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Abstract A three-layer Artificial Neural Network (ANN)

model (9:12:1) for the prediction of Chemical Oxygen

Demand Removal Efficiency (CODRE) of Upflow Anaer-

obic Sludge Blanket (UASB) reactors treating real cotton

textile wastewater diluted with domestic wastewater was

presented. To validate the proposed method, an experi-

mental study was carried out in three lab-scale UASB

reactors to investigate the treatment efficiency on total

COD reduction. The reactors were operated for 80 days at

mesophilic conditions (36–37.5�C) in a temperature-con-

trolled water bath with two hydraulic retention times

(HRT) of 4.5 and 9.0 days and with organic loading rates

(OLR) between 0.072 and 0.602 kg COD/m3/day. Five

different dilution ratios of 15, 30, 40, 45 and 60% with

domestic wastewater were employed to represent seasonal

fluctuations, respectively. The study was undertaken in a

pH range of 6.20–8.06 and an alkalinity range of 1,350–

1,855 mg/l CaCO3. The concentrations of volatile fatty

acids (VFA) and total suspended solids (TSS) were

observed between 420 and 720 mg/l CH3COOH and

68–338 mg/l, respectively. In the study, a wide range of

influent COD concentrations (CODi) between 651 and

4,044 mg/l in feeding was carried out. CODRE of

UASB reactors being output parameter of the conducted

anaerobic treatment was estimated by nine input parame-

ters such as HRT, pH, CODi concentration, operating

temperature, alkalinity, VFA concentration, dilution ratio

(DR), OLR, and TSS concentration. After backpropagation

(BP) training combined with principal component analysis

(PCA), the ANN model predicted CODRE values based on

experimental data and all the predictions were proven to be

satisfactory with a correlation coefficient of about 0.8245.

In the ANN study, the Levenberg-Marquardt Algorithm

(LMA) was found as the best of 11 BP algorithms. In

addition to determination of the optimal ANN structure, a

linear-nonlinear study was also employed to investigate the

effects of input variables on CODRE values in this study.

Both ANN outputs and linear-nonlinear study results were

compared and advantages and further developments were

evaluated.
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1 Introduction

Wastewater effluents from textile industries are character-

ized by high volumes and extremely variable composition,

which can include biodegradable and non-biodegradable

dyes, organic matter, salts and toxic substances (Isik and

Sponza 2004). The variety of raw materials, chemicals,

processes and also technologic variations applied to the

processes cause complex and dynamic structure of envi-

ronmental impact of textile industry (Sapci and Ustun

2003). These industries have shown a significant increase

in the use of synthetic complex organic dyes as the col-

ouring material. Therefore, the discharge of dye house

wastewater into the environment is aesthetically displeas-

ing, impedes light penetration, damages the quality of the

receiving streams and may be toxic to treatment processes,

to food chain organisms and to aquatic life (Talarposhti

et al. 2001).
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With environmental regulations becoming more strin-

gent, regulatory compliance has become a matter of

increasing concern, and there is a need to conduct more

effective process strategies. Better control of the process

may be achieved by the use of a robust model to predict

certain key parameters based on past observations. Because

of their reliable, robust and salient characteristics in cap-

turing the nonlinear relationships existing between

variables (multi-input/output) in complex systems, it has

become apparent that numerous applications of ANNs have

been successfully conducted in various parts of environ-

mental and water resources engineering fields.

A two-part study was undertaken to investigate the role

of ANNs in hydrology (ASCE Task Committee 2000a, b).

It was found that ANNs were robust tools for modeling

many of the non-linear hydrologic processes such as rain-

fall-runoff, stream flow, ground-water management, water

quality simulation, and precipitation. However, Maier and

Dandy (2000) suggested that future research efforts should

be directed towards the development of ANN models for

representation of internal network parameters, choosing

appropriate model inputs and stopping criteria, and opti-

mizing network geometry adequately. For instance,

Oliveria-Esquerre et al. (2002) used the quickprop (QP)

and delta-bar-delta (DBD) methods in determining the best

ANN internal representation, and determined the stopping

criteria based on the mean square error (MSE). The authors

also reported that the PCA technique helped the nonlinear

ANN mapping by its orthogonal transformation of vari-

ables and reduction of system dimensionality. Mohanty

et al. (2002) demonstrated an ANN simulation of the per-

formance of a biological activated-carbon filter. They

concluded that the ANN model could reasonably estimate

the COD reduction in an exhausted fitler, and gave much

better results than a second-order polynomial regression

model.

