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Abstract Point process theory plays a fundamental role

in the analysis and modelling of spatial forest patterns. For

instance, the Ripley’s K function and its density with

respect to the area, i.e. the pair correlation function, have

been extensively used to analyse and characterise station-

ary forest configurations. However, the stationarity

condition is not often met in practice when analysing real

data. Thus, the development and application of new sta-

tistics to measure the degree of inhomogeneity suggests the

use of inhomogeneous statistics to describe forest stands. In

this paper, we restrict our attention to the inhomogeneous

pair correlation function in the context of replicated spatial

data. We then analyse the spatial configuration of pure and

mixed conifer stands in a case study in Central Catalonia,

North-East of Spain. Our results suggest that whilst

P. sylvestris tend to be aggregated for short inter-tree dis-

tances, P. nigra and P. halepensis keep a minimum inter-

event distance between trees. Regarding the mixed stands,

trees of distinct species tend to be segregated from each

other. Tentative explanations for these results are related

with site properties, competition effects, shade tolerance

and silviculture practices applied in this forest region.

Keywords Forest structure �
Inhomogeneous pair correlation function �
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1 Introduction

Forests are dynamic biological systems that are continu-

ously changing. Typically, forest management is based on

information about current and future resource conditions.

Whilst forest inventories provide statistical information

about current resource conditions such as timber volume

and forest composition, it is clearly necessary to use pre-

dictive modelling schemes in order to update inventory

information, and hence understand, forest dynamics over

time periods spanning several decades (Peng 2000). To do

so, yield and growth models have been used extensively to

project current forest conditions into future yields. The use

of forest modelling has also proved to be an invaluable

tool in the understanding of complex ecological forest

dynamics.

In spite of the large number of growth-yield forest

models developed during the last decades (see, for

instance, Stage 1973; Wykoff et al. 1982; Teck et al. 1996;

Monserud and Sterba 1996; Sterba and Monserud 1997;

Palahı́ et al. 2003) few models have considered explicit

spatial information in their basic formulation (Ek and

Monserud 1974; Pacala et al. 1993; Pukkala et al. 1998).

Distance-dependent tree-level models (i.e. trees are the

basic unit of analysis) not only improve the predictive

power of these formulations and permit to analyse spatially
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explicit silvicultural problems such as plantation and

thinning strategies, but also allow the study of complex

forest dynamics (Miina et al. 1991; Pukkala et al. 1998;

Moustakas and Hristopulos 2007; Renshaw et al. 2008).

These models are also necessary to generate spatially

explicit forest patterns (realistic synthetic data), to simulate

and study realistic silvicultural operations such as thinning

and regeneration strategies, and to compare inventory

designs.

Typically, distance-dependent tree-level models require

tree coordinates as well as individual qualitative and

quantitative tree variables such as tree species, and tree

height and trunk diameter, respectively, in order to simu-

late forest growth. As such, a ‘‘natural’’ way to describe

and analyse forest dynamics is through the development of

spatial (marked) point processes. A realisation of a spatial

marked point process consists of a set of points xi with an

associated mark m(xi) in a bounded region A (Stoyan et al.

1995).

A first step before a distance-dependent forest model is

confronted against real forest data is to obtain summary

statistics to understand the underlying forest spatial con-

figuration. Knowing the spatially explicit forest structure is

clearly necessary if we are to define a realistic forest pre-

dictive scheme based on distance-dependent competition

indices. A popular method to analyse and characterise

homogeneous (i.e. stationary and/or isotropic) spatial forest

patterns is the second order reduced moment measure, or

also called the Ripley’s K function (Ripley 1976). Heu-

ristically, this function defines the expected number of

further points within a ball b(0,r) centred at an arbitrary

point 0 with radius r, providing information about the

spatial point structure. This function has been extensively

used to analyse forest spatial patterns (Ripley 1977;

Pélissier 1998; Chen and Bradshaw 1999; Youngblood

et al. 2004; Aldrich et al. 2003; Camarero et al. 2000), the

spatial structure of forest products (Nanos et al. 2001) and

the distribution and severity of infected trees (Shaw et al.

2005).

