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Abstract The comparison between two series of optimal

remediation designs using deterministic and stochastic

approaches showed a number of converging features.

Limited sampling measurements in a supposed contami-

nated aquifer formed the hydraulic conductivity field and

the initial concentration distribution used in the optimiza-

tion process. The deterministic and stochastic approaches

employed a single simulation–optimization method and a

multiple realization approach, respectively. For both

approaches, the optimization model made use of a genetic

algorithm. In the deterministic approach, the total cost,

extraction rate, and the number of wells used increase when

the design must satisfy the intensified concentration con-

straint. Growing the stack size in the stochastic approach

also brings about same effects. In particular, the change in

the selection frequency of the used extraction wells, with

increasing stack size, for the stochastic approach can indi-

cate the locations of required additional wells in the

deterministic approach due to the intensified constraints.

These converging features between the two approaches

reveal that a deterministic optimization approach with

controlled constraints is achievable enough to design reli-

able remediation strategies, and the results of a stochastic

optimization approach are readily available to real con-

taminated sites.
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1 Introduction

In many studies undertaken to optimize groundwater

management, it is widely recognized that the scarcity of

information about the hydrogeological setting or contami-

nant distribution is the main factor leading to uncertainty in

the resultant optimal strategy. It makes a stochastic

approach more appropriate for the amelioration of sub-

surface problems working within the constraints of limited

measurements. A stochastic approach to optimization is

mainly employed in order to consider the uncertainty

arising from incomplete information given by limited point

measurements (Freeze and Gorelick 1999; Mayer et al.

2002). The spatial distribution of randomly generated

realizations of hydraulic parameters and the contaminant

plume, using limited point measurements, are contained in

an optimization process. Results generally show the dis-

tribution of design factors and their reliability.

Based on the Monte Carlo method, various stochastic

optimization methods have been developed and investi-

gated (Gorelick 1983; Freeze and Gorelick 1999; Mayer

et al. 2002). In particular, a simulation–optimization

method with random realizations generated by geostatisti-

cal simulation under a stochastic distribution for an

uncertain parameter has often been suggested because of its

flexibility in relation to complex groundwater management

problems. Wagner and Gorelick (1989) used a stochastic

simulation–optimization model, known as the multiple

realization approach, for the remediation design of a con-

taminated aquifer having uncertain hydraulic conductivity.

Aly and Peralta (1999) presented the same approach with

an artificial neural network and genetic algorithm to solve

remediation problems arising from uncertain aquifer

parameters, and to show the trade-off between remediation

design factors and reliability. Feyen and Goelick (2004)

N.-Y. Ko � K.-K. Lee (&)

School of Earth and Environmental Sciences,

Seoul National University, Seoul 151-742, South Korea

e-mail: kklee@snu.ac.kr

123

Stoch Environ Res Risk Assess (2009) 23:309–318

DOI 10.1007/s00477-008-0216-8



introduced a multiple realization approach for a reliable

groundwater management system in hydroecologically

uncertain and sensitive areas.

Although the multiple realization approach has some

merits in its solutions to uncertain groundwater environ-

mental problems, the stochastic optimization approach

generally requires enormous computational resources, such

as computing time or memory (Freeze and Gorelick 1999;

Baú and Mayer 2006). In order to improve computational

efficiency, several methods have been suggested. In the

chance-constrained technique, the obtained optimal design

satisfies the stochastic constraints with a predetermined

probability distribution, which represents the uncertainty of

aquifer parameters. It mostly accounts for the uncertainty

in the optimal design factors or identifies optimal pumping

and sampling strategies in groundwater remediation using a

decision framework (Wagner and Gorelick 1987; Sawyer

and Lin 1998; Wagner 1999). The objective function in

robust optimization techniques can often be divided into

two components: deterministic and stochastic parts. The

deterministic part is fixed for all given realizations, and the

stochastic or probabilistic part is variable due to the

uncertain conditions of realizations. Through this variation

in the stochastic part because of the uncertain conditions,

the trade-off between the penalty factor within the sto-

chastic part and the uncertainty of aquifer parameters can

be controlled (Watkins Jr. and McKinney 1997; Pinder

et al. 2001).