Cigizoglu (2003a) investigated the applicability of

ANNs to forecasting, estimation and extrapolation of the

daily flow data. The study resulted that an ANN solution

could provide a tighter fit to the data than conventional

models. Another study was undertaken by Cigizoglu

(2003b) to apply autoregressive moving average (ARMA)

models into flow forecasting using ANNs. The study con-

cluded that the extension of input and output data sets in

the training stage improved the accuracy of forecasting

using ANNs. Cigizoglu (2004) investigated the perfor-

mance of MLPs in daily suspended sediment estimation

and forecasting. The author concluded that MLPs captured

the complex non-linear behaviour of the sediment series

relatively better than the conventional models. Another

study was conducted by (Cigizoglu 2005a) on the

generalized regression neural network (GRNN), for inter-

mittent river flow forecasting and estimation. It was

reported that the GRNN simulations did not face the fre-

quently encountered local minima problem in feed forward

back propagation method (FFBP) applications, and GRNNs

did not generate forecasts or estimates that were not

physically plausible. Similarly, Cigizoglu (2005b) con-

cluded that the GRNN approach did not require an iterative

training procedure, unlike the FFBP method and GRNN

forecasting performance was found to be superior to the

FFBP, statistical, and stochastic methods in terms of the

selected performance criteria.

Onkal-Engin et al. (2005) used an ANN trained with a

BP algorithm to determine the relationship between sewage

sample odours and their related Biochemical Oxygen

Demand (BOD) values. They concluded that ANNs could

be successfully used to classify the sewage samples col-

lected from different locations of a WWTP. Daneshvar

et al. (2006) developed an ANN model to predict the

performance of decolorization efficiency by electrocoagu-

lation process. They concluded that the ANN model could

describe the behaviour of the complex reaction system with

the range of experimental conditions adopted. Grieu et al.

(2006) studied Kohonen’s self-organizing maps (KSOM)

and MLP neural networks for on-line estimating the effi-

ciency of an activated sludge process. The authors

concluded that KSOM and MLP were proven to be effi-

cient and complementary in charge of the plant monitoring

and maintenance. Another study was carried out by Molga

et al. (2006) to model a full-scale industrial WWTP using

ANNs. The study resulted that sufficiently good accuracy

of the dynamic behaviour predictions were obtained with

experimental data for the considered plant. Cigizoglu and

Kisi (2006) studied on methods to improve the neural

network performance in suspended sediment estimation.

They concluded that the range-dependent neural network

(RDNN) method was found to be superior to conventional

ANN applications, where only a single network was trained

considering the entire training data set.

Perendeci et al. (2007) proposed a conceptual neural-

fuzzy model based on adaptive-network-based fuzzy infer-

ence system (ANFIS) to estimate effluent Chemical Oxygen

Demand (COD) of a full-scale anaerobic wastewater treat-

ment plant for a sugar factory operating at unsteady state.

They concluded that the correlation coefficient between

estimated and measured values of output variable could be

increased to the value of 0.8940, which was considered a

good fit. Alp and Cigizoglu (2007) estimated the daily total

suspended sediment load on rivers using two different ANN

algorithms, the FFBP method and the radial basis functions

(RBF). They concluded that the simulations provided sat-

isfactory results in terms of the selected performance criteria

comparing well with conventional multi-linear regression.

Finally, Ráduly et al. (2007) carried out studies on ANNs

for rapid WWTP performance evaluation. With correlation
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coefficients higher than 0.95 and prediction errors lower

than 10%, the study resulted that the accuracy of the ANN

was sufficient for applications in simulation-based WWTP

design and simulation of integrated urban wastewater

systems.

Although deterministic models (also called as white-box

models) give a good insight into the mechanism, they

require a lot of hard work before applying to a specific

wastewater treatment plant. Because kinetic parameters

and wastewater characteristics can show some fluctuations

in different periods of time when the operating conditions

are applied on a regional scale, calibration of these models

are extremely time consuming, laborious, and needs

extensive laboratory and computer work. However, ANNs

provide a speedy and practical manner for the control

engineer to make a modification and/or a supplement in the

considered process and also to develop an effective con-

tinuous monitoring with regard to the discharge standards.