The use of the Ripley’s K function as defined by Ripley

(1976), and also presented by popular ecological text books

such as that of Fortin and Dale (2005), is restricted to

stationary forest patterns. However, real forest configura-

tions are seldom stationary. Soil fertility, the presence of a

river or merely environmental heterogeneity can promote

inhomogeneous forest structures. To analyse inhomoge-

neous point patterns based on non-parametric summaries,

Baddeley et al. (2000) formulate an inhomogeneous

counterpart version of the Ripley’s K function. However,

this method has not been widely used to analyse forest

patterns, probably due to the difficulty of applying this

inhomogeneous K function. Also other statistical tech-

niques have recently been considered to describe

inhomogeneous forest patterns. Explicit parametric point

process models such as inhomogeneous Poisson and Gibbs

process, and Cox processes have been applied to analyse

inhomogeneous forest configurations (see Leps and

Kindlman 1987; Stoyan and Stoyan 1998; Møller et al.

1998). However, two weak points in this context are the

following: (a) extension of inhomogeneous characteristics

to replicated spatial point patterns, and (b) testing for

inhomogeneity in spatial patterns. To the best of the

authors’ knowledge, no research in these two mentioned

points has been published so far. The spatial heterogeneity

has been dealt in several recent papers. For example, under

the context of increasingly enriched spatiotemporal data, Li

et al. (2007) suggest an information–fusion method to

identify patterns of spatial heterogeneity. Onof et al.

(2000) propose using inhomogeneous Poisson-cluster pro-

cesses to model rainfall data.

We thus focus in this paper on extending inhomoge-

neous characteristics to replicated data, and testing for

inhomogeneity. We illustrate the use of the inhomogeneous

replicated K statistics for pure and mixed stands in a case

study in the Pyrenees North-East of Spain. In particular, we

restrict our attention to the Ripley’s K density, i.e. the pair

correlation function (see Stoyan and Stoyan 1994). Thus,

we illustrate the inhomogeneous pair correlation function

(also defined by Baddeley et al. 2000) and present an edge-

corrected estimator for the inhomogeneous partial pair

correlation function for this case study. To justify the use

of inhomogeneous statistics, we develop a simple statistic

to measure the degree of inhomogeneity based on the dif-

ference between the edge-corrected estimator of the

intensity function and the estimator of the intensity, under

stationarity. In addition, given that this real forest data

consists of several point patterns involving plots with one

or two species, we analyse the resulting inhomogeneous

statistics for a given region A as replicates of an underlying

process. We thus briefly discuss the applicability of overall

estimates for the Ripley’s K function (see also, Diggle

2003).

The main aim of the present paper is to illustrate inho-

mogeneous variability measures with real forest patterns

and discuss the applicability of overall estimates of such

statistics for replicated forest data. To do so, we present the

main inhomogeneous variability statistics including the

inhomogeneous Ripley’s K function, the inhomogeneous

pair correlation and the inhomogeneous partial pair corre-

lation functions, introduce a new statistic to measure the

degree of inhomogeneity, and discuss and apply overall

estimates for replicated forest data. Section 2 presents a

brief theoretical setup of point process theory and its

relation with forest statistics while introducing the main

inhomogeneity measures. In Sect. 3, point processes’ sta-

tistics for replicated data are presented, and a measure to
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characterise spatial forest inhomogeneity is developed in

Sect. 4. Finally, Sect. 5 presents the statistical analysis of

the case study using edge-corrected inhomogeneous esti-

mators. The paper ends with some final conclusions.

2 Forest spatial variability: second order point process

characteristics

Forest science has applied numerous methods for the sta-

tistical analysis of forest inventories (Avery and Burkhart

1983; Husch et al. 2002; West 2003). A considerable part

of them belongs to spatial statistics, where the statistical

analysis of point processes has played a central role

(Stoyan and Penttinen 2000). Loosely speaking a spatial

point process is a stochastic mechanism which generates a

countable set of events xi in a bounded region A (see, for

instance, Diggle 2003). Clearly, any sequence of events,

which can be seen as points scattered on a region of R
d;

can be explained by point process theory. Within such

potential applications, the study of point occurrences in R
2;

and in particular in forestry applications, has dominated

point process theory (Stoyan and Penttinen 2000).

A point process U on R
2 is characterised by its proba-

bility function P(U(A) = N), which is the probability of

finding N 2 N points in a given region A � R
2; and its

corresponding first and second order characteristics. The

first order moment measure, also called the intensity

measure K(A), is the mean number of points contained in a

given bounded region A. This measure is an important

element in forest statistics, giving the mean number of trees

in a forest region A. This intensity measure has a density

with respect to (w.r.t.) the Lebesgue measure, the so-called

intensity function k(x), x 2 R
2; where KðAÞ ¼

R
A kðxÞdx

(see, for instance, Stoyan et al. 1995). Second order char-

acteristics describe the spatial structure of point processes,

and are based on the analysis of pairs of points. Although

several second order characteristics have been developed

based on the second order moment measures to describe

point patterns (see, for instance, Stoyan et al. 1995), only

the Ripley’s K function and its density w.r.t. the area have

been widely used to analyse forest patterns (Stoyan and

Penttinen 2000).

