow and transport phenomena.

They only consider the time or space (as the case may be),

but what is actually needed is a spatio-temporal perspective.

Moreover, although there is no ‘mathematical’ constraint,

the ‘philosophical’ merit behind the use of phase space

reconstruction concept in a spatial context (with its delay

parameter defined in space), as is done in Hossain and

Sivakumar (2006), remains an issue to ponder.

The proposal by Sivakumar (2004b) on the integration

of different concepts (and methods) to deal with the

workings of hydrologic systems, and more specifically to

simplify our modeling and parameter estimation practices,

is a notable move forward, since different concepts possess

different advantages and limitations. However, the utility

and effectiveness of this proposal are yet to be seen through

implementation. Further, speaking in a more general sense,

recognition of the advantages and limitations of each of the

concepts in itself is a challenging task, as such requires

adequate knowledge of all of the concepts in the first place.

This probably makes the idea of integration of different

concepts less appealing, certainly in the context of our

increasing emphasis on individual concepts in our research

[see Sivakumar (2005a) for details].

The proposal on the use of the phase space reconstruc-

tion approach for ‘system classification’ and also its

effective demonstration and testing on synthetic and river-

related data, as presented by Sivakumar et al. (2007), seem

to provide strong clues to the potential of such an approach

for formulation of a catchment classification framework.

What remains to be studied, however, is how to incorporate
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the catchment characteristics into this classification

framework and how to establish connections between data

(usually at the catchment scale) and the actual catchment

physical mechanisms (at all scales) for this classification

framework to be successful [see Wagener et al. (2007) for

further discussion on catchment classification framework,

especially in the context of hydrologic similarity]. More-

over, nonlinearity and chaos is not just about small changes

leading to large effects and complex-looking outputs

coming out of simple systems, but it is also about large

changes leading to small effects and simple-looking

outputs coming out of complex systems. Whether or not the

phase space reconstruction approach can also perform

equally well for this latter situation remains to be seen.

As Koutsoyiannis (2006) pointed out [see also Tsonis

et al. (1994) and Sivakumar (2001b)], the presence of

periods of zeros in a time series could result in an under-

estimation of the correlation dimension and (in the absence

of any other analysis) could potentially lead to the con-

clusion that chaos exists, when actually it does not. This

can indeed turn out to be a serious issue in chaos studies in

hydrology, since zero values are a common occurrence in

hydrologic time series (especially high-resolution rainfall).

The fact that zero values are intrinsic to the system

dynamics and thus must not be removed in any hydrologic

analysis [possible exception being disaggregation analysis

(Sivakumar et al. 2001b)] makes the problem only more

complicated. This does not, in any way, mean that the

correlation dimension method must not be employed to

hydrologic series, because dimension is simply a repre-

sentation of the variability of the time series values (zeros

included). What is required to realistically deal with this

problem, however, is an adequate definition of what con-

stitutes ‘periods’ (or a large number) of zeros; in other

words, what is the ‘threshold’ for the number (or percent-

age) of zeros in a time series to obtain a reliable estimation

of correlation dimension? This question is hard to answer,

because determination of the ‘sensitivity’ of correlation

dimension to the number of zeros is not straightforward,

even for artificially generated time series (let alone real

series). It is also important to recognize that this question is

not just limited to zeros but goes well beyond that, since it

is simply a problem caused by the ‘repetition’ of one or

more values and that such repetitions may occur in many

different ways depending upon the system (e.g. minimum

streamflow, average temperature, maximum/minimum

water level in a reservoir, water release from a reservoir,

daily suspended sediment load).