In addition, calibration of ANN models is easier than the

white-box models as there are fewer parameters used in the

model development process. When the measured variables

start showing difference with the response of ANN, the

model can be re-trained using the newer data used for cross

checking. This process can be automated by embedding the

ANN model in an expert system that controls the complete

system. Consequently, potential advantages and benefits of

the ANN technique have been highlighted by many sub-

stantial research activities above. For these reasons, an

ANN model was proposed in estimation of COD removal

efficiency (CODRE) of up-flow anaerobic sludge blanket

(UASB) reactors treating diluted real textile wastewater in

this study.

In this work, CODRE of UASB reactors being output

parameter of the considered process was predicted by nine

input variables such as hydraulic retention time (HRT), pH,

influent COD concentration (CODi), operating tempera-

ture, alkalinity, volatile fatty acids (VFA) concentration,

dilution ratio, organic loading rate (OLR) and total sus-

pended solids (TSS) concentration using a three-layer ANN

model. In addition to the ANN approach, a linear-nonlinear

study was also carried out to investigate the effects of each

input variable on CODRE values. Regression variable

results including standard error, the t-statistics and the

corresponding P values for each parameter were also pre-

sented. Finally, results obtained from stochastic modeling

approaches proposed in this study were compared and

advantages and further developments were discussed.

2 Materials and methods

2.1 Experimental set-up and operation

Three UASB reactors having a total volume of 1.2 l were

operated for 80 days at mesophilic conditions (36–37.5�C)

in a temperature-controlled water bath (Clifton) with two

hydraulic HRTs of 4.5 and 9.0 days. Imposed volumetric

OLR ranged from 0.072 and 0.602 kg COD/m3/day. Sta-

bility of the treatment process and components of

wastewater samples were monitored in Environmental

Engineering Laboratory at Yildiz Technical University. A

detailed schematic of the experimental set-up is illustrated

in Fig. 1.

The reactors were inoculated with granular biomass

(25% of the working volume) obtained from Tekel Brew-

ery Inc. (Istanbul, Turkey). The reactors then were filled to

their respective volumes with textile wastewater (61% of

the total volume). After the start-up period, the real textile

wastewater obtained from the effluent of a cotton textile

house in Istanbul, Turkey fed to the reactors with domestic

wastewater. Five different dilution ratios of 15, 30, 40, 45

and 60% with domestic wastewater were employed,

respectively. Characteristics of studied real cotton textile

wastewater are given in Table 1.
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Notations with explanations

(1) Feeding tank
(2) Time controlled peristaltic pump
(3) Temperature controlled water bath
(4) Adjustable heater with thermostat
(5) Suction pipe
(6) Influent pipe
(7) Effluent pipe
(8) Gas collecting pipe
(9) Gas bag
(10) Gas sampling valve
(11) Gas collecting tube
(12) Measuring tube
(13) Power cord 
(R1) Reactor-1
(R2) Reactor-2
(R3) Reactor-3

Fig. 1 Detailed schematic of

the experimental set-up
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The study was undertaken in a pH range of 6.20–8.06

and an alkalinity range of 1,350–1,855 mg/l CaCO3. Dur-

ing the experimental study, the pH and alkalinity were

controlled in optimal process conditions, as suggested in

the literature (Ozturk 1999). Depending on the feed char-

acteristics, pH of the influent wastewater was adjusted by

the gradual addition of 1 N H2SO4 and 1 N NaOH reagents

(Merck Chemical Corp.). The concentrations of VFA and

TSS ranged between 420 and 720 mg/l CH3COOH and 68–

338 mg/l, respectively. Imposed CODi concentrations

ranged from 651 to 4,044 mg/l. The variation in the feed-

ing COD concentrations are due to fluctuations in domestic

wastewater characteristics, and also different dilution ratios

applied in experiments.

In feeding, different target HRTs were achieved using a

peristaltic pump (Watson–Marlow 505 L, QC Approved).

Gas was collected from the headspace (14% of the total

volume) on the top of the reactors and gas production was

measured by the liquid displacement method. The gas

collection system consisted of a gas collecting pipe, a gas

bag, a gas collecting tube and a measuring tube.