Some studies on the optimization of remediation designs

took an interest in the relationship between the determin-

istic and stochastic behaviors. Freeze and Gorelick (1999)

showed the convergence between the results of determin-

istic and stochastic optimizations using decision analysis

with a safety factor. This study showed that the reliability

of the deterministic optimization was almost the same as

that of stochastic optimization using the Monte Carlo

analysis with similar pumping rates.

The objective of this study is to compare the results of

remediation designs using a pump and treat method for two

optimization approaches: deterministic and stochastic.

From the limited data from the contaminated aquifer, the

interpolation technique produced the deterministic domain

and the geostatistical simulation technique generated ran-

dom realizations for the uncertain hydraulic conductivity

field. The deterministic approach found the optimal reme-

diation designs in the deterministic interpolated domain

under several controlled constraints. A multiple realization

approach performed a search for optimal remediation

designs using a stochastic approach with a variable stack

size, which means the number of generated realizations

imported in the optimization process. From the results, we

compared the designs of the two approaches and discussed

the converging features between them.

2 Materials and methods

2.1 Contaminated aquifer domain

Supposed to be the ‘‘true’’ environment, we generated a

contaminated aquifer domain. It is a two-dimensional

unconfined aquifer system of 800 9 610 m (Fig. 1). Con-

stant head boundaries are set on the left and right ends, but

no flow boundaries are placed on the upper or lower sides

of the aquifer domain. Figure 1 also shows 15 candidate

extraction wells used in optimizing the remediation design

as well as the assumed ‘‘true’’ hydraulic conductivity field

and ‘‘true’’ initial contaminant distribution.

The mean and standard deviation of the hydraulic con-

ductivity in the true field are 10-4 and 100.33 m/s in

common logarithm under log-normal distribution, respec-

tively. The semivariogram, which represents the spatial

continuity for hydraulic conductivities in common loga-

rithm, was assumed as followings:

c ¼ 0:33 1� e�
3h

100

� �
ð1Þ

where h (m) is the lag distance. Other parameters used in

groundwater flow and contaminant transport simulations

are in Table 1.

2.2 Interpolated domain by limited measurements

It is impossible to gain the entire information about con-

taminated aquifers because the measurements can only be

obtained at a few limited points, not over the whole

domain. In order to reflect that situation, 40 sampling

points provided the measurements of hydraulic conduc-

tivity and contaminant concentration from the true domain

(Fig. 2). These data played a main role in characterizing
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Fig. 1 Heterogeneous hydraulic conductivity domain and the initial

conditions of contaminant concentration assumed as the ‘‘true’’

environment (concentration contours indicate 1.0, 10.0, 20.0, 50.0,

and 80.0 mg/L from outside one, respectively)
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the contaminated aquifer and optimizing remediation

design using a pump and treat method. Ordinary kriging

(Goovaerts 1997) with the same spatial correlation as

Eq. (1) made the interpolated hydraulic conductivity field.

In the case of contaminant distribution, the concentration

values are biased to very small value: more than 85% of all

measured concentration values are less than 1.0 mg/L

(Fig. 3). It can lead to a considerable degradation of the

estimated value and its variance if general interpolation

methods, such as ordinary kriging, are used (Reed et al.

2004). In order to minimize such a significant degradation

of the estimated values, quantile kriging method built the

initial concentration distribution (Goovaerts 1997; Juang

et al. 2001; Reed et al. 2004).

2.3 Objective function in optimization process

The objective function in this study implied the minimi-

zation of the total cost of remediation. For the purpose of

this study, the simplified objective function with a single

time period is given by

Minimization aop

Xn

i¼1

Qi qi; tð Þ
( )

þ aweNwell þ ape � x

ð2Þ

subject to

qmin
i � qi� qmax

i ; i ¼ 1; . . .; I ð3Þ
Cmax�C�; tmax� t�; smax� s� in whole domain

ð4Þ

Cmax
comp:�C�comp:

at the compliance line during the remediation period

ð5Þ

where aop, awe, and ape are the unit cost of the operation,

capital cost for extraction well and treatment facility con-

struction, and penalty, respectively (cost unit); Qi is the

pumping volume at the ith extraction well (m3) as a

function of qi and t; qi is the pumping rate of the ith

extraction well (m3/day); t is the pumping duration (day);

Nwell is the number of extraction wells used in the reme-

diation process; x is the weighting factor for the penalty

value (dimensionless); qi
min and qi

max are the minimum and

maximum values of qi; I is the number of candidate

extraction wells; Cmax, tmax, and smax are the maximum

values of concentration (mg/L), time (day), and drawdown

(m) at the end of the remediation process, respectively; C*

is the constraint value of the concentration for the reme-

diation system (mg/L); t* and s* are the limit values of the

time (day) and drawdown (m) for the remediation system,

respectively; and Cmax
comp and C�comp are the maximum and

constraint concentrations at the compliance line (Fig. 1).