A point process U = {xn} is stationary if the translated

process Ux = {xn + x} has the same distribution for all

points x 2 R
2: Whilst it is isotropic if the distribution is

invariant with respect to rotation about the origin. Both

features can be summarised in the idea that the spatial

properties of the point process under analysis do not

depend on the spatial location. For an homogeneous (sta-

tionary) point process, the intensity function reduces to a

constant, the intensity k. A standard estimator of the

intensity is k̂ ¼ N=jAj; where N denotes the number of

trees contained in a forest region A, and |A| is the area of

this region.

A popular method to analyse spatial point patterns is

based on the Ripley’s K(r) function (Ripley 1976) defined

as the mean number of further points within a ball of radius

r centred at an arbitrary point. The K-function can be also

expressed in terms of the so-called pair correlation function

g(�) (Stoyan and Stoyan 1994)

KðrÞ ¼ 2p
Zr

0

gðvÞvdv: ð1Þ

Broadly speaking, this pair correlation function indicates

inhibition when g(r) \ 1, g(r) = 1 denotes the Poisson

case (i.e. a completely random point process) with no

interaction between points, whilst g(r) [ 1 implies point

clustering. This function has been applied to a wide range

of forest studies including the spatial analysis of even-aged

forests (Penttinen et al. 1992; Gavrikov and Stoyan 1995),

tropical forests (Pélissier 1998), tree interaction of

unmanaged forests (Leemans 1991; Szwagrzyk and

Czerwczak 1993; Moeur 1993) and the development of a

self-thinning approach in even-aged tree populations

(Gavrikov 1995). In practice, edge-corrected estimators for

both the K-function and the pair correlation function are

generally used (Ripley 1976; Diggle 2003).

When considering more than one species in forest

stands, one can pose the question as to at what scale the

tree species i segregates/aggregates from events of species

j. We can answer this question by using the bivariate

Ripley’s K function, defined as

kjKijðrÞ ¼ E
X

xi2A\Ui;xj2A\Uj

Ujðbðxi; rÞjxi 2 UiÞ
kijAj

2

4

3

5; ð2Þ

where Ui;Uj � R
2; are two distinct stationary point pro-

cesses with intensity functions ki and kj, respectively, and

kjKij(r) is, heuristically, the expected number of points of

Uj within a ball b(xi,r) centred at an arbitrary point xi [ Ui

with radius r. Note that by symmetry Kij = Kji. The

bivariate Kij(r) function has been widely used to analyse

forest spatial patterns of (for instance): (a) young and adult

trees in a southern Indian tropical forest (Pélissier 1998);

(b) living and dead trees of three species in a mixed forest

at Lake Duparquet (Quebec) (Park et al. 2005); and (c)

young and adult trees, and between Silver fir (Abies alba

Mill) and Norway Spruce (Picea abies (L.) Karst) in a case

study in the Upper Susa Valley in Piedmont (Italy) (Motta

and Edouard 2005).

Finally, we can also obtain a bivariate counterpart ver-

sion of the pair correlation function, usually called the

partial pair correlation function (see Stoyan and Stoyan

1994), also applied in numerous forest analysis (see, for
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instance, Penttinen et al. 1992; Gavrikov and Stoyan

1995). Estimators for expression (2) can be found in Stoyan

and Stoyan (1994).