Six anaerobic reactors having a total volume of 200 ml

were also operated to determine COD fractions of waste-

water samples. These reactors were conducted for about

75 days at mesophilic conditions (36–37.5�C) maintained

by an adjustable aquarium heater with thermostat (Otto

Aquarium Company, Taiwan). Each of six reactors was

seeded with 30 mg/l of acclimated granular sludge and

homogenized with 100 ml of textile wastewater. Results

obtained from inert COD study are summarised in Table 2

(Sapci 2002).

2.2 Description of the input parameters and the output

parameter

HRT is a measure of the amount of time the digester liquid

remains in the digester. Hydraulic retention time is crucial

because if the feed does not stay in the reactor long enough

for the entire treatment process to take place, biogas will

not be produced (Garcelon and Clark 2000).

Anaerobic bacteria, specially the methanogens, are

sensitive to the acid concentration within the digester and

their growth can be inhibited by acidic conditions. Because

the methane step is the rate-limiting step, pH should be

kept near to 7. The optimal pH for bacterial growth of

anaerobic organisms is in the range of 6.5–8.2 and conse-

quently for a rapid sludge granulation the reactor pH

should be maintained at this range (Ozturk 1999).

Influent COD concentration is used as a measure of

organic strength of feed. COD of the wastewater is the

measured amount of oxygen needed to chemically oxidize

the organics present (Kinson et al. 2001).

There are mainly two temperature (mesophilic and

thermophilic) ranges that provide optimum treatment

conditions for an effective COD removal and methane

production in anaerobic treatment. Temperature affects the

activity and the growth of microorganisms. Most of the

experiments carried out so far were conducted at 30�C, but

it is well known that the optimal temperature for meso-

philic growth is situated near 40�C (Amatya 1996).

Table 1 Characteristics of real cotton textile wastewater

Component Value

pH 9.4

Alkalinity (mg/l CaCO3) 1,750

Chemical Oxygen Demand, COD (mg/l) 1,757

Total Kjeldahl Nitrogen, TKN (mg/l) 16

Total Phosphorus, TP (mg/l) 34

Sulfate (mg/l) 760

Detergent (mg/l) 10

Oil and Grease (mg/l) 50

Colour (Pt-Co) 520

Total suspended solids, TSS (mg/l) 95

Mg (mg/l) 2.2

Fe (mg/l) 1.8

Mn (mg/l) 0.3

Zn (mg/l) 10

Pb (mg/l) 0.3

Cr (mg/l) 3

Ni (mg/l) 0.4

Co (mg/l) \0.03

Pb (mg/l) 0.3

Cu (mg/l) 0.3

Table 2 COD fractions of real cotton textile wastewater and

domestic wastewater

COD fractions Cotton textile wastewater Domestic wastewater

Total

(mg/l)

Fraction

(%)

Total

(mg/l)

Fraction

(%)

CT 1,757 100 925 100

ST1 1,440 82 325 35

SI1 + SP 180 10 231 25

SS1 + SH1 1,260 72 94 10

XT1 317 18 600 65

XH + XP 265 15 403 44

XH1 + XS1 52 3 197 21

CT total COD in the influent, ST1 total dissolved COD, SI1 inert COD

in the influent, SP dissolved inert microbial products, SS1 easily

degradable COD, SH1 rapidly hydrolysable COD, XT1 total particulate

COD, XH particulate inert COD in the influent, XH1 active hetero-

trophic biomass, XP particulate inert microbial products, XS1

particular degradable COD
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The pH in anaerobic system is controlled by the inter-

action of the carbon dioxide/bicarbonate buffer system and

a net strong base which is the summation of all strong acids

and bases including volatile fatty acids and ammonia. In

case of pH decrease, it can be maintained in the optimum

range by the buffering effect of alkalinity (Amatya 1996).

In anaerobic treatment, change in VFA concentration is

the most sensitive parameter, the reason being that the pri-

mary cause of digester failure hinges around imbalance

between acidogenic, acetogenic and methanogenic organ-

isms (Lahav and Loewenthal 2000). When the concentration

of undissociated VFA remains high for prolonged periods,

methanogens are slowly wiped out and acetogens predom-

inate in the biorectors. Hence, the controlling of VFA

accumulation is inevitable to obtain an effective COD

removal and methane production.