The base condition of C* is fixed as 1.0 mg/L. The values

for qi
min, qi

max, t*, and s* were set to 0.0 m/day, 200.0 m/

day, 1,095 days, and 4.0 m, respectively. Ccomp
* is set to

1.0 mg/L. If the candidate design does not meet this

compliance constraint, its total cost greatly increases by

assigning a penalty cost. It makes the candidate design

Table 1 Hydraulic parameters

used in numerical simulations
Parameter Value

Porosity 0.2

Aquifer

thickness (m)

18

Longitudinal

dispersivity (m)

6.9

Transverse

dispersivity (m)

1.4
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Fig. 2 Sampling locations and interpolated domains by measure-

ments for hydraulic conductivity, K, and contaminant concentration

on the area where is surrounded by dotted lines in Fig. 1 (circle:

sampling location; contour lines represent same concentration levels

in Fig. 1; dotted line means 1.0 mg/L of the ‘‘true’’ contaminant

distribution)
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Fig. 3 Distribution of the concentration measurements at the sam-

pling locations
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have the minimum fitness in this optimization problem. aop

represents the lumped unit cost for extraction, treatment,

and disposal of the groundwater, which are proportional to

the total pumping volume. awe is the unit cost for extraction

well construction.

The weighting factor, x, was set as the degree of vio-

lation of constraint components needed to search for the

optimum quickly (Chan Hilton and Culver 2000). In this

study, x is a function of Cmax, C*, tmax, t*, smax, and s*, and

is defined as

x ¼ acMax 0;
Cmax � C�ð Þ

C�

� �
þ atMax 0;

tmax � t�ð Þ
t�

� �

þ asMax 0;
smax � s�ð Þ

s�

� �

ð6Þ

where ac, at, and as are the weighting coefficients for

violations by concentration, time, and drawdown con-

straint, respectively. These are changeable, and can be

changed to obtain an optimal remediation design for a

certain case, in which one of them may be a more impor-

tant factor than the others. In this study, the importance of

each constraint was taken to be the same, and then these

coefficients were set to one. The penalty value, ape, was

sufficiently large to seek the feasible design.

2.4 Single simulation–optimization method

in a deterministic approach

The simulation–optimization method found an effective

remediation design using the pump and treat method by

optimizing the number, locations, and rates of the extrac-

tion wells. The simulation–optimization method uses two

models independently; simulation and optimization mod-

els. The simulation model solves groundwater flow and

contaminant transport equations and the optimization

model determines the decision variables by using state

variables from the simulation model and an inherent

optimizing algorithm. In this study, the decision variables

are the rates and locations of extraction wells, and the state

variables are the values of drawdown and contaminant

concentration. These two models run repeatedly until a

suitable optimal remediation design is found or a stopping

criterion is met. As a simulation model and an optimiza-

tion model are independent of each other, a simulation–

optimization method has the advantage of flexible appli-

cation to complex groundwater flow and contaminant

transport problems, though considerable computing

resources are required (Wagner 1995; Wang and Zheng

1997; Zheng and Wang 2002; Feyen and Goelick 2004,

2005; Ko et al. 2005; Guan and Aral 2005; Ren and

Minsker 2005).

For a comparison with the stochastic approach, a

deterministic approach found optimal remediation designs.

The interpolated domain in Fig. 2 shows the initial

conditions of a contaminated aquifer system. The con-

centration constraint, C*, was first set to its base condition

(1.0 mg/L). To enhance the reliability of the remediation

designs, the simulation–optimization method found the

optimal solutions by controlling the concentration

constraints.