Global climate change, it is believed, will have threat-

ening consequences for our water resources during this

century, and there are already noticeable indications, with

an increase in abnormal events (e.g. floods and droughts)

around the world. Since global climate models (GCMs)

provide climate data only at much coarser spatial and

temporal scales than that are required for hydrologic pre-

dictions at regional and local levels, ‘downscaling’ of

GCM outputs is essential. The existing statistical and

dynamic downscaling techniques can indeed provide some

success [see, for example, Fowler et al. (2007) for an

extensive review of downscaling techniques], but the

assumption of linearity inherent in almost all of these

techniques is too simplistic and thus may greatly constrain

their effectiveness, since the climate systems and the

associated processes are essentially nonlinear, and possibly

chaotic (e.g., Lorenz 1963). In view of this, there is

increasing realization on the urgent need for formulation of

nonlinear downscaling approaches (with explicit consid-

eration given to the system’s chaotic properties), but

unfortunately nothing seems to have been done yet. This

downscaling problem is also a complex spatio-temporal

problem [and probably much more complex than ground-

water flow and contamination (and also the rainfall-runoff

problem), discussed above], and thus may necessitate sig-

nificant modifications to the single-variable, and even

multi-variable, phase space reconstruction approach that

has been employed in hydrologic and climatic studies thus

far. The study by Sivakumar et al. (2001b), proposing a

nonlinear dynamic disaggregation approach for rainfall,

may provide some useful clues to deal with this problem,

but that too will only be of limited use and in a purely

temporal sense. Although some efforts to pursue research

in this direction are currently underway (e.g., Sivakumar

2008c), there is certainly a long way to go.

Finally, the methods that have been employed by studies

thus far on chaos in hydrologic systems are essentially data

based, and thus their relevance to the actual physical

mechanisms and system dynamics may be questioned. For

example, an essential first step in any chaos method is the

reconstruction of the phase space, wherein the idea is that a

(nonlinear hydrologic) system is characterized by self-

interaction and that a time series of a single variable can

carry the information about the dynamics of the entire

multi-variable system. Although it is possible to provide

convincing explanation of the relevance of this idea to

some overall scenarios (e.g. input-output, rainfall-runoff),

explanation as to the relevance of the parameters to specific

system components is very difficult. This may be eluci-

dated through an example, as follows. There is sufficient

information in the history of runoff data about the rainfall

properties and the catchment characteristics over a period

of time, and thus a single-variable phase space recon-

struction (with runoff) should be able, at least theoretically,

to reflect the system’s dynamic changes. At the same time,

however, how the delay time in the embedding procedure

(e.g., Takens 1981) is related to any of the system com-

ponents and/or dynamics is hard to explain. The absence of
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consensus on the appropriate method for the selection of

optimum delay time (e.g., Holzfuss and Mayer-Kress 1986;

Frazer and Swinney 1986; Leibert and Schuster 1989; Kim

et al. 1999) makes this issue only more difficult to deal

with. This issue, and similar ones, must be resolved for any

hope towards establishing links between data and physics

and thus to truly reflect the advances that can be made with

nonlinear dynamic and chaos concepts. This situation,

however, is not just specific to chaos methods; it is much

more widespread, and is applicable to literally all time

series methods [see, for example, Kirchner (2006) for some

relevant details on models vs. measurements]; but that must

not be a solace in any case [see Sivakumar (2008a) for

some details].

4 Conclusion—striving for a middle ground

Every human being has his/her own perceptions about the

workings of Nature, which, to a great extent, are influenced

by his/her societal, cultural, economic and environmental

backgrounds, among others. These perceptions, I believe,

are generally the driving force for choosing his/her field of

study and research and also for identifying the methods for

applications. Continuation of this (trend), however, is

becoming increasingly difficult these days with our soci-

ety’s lifestyles and pressures, largely driven by the

economy. One thing seems to be emerging though: people

are becoming ‘specialized’ and ‘specialists.’

We, researchers in hydrology, are also starting to put

more emphasis on applications of specific concepts and

methods [including this article, I might add!] rather than on

addressing the most challenging hydrologic problems

affecting us all, if literature is any indication [see, for

example, Sivakumar (2005a) for details]. We are also

increasingly realizing that none of the currently available

tools (linear or nonlinear, stochastic or deterministic) by

itself is adequate for solving our hydrologic problems to

our satisfaction; for example, no model (how sophisticated

it may be) has been shown to reliably capture the extreme

hydrologic events at a given location, and extensions and

generalizations of a model (developed for some situations)

to other situations are often difficult. The following is only

a small sample of the numerous questions that need to be

asked about our existing research approaches and methods

to tackle the challenges in hydrology: (1) How are we

going to incorporate the nonlinear deterministic compo-

nents that are inherent in hydrologic systems and processes

into our linear (and nonlinear) stochastic approaches? (2)