Because textile industries have seasonal fluctuations in

human activities, the ratio of domestic effluents mixing

into the textile wastewater shows diversity. Hence, differ-

ent dilution ratios of 15, 30, 40, 45 and 60% with domestic

wastewater were employed to represent seasonal fluctua-

tions in this study.

OLR is an important parameter significantly affecting

microbial ecology and characteristics of UASB systems.

This parameter integrates reactor characteristics, opera-

tional characteristics, and bacterial mass and activity into

the volume of media (Torkian et al. 2003).

Suspended solids are present in sanitary wastewater and

many types of industrial wastewater. As levels of sus-

pended solids increase, a water body begins to lose its

ability to support a diversity of aquatic life. In this study,

TSS concentration was selected as a control parameter on

effluent quality requirements.

CODRE of UASB reactors being output parameter

was considered as a measure of treatment performance.

CODRE value is defined as follows:

CODRE ð%Þ ¼ CODi � CODe

CODi

� �
� 100 ð1Þ

where CODi and CODe are the influent and effluent COD

concentrations, respectively.

2.3 Analytical methods

Input parameters used in the proposed models such as pH,

CODi, Alkalinity, VFA and TSS of wastewater samples

were determined by the procedures described in Standard

Methods (APHA-AWWA 1995). These parameters were

determined by Open Reflux Method for COD, Distillation

Method for VFA, Gravimetric Method for TSS, and

Titration Method for Alkalinity, respectively. The pH was

measured by Jenway 3040 Ion Analyser. Concentrations of

other components given in Table 1 were analyzed by

Direct Air Acetylene Flame Method for heavy metals,

Macro–Kjeldahl Method for TKN, Persulfate Digestion

Method for TP, Visual Comparison Method for Color,

Soxhlet Extraction Method for Oil and Grease, MBAS

Method for detergents, and Gravimetric Method with dry-

ing of residue for Sulfate. During the study, the operational

temperature of the reactors was detected by a temperature

probe and monitored with a digital thermometer. Moni-

toring the performances of three reactors for an 80 days of

continuous experimental study after the start-up period,

227 data points for each input variables were obtained in

total. Variation of input parameters and CODRE values for

227 experimental observations are given in Fig. 2.

2.4 Definition of the neural network model

In this study, Neural Network Toolbox V4.0 of MAT-

LAB1 was used to predict CODRE values. A total of nine

operating parameters which are effective in prediction of

CODRE of UASB reactors, such as HRT (day), pH,

influent COD concentration (mg/l), operating temperature

(�C), alkalinity (mg/l CaCO3), VFA concentration (mg/l

CH3COOH), dilution ratio (%), OLR (kg COD/m3/day)

and TSS (mg/l) concentration were selected as the ANN

model inputs [p] and CODRE values obtained from the

experimental study were taken as the output [t] (Table 4).

The ANN model used back-propagation (BP) algorithm to

predict CODRE values based on input vector (9 · 227) of

nine operating variables and target vector (1 · 227)

obtained from the experimental study. Operating ranges of

nine input variables considered in the ANN modeling and

their descriptive statistics are given in Table 3. The data

gathered from the experimental study was divided into

input matrix [p] and target matrix [t].

The first step, the data was loaded into the workspace.

Original network inputs and targets given in the matrices [p]

and [t] were normalized using an algorithm code, prestd.

The normalized inputs and targets, pn and tn were gained

zero means and unity standard deviation. The mean and

standard deviations of the original inputs and targets were

defined before the network had been trained. Moreover, the

matrices containing the transformed input vectors and the

principal component transformation matrix were defined,

respectively. All these vectors were used in transformation

for future inputs.

The next step, principal component analysis (PCA) was

performed as an effective procedure for the determination of

input parameters. In some situations, the dimension of the

input vector is large, but the components of the vectors are

highly correlated (redundant). It is useful in this situation to

reduce the dimension of the input vectors. This technique

Stoch Environ Res Risk Assess (2009) 23:13–26 17
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(featuring an algorithm code, prepca, which performs

PCA) eliminated principal components that made the least

contribution (less than 0.1%) to variation in the data set, so

it can be said that principal components which accounted

for 99.9% of the variation were used. It was observed that

there was a redundancy in the data set and size of the

transformed data after the computation. The PCA analysis

reduced the size of input vectors to eight input parameters.