2.1 Inhomogeneous point patterns

Real forest patterns are seldom homogeneous. Environ-

mental heterogeneity, soil fertility and geographical

configurations such as the mountain slope can promote

inhomogeneous forest structures. To analyse inhomoge-

neous point patterns based on non-parametric summaries,

Baddeley et al. (2000) formulate an inhomogeneous

counterpart version of the Ripley’s K function

KinhðrÞ ¼ E
X6¼

xi;xi2A\U

1ðxi 2 A; kxi � xjk� rÞ
kðxiÞkðxjÞjAj

" #

; ð3Þ

where k(xi) is the intensity function at the spatial position

xi 2R2 of a point process U � R
2 on a bounded window

A � R
2: An edge-corrected estimator of this function can

be defined via

bK inhðrÞ ¼
1

jAj
X6¼

xi;xj2A\U

1ðkxi � xjk� rÞ
bkðxiÞbkðxjÞeðxi; kxi � xjkÞ

; ð4Þ

where eðxi; kxi � xjkÞ is the Ripley’s factor to correct for

edge-effects, and bkðxiÞ is an estimator of the intensity

function. A kernel-based edge-corrected estimator for the

intensity function (see Silverman 1986), and posteriorly

modified by Baddeley et al. (2000) to avoid biased values

of bK inh; is given by

k̂ðxÞ ¼
X

xi2U\Anfxg
jbðx� xiÞ=CAðxiÞ; ð5Þ

where

CAðxiÞ ¼
Z

A

jbðx� xiÞdx;

for any x 2 R
2; and jb(z) a non-negative and symmetric

kernel function with bandwidth b, which has a dramatic

impact on the resulting intensity surface. If b is small then

the intensity surface will be concentrated around the

observed events, whilst if it is large then this intensity will

be close to constant. Here we consider the well-known

Epanechnikov kernel, already used to analyse forest

patterns (see Penttinen et al. 1992; Baddeley et al. 2000),

or to be more precise the product of two such kernels,

jbðx� xiÞ ¼ jbðkxi � xkÞjbðkyi � ykÞ; ð6Þ

for x = (x,y) and xi = (xi,yi), where

jbðjajÞ ¼ ð3=4bÞð1� ðjaj=bÞ2Þ1ðjaj\bÞ;

and 1(�) denotes the indicator function.

Baddeley et al. (2000) also suggest an estimator for the

inhomogeneous pair correlation function

ĝinhðrÞ ¼
1

2prjAj
X6¼

xi;xj2U\A

jbðr � kxi � xjkÞ
k̂ðxiÞk̂ðxjÞeðxi; kxi � xjkÞ

; ð7Þ

which can be easily extended to an edge-corrected

estimator for the partial (i.e. bivariate) inhomogeneous

pair correlation function

ĝ
ðijÞ
inhðrÞ ¼

1

2prjAj
X

xi2Ui\A;xj2Uj\A

jbðr � kxi � xjkÞ
k̂iðxiÞk̂jðxjÞeðxi; kxi � xjkÞ

;

ð8Þ

where Ui;Uj 2R2 are two distinct inhomogeneous point

processes.

3 Analysing forest patterns from replicated data

Let us consider that the forest data consists of t (replicated)

point patterns, each observed on a bounded region A. Now

the resulting pair correlation functions for these t plots

form a sample from the theoretical overall pair correlation

function, from which an overall estimate can be obtained.

If the patterns are considered replicates of an underlying

process, the corresponding estimates of the pair correlation

function are identically distributed for a given distance r,

being the average of these functions a reasonable overall

estimator. Diggle (2003) considers this simple approxi-

mation to obtain overall estimates for the Ripley’s K

function. Thus for the random sample of K̂ð�Þ functions

fK̂ð1ÞðrÞ; . . .; K̂
ðtÞðrÞg; an overall (or pooled) estimator for

these t samples can be defined as (Diggle 2003)

K̂
pðrÞ ¼

Xt

i¼1

NiK̂
ðiÞðrÞ=

Xt

i¼1

Ni:

This estimator is based on the heuristic idea that kK(r) is

the expected number of further points within a ball b(0, r)

centred at an arbitrary point 0 with radius r. Thus

kK(r) = E[r], i.e. K(r) = E[r]/k, from which this K

function can be estimated by k̂ ¼
P

Ni=ðrjAjÞ; and Ê½r� ¼P
NiK̂

ðiÞðrÞ=ðrjAjÞ separately. The resulting estimator for

the overall K is a weighted average K function which does

not depend on the underlying intensity of points.