In this study, MODFLOW (Harbaugh and McDonald

1996) and MT3DMS (Zheng and Wang 1999) solved

groundwater flow and contaminant transport equations as

the simulation models. The optimization model searched

the optimal solutions by a genetic algorithm (GA). As a GA

can find the global or near-global optimum for optimization

problems with mathematically complex objective functions

and constraints such as non-convex problems, there are

many studies using a GA to optimize problems about

groundwater remediation and management (Goldberg

1989; Huang and Mayer 1997; Ren and Minsker 2005).

Selection using a roulette wheel method with elitism

(Goldberg 1989), crossover, and mutation operators all

played a part in the GA process. The probabilities of

crossover and mutation are 0.6–0.7 and 0.05–0.10,

respectively. The details of the GA process in this study

can be found in Ko et al. (2005).

2.5 Stochastic approach using multiple realizations

Taking into consideration the uncertainty of hydraulic

conditions in optimizing remediation design, a multiple

realization approach, one of the stochastic optimization

methods, searched for reliable designs. The multiple real-

ization approach can establish the optimal remediation

strategy, by multiple implementations of a simulation–

optimization method (Wagner and Gorelick 1989; Morgan

et al. 1993; Feyen and Goelick 2004). In the multiple

realization approach, the optimization process handles a

certain number of generated realizations and a simulation–

optimization method operates on each of these realizations.

If 100 realizations of the hydraulic conductivity field are

supposed, a simulation–optimization method is involved in

all 100 realizations. This plays the role of establishing100

constraint conditions in the optimization process for each

candidate design. If the candidate design has the maximum

fitness value of the given objective function in all real-

izations, it becomes an optimal remediation design. In this

study, Eq. (2) calculated the values of the objective func-

tion for each realization, as in the case of the deterministic

approach. The candidate design has its final fitness value in

the multiple realization approach by summing up the val-

ues of the objective functions for each realization.
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3 Results of deterministic and stochastic approach

for remediation designs

3.1 Deterministic case

The deterministic approach sought the optimal remediation

designs for the interpolated domain using a single simu-

lation–optimization method. The optimization process

found the base design under the base condition

(C* = 1.0 mg/L) and the constraint-controlled designs

under the intensified concentration constraints (C* = 0.2–

0.8 mg/L) in order to consider an effective and reliable

remediation design (Table 2). All of the optimal designs

satisfy the constraints for drawdown, time, and the con-

centration given in Eqs. (2)–(5). The cost means the

relative value based on the unit extraction volume, and the

values of aop and awe are determined using the reference of

USEPA (1999).

For the base concentration constraint condition, the

optimal design selected P8 and P13 as the extraction wells.

The extraction rate of P13 is more than that of P8 in

regards to the effectiveness of remediation and the regu-

lation of the compliance line. When C* intensifies, the

extraction rate of P8 increases and P7 becomes the addi-

tional extraction well (C* = 0.2 mg/L). This is because the

rapid removal of groundwater from a highly contaminated

zone must meet the intensified constraints under the same

limitations regarding clean-up time and the maximum

extraction rate of each well. The increase in the number of

extraction wells and the total extraction volume, due to the

increased extraction rate, raises the remediation cost

(Table 2).

3.2 Stochastic case

The multiple realization approach found the stochastic

optimal remediation designs for stack sizes of 1, 2, 5, 10,

20, 30, 40, and 50. The geostatistical simulation, such as

simulation annealing (Olea 1999), generated the condi-

tional random realizations of hydraulic conductivity by

measurements at 40 sampling locations in Fig. 2 and the

spatial correlation of Eq. (1). The multiple realization

approach used these realizations. If the stack size grows,

the required number of the extraction wells and extraction

rates increases (Fig. 4). There are relatively high incre-

ments of about 10–20% in the averages of the total

extraction rate, number of wells used, and cost when the

stack size is from one to ten. These large increments start to

disappear when the stack size is more than 10.

The averages of the total extraction rates for each stack

size are between 346.6 and 521.7 m3/day, and show very

small increments when they are over 500 m3/day (Fig. 4b).

The average of the number of used extraction wells also

increases from 2.12 to 3.00 (Fig. 4c). These variations in

averages of the total extraction rate and the number of used

extraction wells constitute a change in the total cost

according to stack size (Fig. 4a).

However, determining the locations of the selected

extraction wells is not simple. According to the selection

frequency of extraction wells in Fig. 4c, P7 and P8 are

major extraction wells for all stack sizes. In particular,

almost all optimal remediation designs choose these

wells when the stack size is over 5. P13 and P9 compete

with each other in relation to the position of the addi-

tional extraction well. Although some fluctuation exists,

P13 is more frequently selected as the stack size rises.