This step was followed by the division of the original data

into training, validation and testing subsets.

One fourth of the the original data was taken for the

validation set, one fourth for the testing set and one half for

the training set. Hence, 114 input sets were used for the

training. A total of 56 input sets and 57 inputs sets were

used for the validation and testing, respectively. The

experimental data was loaded into the workspace at ran-

dom. The sets were picked as equally spaced points

throughout the random original data. The training set

enables to train the network on a representative set of input/

target pairs and get good forecasting results. This property

of the ANN provides to get a new output similar to the

correct output. The function train carries out such a loop of

calculation. In each pass, the function train proceeds

through the specified sequence of inputs, calculating the

output, error and network adjustment for each input vector

in the sequence as the inputs are presented.

3 Results and discussion

3.1 Selection of backpropagation (BP) algorithm

It is very difficult to know which training algorithm will be

the fastest for a given problem. It will depend on many

factors, including the complexity of the problem and the

number of data points in the training set (Yetilmezsoy and

Saral 2007). In general, on networks, which contain up to a

few hundred weights the Levenberg–Marquardt algorithm

(LMA) will have the fastest convergence. This advantage is

especially noticeable if very accurate training is required.

The Quasi-Newton methods are often the next fastest

algorithms on networks of moderate size. The BFGS

algorithm is generally faster than the conjugate gradient

algorithms. Of the conjugate gradient algorithms, the

Powell–Beale procedure requires the most storage, but

usually has the fastest convergence. The Polak–Ribiére has

performance similar to the Powell–Beale. It is difficult to

predict which algorithm will perform best on a given

problem. The storage requirements for Polak-Ribiére

(4 vectors) are slightly larger than for Fletcher–Reeves

(3 vectors). The Fletcher-Reeves generally converges in

fewer iterations than Rprop even though there is more

computation required in each iteration. Rprop and the

scaled conjugate gradient algorithm do not require a line

search and have small storage requirements. They are

reasonably fast, and are very useful for large problems. The

variable learning rate algorithm is usually much slower

than the other methods, and has about the same storage

requirements as Rprop, but it can still be useful for some

problems. The one step secant algorithm requires less

storage and computation per epoch than the BFGS algo-

rithm. It requires slightly more storage and computation per

epoch than the conjugate gradient algorithms. It can be

considered a compromise between full Quasi-Newton

algorithms and conjugate gradient algorithms. In Batch

Gradient methods, the weights and biases are updated in

the direction of the negative gradient of the performance

function.

Table 3 Data statistics of model variables considered in the ANN modeling

Variables Data statistics

Units Number of

Points

Maximum

value

Minimum

value

Range Average Standard

deviation

Input parameters [p]

Hydraulic retention time (day) 227 9.0 4.5 4.5 6.88 2.25

Influent COD concentration (mg/l) 227 4044 651 3393 1870.38 989.31

pH (–) 227 8.06 6.2 1.86 7.37 0.38

Operating temperature (�C) 227 37.5 36.0 1.50 32.42 0.27

Alkalinity (mg/l CaCO3) 227 1855 1350 505 1578.15 114.81

Volatile fatty acids (mg/l CH3COOH) 227 720 450 270 568.77 59.10

Dilution ratio (%) 227 0.60 0.15 0.45 0.31 0.12

Organic loading rate (kg COD/m3/day) 227 0.602 0.072 0.53 0.28 0.13

Total suspended solids (mg/l) 227 338 68 270 160.37 54.573

Output parameter [t]

COD removal efficiency (%) 227 0.76 0.04 0.72 0.47 0.16
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A number of benchmark comparisons of the various

training algorithms were performed in this study. 11 BP

algorithms were compared to select the best fitting BP

algorithm (Table 4). For all BP algorithms, a three-layer

network with a tangent sigmoid transfer function (tansig) at

hidden layer and a linear transfer function (purelin) at

output layer, were used. Ten neurons were used at the

hidden layer for all BP algorithms. Results of benchmark

comparisons showed that the LMA, with a minimum mean

squared error (MSE) was selected as the best of 11 BP

algorithms. The comparison between BP algorithms is

illustrated in Fig. 3.