Unfortunately, this weighted average estimator for the

overall K is not so easily obtained for overall estimators for

the inhomogeneous K function. In fact, the inhomogeneous

K function not only depends on the number of points

contained in each plot, but also on the spatial structure of

the underling intensity function. Assuming a common

intensity surface for each replicated pattern, a very rough

approximation of this estimator can be obtained by simple
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averaging over the random sample of inhomogeneous K

functions fK̂ð1ÞinhðrÞ; . . .; K̂
ðtÞ
inhðrÞg: Thus this estimator can be

defined as

K̂
p

inhðrÞ ¼
Xt

i¼1

K̂
ðiÞ
inhðrÞ=t:

The same problem applies to the inhomogeneous pair

correlation function (7) and inhomogeneous partial (i.e.

bivariate) pair correlation function (8), for which rough

overall estimators can be defined via

ĝp
inhðrÞ ¼

Xt

i¼1

ĝ
ðiÞ
inhðrÞ=t; ð9Þ

and

ĝ
ðij; pÞ
inh ðrÞ ¼

Xt

u¼1

ĝ
ðij; uÞ
inh ðrÞ=t; ð10Þ

respectively. Once one of these rough overall estimators

are obtained, we need to define their precision, which is a

property of their sampling distribution. Diggle (2003)

suggests the use of a bootstrap method (Efron and Tibsh-

irani 1993) to obtain the sample variance of the overall

estimate of K. Here we merely define the (empirical)

standard error of this estimator based on these t plots to

provide a measure of variability.

4 Testing for spatial forest inhomogeneity

The use of non-stationary point process techniques has to

be motivated by the presence of non-homogeneous point

patterns. Calduch (2004) computes the degree of non-sta-

tionarity of point patterns by obtaining the sum of the

intersection areas of the estimated Ripley’s K function and

the inhomogeneous counterpart version of this function (4),

applied to the same point pattern via

Zr

0

kK̂ðvÞ � K̂ inhðvÞkdv;

where v is the range of possible distances. Thus for

stationary point patterns this integral should be close to

zero, whilst values far from zero denote non-stationarity in

the point pattern. If we compare these two functions, we

notice that for a given point pattern contained in a bounded

region A, the only difference between them is the nature of

the intensity function. Under stationarity, this intensity

function is constant and equals k (the intensity of the point

process), whilst under the inhomogeneous version the point

intensity depends on the spatial location, i.e. k(x). This

suggests that a tentative measure of inhomogeneity for

point patterns can be simply computed by comparing the

intensity function k(x) and the point intensity k
(i.e. assuming stationarity in the point pattern)

S ¼
Z

A

kk� kðxÞkdx: ð11Þ

Thus if S = 0, then the point pattern is stationary, whilst if

S [ 0, the point pattern can be considered non-stationary.

Note that in order to compute S for a given point process U
contained in a bounded region A with intensity function

k(x), we first need to obtain the point intensity of this point

process under the hypothesis of stationarity. This point

intensity is that satisfying
R

A kdx ¼
R

A kðxÞdx: To clarify

this, just take into account this simple example. It is trivial

to see that, for instance, the point process U1 located on the

unit square with intensity function k(x,y) = 70 - 20x -

20y is more ‘‘inhomogeneous’’ than the point process U2

with intensity function k(x,y) = 60 - 10x - 10y;

however, under both cases we compute S assuming k = 50,

since
R 1

0

R 1

0
ð70� 20x� 20yÞdxdy ¼

R 1

0

R 1

0
ð60� 10x�

10yÞdx dy ¼ 50:

In practice, given a point pattern, an edge-corrected

estimator for the measure S can be used instead of (11)

Ŝ ¼
Z

A

kk̂� k̂ðxÞkdx; ð12Þ

where k̂ ¼ N=jAj and k̂ðxÞ is given in (5). Note that when

dealing with Ŝ; i.e with k̂ ¼ N=jAj and k̂ðxÞ; we are

incorporating into this measure the intrinsic stochastic

variability of these estimators. Hence, two considerations

are important to note here: (a) the behaviour of the measure

S will depend on the correct choice and use of the intensity

estimators (for example, the choice of the kernel function

or the bandwidth parameter), and (b) if the theoretical

measure S should be zero under stationarity, the empirical

Ŝ is not expected to be exactly zero, but should take values

close to zero. We thus need to analyse the behaviour of this

measure.

4.1 Statistical properties of the test

We propose to use the measure in (12) as a statistical test

for inhomogeneity in a point pattern. Here the null

hypothesis consists of the point pattern being stationary

(homogeneous) independently of the particular spatial

structure the pattern presents. Following the previous

comments, under the null hypothesis, this statistical test

should take values close to zero, whereas these values

should be much larger under the alternative hypothesis.

The statistical properties, type I error rate and power, of

this test were analysed by simulation. We considered three

distinct scenarios representing the three general possibili-

ties of interaction structures in point patterns, i.e. random
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(Poisson), regular (hard-core) and cluster patterns. In par-

ticular, we simulated on the circle of radius 0.5: (a) Poisson

structures with intensity k = 150; (b) Hard-core structures

with threshold distance r = 0.05, and intensity k = 150;

and (c) Cluster structures with 37 parent events and four

expected offspring per parent, giving an expected intensity

of k = 150.