This means that the locations of P7 and P8 are indis-

pensable, and that of P13 may be more optimal than that

of P9.

The result of the stochastic approach reveals that P13

and P9 can be expected to be the additional extraction

wells for more reliable remediation designs. For a practical

remediation strategy requiring definite design factors, the

remediation design including P13 will be more appropriate

than P9 for the given contaminated aquifer as P13 was

selected more frequently as an additional well. The design

using P9 as an additional extraction well may be the next

best strategy if the previous design using P13 does not

accomplish the expected level of contaminant removal or

concentration decrease. This is a very important feature

because the limited sampling measurements or monitoring

can cause uncertainties in the hydraulic conductivity and

contaminant concentration, and can result in unexpected

events during the operation of the obtained optimal reme-

diation design.

Table 2 Design factors and

required costs of the

deterministic optimal

remediation designs according

to various concentration

constraints, C*

C* (mg/L) Extraction rates (m3/day) Number of used wells Cost (91,000)

P7 P8 P13

1.0 0.0 103.8 191.2 2 520

0.8 0.0 119.8 192.4 2 539

0.6 0.0 143.2 191.2 2 565

0.4 0.0 175.8 197.8 2 606

0.2 83.4 160.8 192.6 3 774
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In respect of the extraction rate of each well when they

are involved in each of the optimal designs, the rates of two

major extraction wells (P7 and P8) increase and approxi-

mate to certain values (Fig. 4c). However, the average rates

of P9 and P13 decrease when the stack size is from 1 to 5.

The optimal remediation design obtained is very sensitive

to the hydraulic conductivity field and initial contaminant

distribution. In particular, it can have a considerable

influence on the average value of the extraction rates of

involved wells when the stack size is less than five. When

the stack size is one, using P9 or P13 can be more effective

than using the major two wells at the same time because

the design must meet the given constraints in its own

realization only. However, when the stack size becomes

two, the obtained optimal remediation designs must satisfy

the constraints in two random realizations simultaneously.

It may happen that the optimal location of an extraction

well in one realization is not effective in another realiza-

tion. It may then be more effective to increase the

extraction rates of the major two wells instead of P9 or P13

in order to satisfy the constraints of all realizations, though

a greater total extraction rate is required. In that case, the

average rates of P9 and P13 when two wells are involved in

each of the optimal designs will decrease because the two

major wells play a main role in contaminant removal. P9

and P13 have a minor task, such as the observance of the

compliance constraints. This tendency also continues when

the stack size reaches to five.

When the stack size is more than five, the average

extraction rates of P9 and P13, when they participated in

the each optimal design are used, increase like the major

wells. The rate of P9 is lower than that of P13, which

becomes almost the same as one of the major wells (P7),

for all stack sizes. It results from the initial condition of the

contaminant distribution and existence of the compliance

line (Fig. 1). The asymmetric distribution of the contami-

nant makes it more optimal to increase the extraction rate

of P13 rather than P9.

The number of stacks also has an influence on the

reliability of the obtained optimal remediation designs
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(Fig. 5). Thousand random hydraulic conductivity fields

generated by the limited data and the same spatial corre-

lation as Eq. (1) provided the evaluation of the reliability

for the obtained optimal remediation designs. The reli-

ability directly represents whether the design can satisfy

the remediation goals or not, by applying the designs to the

generated fields. If the stack size becomes lager, the reli-

ability increases. In a small stack size, the optimal design

may be available only over a small part of the generated

realizations. As the stack size increases, the generated

realizations appropriate for the obtained remediation

designs also grow. So, the designs obtained in the larger
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stack size are more reliable because the optimal remedia-

tion design can cover a wider uncertainty in hydraulic

conductivity caused by the larger stack size.

4 Converging features of the two approaches

by controlling constraint intensity and stack size

In the two optimization approaches, it is clear that both the

intensified control of concentration constraints and

increasing the number of involved realizations have the

same influence on the obtained optimal remediation design

(Fig. 6). As the concentration constraint becomes more

intensified, or the stack size gets larger, the cost, extraction

rates, and the number of required extraction wells all

increase. In particular, stack sizes of two and ten in the

multiple realization approach and with the intensified

concentration constraint of C* = 0.4 and 0.2 mg/L,

respectively, obtain similar results.