How are we going to address the property of sensitive

dependence of hydrologic system dynamics on the initial

conditions, when the initial conditions themselves cannot

be known? (3) How are we going to explain the ‘random’

and unpredictable system behavior using our (nonlinear)

deterministic approaches? (4) How are we going to esti-

mate the uncertainty in the parameters that serve as

important inputs to our complex models and, even worse,

how are we going to define ‘uncertainty’ in the first place

[see also Sivakumar (2008b) for some details]? (5) How

are we going to establish the ‘connections’ between our

‘data-based’ approaches and the ‘process-based’ approa-

ches, especially when there are ‘disconnections’ (either

intentional or unintentional) in our research approaches?

These are difficult questions to answer, and the only

way, in my opinion, to do that is to find some ‘common

grounds’ in our approaches to research. This does not mean

that one approach has to ‘give up’ to make way for another,

but this certainly requires some kind of ‘compromise’ and

‘sacrifice’ for the betterment of hydrologic research. To

this end, bringing together the different approaches and

concepts could be a good starting point, as they could

supplement and complement one another (and also could

be used in an integrated manner), for reliably representing

all the relevant properties of hydrologic systems and pro-

cesses (order or disorder, linear or nonlinear, stochastic or

deterministic). This, however, is an extremely challenging

task, especially with our unyielding fascination for specific

concepts and methods for their ‘individual brilliance’ that

reflects, more often than not, only our one-sided ‘extreme’

views. What is urgently needed, therefore, are sincere

efforts to explore the ‘collective utility’ of different con-

cepts for studying hydrologic systems. This warrants, as

experience suggests, a change in our research paradigm and

attitude [see, for example, Gupta et al. (2000) for some

details]; that is, willingness to recognize the potential of

different concepts and openness to accept the outcomes.

Discussions and debates are obviously essential to this

change, and constructive criticisms and useful inputs, from

all sides, would certainly help towards defining and

demarcating the travel path for this.

A general statement on the need for a ‘middle-ground’

approach is an easy thing to make, but the real challenge

lies in identifying specific hydrologic problems and

appropriate concepts/methods that could, in combination,

yield the desired effectiveness and efficiency. It is pre-

mature, at this stage, to pinpoint these areas, mainly

because of our inadequate knowledge of all the concepts

[see Sivakumar (2005a) for some details] and, to some

extent, of the hydrologic problems themselves [Vijay

Gupta, personal communication]. However, the situation is

not that bleak, and there are already some encouraging

signs to these areas. For example, the study by Sivakumar

et al. (2004) suggests that nonlinear deterministic approa-

ches generally provide better results for streamflow

disaggregation over finer resolutions than over coarser

ones, while parametric and nonparametric stochastic
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approaches have been reported to provide very good results

over coarser resolutions (e.g. Lin 1990; Tarboton et al.

1998). With these observations, it might be worthwhile to

couple, for example, the nonlinear deterministic approach

and the linear stochastic approach for streamflow disag-

gregation over a much wider range of scales (e.g. between

daily and annual) than the range of scales studied thus far

with these approaches independently [see Sivakumar et al.

(2004) for some details on the similarities and differences

between these approaches]. Such an approach could help

towards a better view of the streamflow disaggregation

problem, and also provide new avenues to the study of

scale problems in hydrology at large. At the end, a ‘middle-

ground’ approach that can yet capture the ‘extremes’ would

certainly be a new chapter in hydrology!
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fication of chaos in rainfall disaggregation: application to a 5-

minute point series. J Hydrol 328(1–2):56–64

Govindaraju RS (2000) Artificial neural networks in hydrology. II:

Hydrological applications. ASCE J Hydrol Eng 5:124–137

Grassberger P, Procaccia I (1983) Measuring the strangeness of

strange attractors. Physica D 9:189–208
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