For the evaluation of the type I error rate, we simulated

1,000 stationary patterns based on each of the three spatial

structures considered. Power was analysed by running the

test over 1,000 inhomogeneous patterns generated under

the following intensity function defining the trend in the

pattern k(x,y) = exp(-2.5x - y). This function generates

an exponential non-stationary configuration, which is

encountered commonly in practice.

For each combination of spatial structure and stationa-

rity versus inhomogeneity we obtained 1,000 values of the

statistical test S. The first 500 values were used to deter-

mine the empirical distribution of S in form of histograms

(see Fig. 1). The other 500 values were used to accept or

reject the null hypothesis by comparing with the empirical

distribution of S. By looking at Fig. 1 we can see the clear

difference between the empirical distribution of S under

stationarity and non-stationarity for all three spatial

structures. Table 1 reports the mean values and standard

deviation of S under the considered scenarios. Note that

under stationarity, the test values are clearly closer to zero

with smaller standard deviation. The results concerning the

type I error rate and power of the test are given in Table 2.

This test presented the following type I error rates and

powers: (a) a = 0.034 (17 rejected over 500 cases) and a

power of 1 - b = 0.992 (496 rejected over 500 cases) for

the Poisson case; (b) a = 0.032 (16 rejected over 500

cases) and a power of 1 - b = 0.984 (492 rejected over

500 cases) for the hard-core case; (c) a = 0.038 (19

rejected over 500 cases) and a power of 1 - b = 0.984

(492 rejected over 500 cases) for the cluster case.

These results suggest that our statistical test can be used

as a reasonable measure of the degree of spatial inhomo-

geneity, and thus can be used in the practice of the

statistical analysis of spatial point patterns.

5 A case study

Having presented the main statistical tools to describe the

spatial structure of inhomogeneous forest patterns, we now

illustrate the application of these approaches through the

S−Poisson structure
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Fig. 1 Frequency histograms of

the empirical distribution of S
under stationarity (white colour)

and inhomogeneity (red colour)

for the following spatial settings

on the circle of radius 0.5:

a Poisson structures with

intensity k = 150, b hard-core

structures with threshold

distance r = 0.05 and c cluster

structures with 37 parent events

and four expected offspring per

parent
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analysis of a case study in the Central Catalonia, North-

East of Spain. In Central Catalonia, 45 temporary circular

forest plots were established in 2006 by the Forest Tech-

nology Centre of Catalonia (CTFC) to obtain detailed

information on the growing stock characteristics and the

growth dynamics of Pinus sylvestris, P. nigra and

P. halepensis pure and mixed forest stands. A total of ten,

eight and nine pure stands of P. sylvestris, P. nigra and

P. halepensis, respectively, together with 12 and 6 plots of

mixed stands involving P. sylvestris and P. nigra, and

P. halepensis and P. nigra, were recorded. Plots were

established to contain at least 100 trees with diameter at the

breast height (dbh) larger than 7.5 cm, resulting in plot

sizes in the range [0.04,0.16] ha. Finally, data on tree

locations, dbh, height, tree age and tree species for each

plot were recorded.

Let us now characterise the degree of inhomogeneity of

these forest plots. Nineteen realisations of a homogeneous

Poisson process involving the same number of trees as the

corresponding original patterns were simulated to obtain Ŝ

as in (12) for each realisation. Then the maximum value for

each set of realisations was compared with the resulting

empirical Ŝ computed for the (original) forest pattern. If the

resulting empirical Ŝ value is larger than the maximum Ŝ

parameter obtained under simulation, the hypothesis of

homogeneity (assuming a Poisson process) can be rejected

at the 2.5% significance level. Although this test is defined

under the hypothesis of an underlying stationary Poisson

process, it could also be used under any kind of stationary

point process, in which a spatial structure is present, as

previously discussed. Indeed, though for any stationary

point process S = 0, estimations of Ŝ may depend on the

stationary point process under analysis (see detailed com-

ments in Sect. 4).