The optimal remediation cost in the deterministic

approach shows considerable increase at C* = 0.2 mg/L

(Fig. 6a). The main factors in such a large increment are

the addition of extraction wells and increased extraction

rates. The extraction rates in both approaches, however,

demonstrate a steady increment. This large increase results

from the additional extraction well (P7) in the deterministic

approach at C* = 0.2 mg/L. In the stochastic approach, the

average values of the number of involved extraction wells

changes relatively slowly, so there is no rapid increase in

cost (Fig. 4).

The additional extraction wells, selected for a more

reliable remediation design, are also similar in both

approaches. In the stochastic approach, the selection fre-

quencies of P7 and P13 are almost the same when the stack

size is one. As the stack size increases to 50, then the

selection frequency of P7 reaches one, and the required

number of extraction wells becomes three. This tendency is

also represented in the deterministic approach. At

C* = 0.2 mg/L, P7 is selected by the additional required

well. Both approaches show converging features in the

number and location of extraction wells when the stack

size is 50 and the controlled concentration constraint is
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0.2 mg/L. That is, an additional well in the deterministic

approach can be expected by the selection frequency of

each well in the stochastic approach.

With an evaluation of the reliability for the obtained

optimal remediation designs, Fig. 6c shows the similar

tendency between two approaches. Thousand randomly

generated hydraulic conductivity fields using the same

method as the case of the stochastic approach evaluated the

reliability of the deterministic optimal remediation designs.

The two optimization approaches, which are using deter-

ministic interpolated conditions with controlled constraints

and using a multiple realization approach, which takes the

uncertainty in the control of the stack size into consider-

ation, show similar results when the intensity of constraint

enlarges and the stack size increases. It reveals that an

intensified constraint and an increased stack size with the

base constraint have the same effects on the reliability of

the optimal remediation designs because the increment of

the stack size means a wider uncertainty in hydraulic

conductivity must be taken into consideration. It also def-

initely demonstrates that the intensity of constraints can

control the reliability of the remediation design in the

deterministic approach.

5 Summary and conclusions

Both the deterministic and stochastic approaches using a

single simulation–optimization method and a multiple

realization approach, respectively, found reliable optimal

remediation designs. For a comparison of the results, the

two approaches controlled the concentration constraint and

the stack size, respectively. The optimal remediation

designs obtained show the converging features of the

deterministic and stochastic approaches in contaminated

aquifer remediation design using a pump and treat method.

Intensified constraints in the deterministic approach, and a

great stack size in the stochastic approach, have the same

effect on the total required cost, total extraction rate, well

locations, and the number of used extraction wells: the

cost, extraction rate, and the number of wells increase, and

the well locations are almost the same.

From the results in this study, the deterministic approach

with controlled constraints can lead to the same effects as a

stochastic approach with the controlled uncertainty consid-

ered in the optimization process. It reveals that controlling

the constraint levels in the deterministic optimization

approach can be an effective way of adjusting the reliability

of the obtained optimal remediation designs, and is readily

available for saving various computing resources like

memory or calculating time. The similar results of the two

approaches for the design factors may give us some clues,

but this study did not show the definite quantitative

relationship between two approaches. More studies about

this relationship are required, and we leave it to further

study.

In respect of its simultaneous consideration of the

uncertainty and reliability of an optimized remediation

design, however, the stochastic approach still has strong

merits. The stochastic approach can propose rough ranges

for the extraction rates, clean-up time, and candidate well

locations. The definite values for practical optimal reme-

diation design factors, such as the number and locations of

the extraction wells, can be obtained by the deterministic

approach. In practical design strategy, both approaches can

help in the production of more effective and efficient

remediation designs.

Acknowledgments This study was supported by Advanced Envi-

ronmental Biotechnology Research Center (AEBRC) at POSTECH.

Sustainable Water Resources Research Center of 21st Century

Frontier Research Program (# 3-4-3), and partly by Korea Energy

Management Corporation (KEMCO) through KIGAM.

References

Aly AH, Peralta RC (1999) Optimal design of aquifer cleanup

systems under uncertainty using a neural network and a genetic

algorithm. Water Resour Res 35:2523–2532
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