Our data analysis showed that only 40, 25 and 33% of

plots of P. sylvestris, P. nigra and P. halepensis, respec-

tively, could be considered non-stationary, whilst 75 and

83% of mixed stands involving P. sylvestris and P. nigra,

and P. halepensis and P. nigra, respectively, should be

assumed as non-stationary. There are several possible

reasons why mixed stands are more inhomogeneous than

pure ones. One is site variation, where each species

exploits the more suitable area for survival, generating

heterogeneous tree patterns. Another reason is that the

regeneration history connected with distinct growth

rhythms and competition effects (i.e. between and within

species) promotes more inhomogeneous spatial tree con-

figurations than under pure stands, where the nature of such

competition is always between the same species. Clearly,

further analysis have to be carried out to fully understand

these complex forest structures.

Let us initially obtain the (global) inhomogeneous pair

correlation function (9) averaged over the 45 sample plots

involving all tree species. Thus, in this first analysis, we do

not take into account the individual species structure. We

do so to obtain the spatial structure for conifer trees in

Central Catalonia. Figure 2 shows this average inhomo-

geneous pair correlation function together with an

approximate confidence interval of this average ðĝp
inhðrÞ �

2� standard errorÞ involving the 45 plots of pure and

mixed stands. Note that we use the sample standard error

obtained from the pair correlation functions associated to

each of these 45 plots. This highlights that in average the

main conifer tree species in Central Catalonia tend to be

located at random. However, the study of the resulting

inhomogeneous pair correlation functions for each species

and the mixed stands tells a quite different story.

Figure 3 presents representative circular patterns of

20 m of radius for P. sylvestris, P. nigra and P. halepensis

involving approximately 100 trees for each plot. We also

show the resulting intensity function (grey scale image) (5),

the corresponding inhomogeneous pair correlation function

(7) and its respective upper and lower envelopes based on

19 complete (Poisson) randomisations. The Epanechnikov

kernel with bandwidth parameter b = 0.3 was used to

compute the intensity function in (5). This value was taken

as the resulting intensity surface was (visually) fitting the

observed events correctly. Whilst the bandwidth used to

obtain the corresponding inhomogeneous pair correlation

function was b ¼ 0:2=
ffiffiffi
k
p
’ 0:2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100=0:52p

p
’ 0:016; as

suggested by Penttinen et al. (1992) and assuming the

original data rescaled to the circle of radius 0.5. Visual

inspection of these three forest patterns highlights that the

forest structure is clearly inhomogeneous since the

Table 1 Mean and standard deviation of the statistical test S for

several spatial structures

Pattern Structure Mean SD

Poisson Homogeneous 22.82 4.13

Inhomogeneous 42.61 6.50

Hard-core Homogeneous 21.60 3.94

Inhomogeneous 42.98 6.62

Cluster Homogeneous 28.72 8.19

Inhomogeneous 43.38 9.09

Table 2 Type I error rate and power of the test

Pattern Structure Accepted Rejected

Poisson Homogeneous 483 17

Inhomogeneous 4 496

Hard-core Homogeneous 484 16

Inhomogeneous 8 492

Cluster Homogeneous 481 19

Inhomogeneous 8 492
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intensity of trees depends on the spatial location under

analysis. The study of the resulting inhomogeneous pair

correlation functions suggests that for P. sylvestris the

spatial structure is aggregated for short inter-tree distances

(r \ 1 m), whilst under P. nigra and P. halepensis the tree

spatial configuration is regular for short inter-event

(r \ 1 m).

We now analyse the behaviour of the inhomogeneous

pair correlation function averaged over all plots of the same

species. Inspection of the resulting average inhomogeneous

pair correlation functions (9) together with an approximate

confidence interval of this average ðĝp
inhðrÞ � 2�

standard errorÞ calculated over the ten, eight and nine plots

for P. sylvestris, P. nigra and P. halepensis, respectively

(see Fig. 4), confirms that whilst P. sylvestris tends to be

aggregated for short inter-tree distances (r \ 1 m), P. nigra

and P. halepensis keep a minimum inter-event distance

(r \ 1 m) between trees. In Central Catalonia, P. sylvestris

stands are, traditionally, regenerated by the shelterwood

method (see, for instance, Smith et al. 1997). This silvi-

culture practice may favour the creation of areas with high

densities of seedlings; this may ultimately result in small

clusters of trees, partially explaining the aggregated con-

figuration for short inter-tree distances. In addition,

P. sylvestris grows at higher elevations than P. nigra and

P. halepensis where the within-plot site variation may be

higher causing aggregated tree distributions. Moreover,

P. nigra is more shade tolerant than P. sylvestris and may

regenerate more uniformly than P. sylvestris under a tree

canopy. The silviculture practice may also explain the

regular structure for short distances in P. nigra. Finally,

P. halepensis is a shade intolerant species well adapted to

recurrent fires. Thus the necessity of high light intensities

(i.e. direct sunlight) and the consequent self-thinning can

eliminate less competitive individuals, which could explain

why this species keeps a minimum inter-tree distance of

around 1 m.

Finally, the study of the resulting average inhomoge-

neous bivariate pair correlation function (10) computed for

12 and 6 plots of mixed stands involving P. sylvestris and

P. nigra, and P. halepensis and P. nigra, respectively, is

shown in Fig. 5. This analysis suggests that trees of distinct

species tend to be segregated from each other; this result is

specially true for mixed stands of P. halepensis and P.

nigra. These regular structures between trees of distinct

species may be explained by within-plot site variation and

inter-competition effects together with different growth

rhythms of species. Another possible reason for segrega-

tion is that different species have seeds in different years,

which means that locations favourable for regeneration in a
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sizes together with its corresponding confidence interval, i.e. ĝp
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2 standard error (dashed lines)
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particular year are often regenerated and occupied by one

species only.

6 Conclusions and discussion

Point process theory plays a fundamental role in analysing

and modelling spatial forest patterns (Stoyan and Penttinen

2000). For instance, the Ripley’s K function and its density

w.r.t. the area, i.e. the pair correlation function, have been

extensively used to analyse and characterise stationary

forest configurations (see among others, Penttinen et al.

1992; Pélissier 1998; Youngblood et al. 2004). In fact, the

statistical analysis of forest patterns, and in particular the

description of the spatial structure, is the first step before

more complicated analysis are considered, for instance

model fitting. However, the use of second order charac-

teristics (i.e. the Ripley’s K and the pair correlation

functions) are restricted to stationary forest patterns, which

regarding real forest situations are not always the case.

Although the inhomogeneous counterpart version of these

variability measures have been recently presented and

illustrated with several practical examples by Baddeley

et al. (2000), few forest studies have been performed using

these inhomogeneous tools. This paper considers such

inhomogeneity characteristics to analyse the spatial struc-

ture of pure and mixed stands of conifer species in a case

study in the North-West of Spain.

To justify the use of non-stationary point process sta-

tistics, we have considered a simple statistic to measure the

degree of inhomogeneity based on the difference between

the edge-corrected estimator of the intensity function and

the estimator of the intensity (i.e. assuming a stationary

point pattern). On applying this measure, we have found

that whilst pure conifer plots are mainly stationary, mixed

plots are clearly non-stationary. This result can be

explained by environmental heterogeneity and competition

effects. Further attention has to be paid on this new statistic

to fully understand its behaviour. Regarding the spatial

structure of these conifer species, our results suggest that

whilst P. sylvestris tend to be aggregated for short inter-

tree distances, P. nigra and P. halepensis keep a minimum

inter-event distance between trees. These forest structures

are most probably mainly due to site properties, competi-

tion effects, shade tolerance and silviculture practices

applied in Central Catalonia for these species. Moreover,

regarding the mixed stands, we found that trees of distinct

species tend to be segregated from each other, indicating

that small-scale site variations and inter-competition

effects may affect the resulting tree spatial structure. Here

distance
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ĝ in
h

p
( r)

(b)

0 1 2 3 4 5 6
−0.5

0.5

1.5

2.5

3.5

distance
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the use of the average of the inhomogeneous pair correla-

tion functions to analyse forest patterns from replicated

data has provided insight into the overall forest spatial

structure. However, it is clearly necessary to develop new

and better strategies taking into account the non-stationary

nature of such patterns to obtain such overall estimates.

The understanding of real forest spatial structures will help

to generate pure and mixed stands of pines which have a

realistic and typical spatial configuration. These stands are

required in simulators which use distance-dependent

models to predict stand dynamics.

The use of inhomogeneous statistical tools has been

useful to describe the spatial structure of forest patterns

under analysis. However, further analysis have to be car-

ried out considering explicit biological and forest-

ecological processes to explain the nature of such complex

structures. A natural further step would be to analyse not

only the spatial location of trees, but also to consider

characteristics associated to these spatial positions such as

tree height, diameter or age in order to enable better

understanding of such forest spatial structures. This could

be done by generalising the pair correlation function to the

marked case, and then developing the statistical test S

based on the intensity of marked points.
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