3.2 Optimization of neural network structure

Almasri and Kaluarachchi (2005) reported that optimiza-

tion of a neural network is an important task of neural

network-based studies. This operation plays an important

role in the performance of the network. Hence, an opti-

mization was carried out between the neuron number and

MSE. Then, the three-layer neural network were evaluated

by the best BP algorithm selected as the best of 11 BP

algorithms (Table 4).

In optimization of the network, two neurons were used

in the hidden layer as an initial guess. With increasing of

neuron number, the network gave several local minimum

values and different MSE values were obtained for the

training set. However, increasing neuron numbers to more

than 12 caused an unrealistic result and mean squared error

began to increase. Hence, the optimal neuron number for

the LMA was found to be 12 neurons (MSE 0.0223/0).

Figure 4 illustrates the dependence between the neuron

number and MSE. The training stopped after 11 iterations

(TRAINLM, Epoch 11/100) for the LMA because the

differences between training error and validation error

started to increase. Detailed descriptive statistics of the

proposed ANN model subsets are given in Table 5. The

optimal neural network structure, together with a flowchart

of the BP algorithm, is shown in Fig. 5: a three-layer

network, with tangent sigmoid transfer function (tansig) at

hidden layer with 12 neurons and a linear transfer function

(purelin) at output layer. Their mathematical definitions of

tansig and purelin are given in Eqs. (2) and (3):

f nð Þ ¼ 2

1þ e�2nð Þ � 1 ð2Þ

f nð Þ ¼ n ð3Þ

Although a linear transfer function (purelin) was used in

the output layer, there was no negative ANN estimation

present in ANN outputs. This can be attributed to the

characteristics of the input vector used in this study.

However, it is well-known that the linear output layer with

a linear transfer function sush as purelin lets the network

produce values outside the range –1 to +1. Therefore,

negative ANN estimations may be expected depending on

the characteristics of the input vector. On the other hand, if

Table 4 Comparison of 11 BP algorithms with ten neurons in the hidden layer

BP algorithm Function R2 MSE IN BLE

Resilient backpropagation (Rprop) trainrp 0.865 0.1535 16 y = 0.792 x + 0.097

Fletcher–Reeves conjugate gradient backpropagation traincgf 0.826 0.1650 15 y = 0.701 x + 0.138

Polak–Ribiére conjugate gradient backpropagation traincgp 0.844 0.1885 16 y = 0.715 x + 0.135

Powell–Beale conjugate gradient backpropagation traincgb 0.777 0.2321 09 y = 0.699 x + 0.154

Levenberg–Marquardt backpropagation trainlm 0.870 0.0334 22 y = 0.862 x + 0.061

Scaled conjugate gradient backpropagation trainscg 0.796 0.2079 10 y = 0.673 x + 0.154

BFGS Quasi–Newton backpropagation trainbfg 0.802 0.1858 10 y = 0.620 x + 0.182

One step secant backpropagation trainoss 0.793 0.2212 10 y = 0.580 x + 0.189

Batch gradient descent traingd 0.713 0.4692 100 y = 0.591 x + 0.182

Vairable learning rate backpropagation traingdx 0.410 0.9234 16 y = 0.334 x + 0.303

Batch gradient descent with momentum traingdm 0.777 0.3779 100 y = 0.560 x + 0.201

MSE mean squared error; IN iteration number; R2 correlation coefficient; BLE best linear equation; y ANN output; x experimental data
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Fig. 3 The comparison between backpropagation (BP) algorithms
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it is desirable to constrain the outputs of a network (such as

between 0 and 1) then the output layer should use a sig-

moid transfer function (such as logsig). Therefore, the

linear activation function of the output neuron is replaced

by a logarithmic sigmoid transfer function of Eq. (4) whose

output is always positive (Huang 2005).

f nð Þ ¼ 1

1þ e�nð Þ ð4Þ

In some cases, depending on the characteristics of data

set, higher MSE values can be observed for an ANN

structure with a sigmoid transfer function (logsig) at output

layer compared to an ANN structure with a linear transfer

function (purelin) at output layer. Because the optimal

architecture of the ANN model and its parameter variation

are determined based on the minimum value of the MSE,

the second ANN structure is preferable even though the

possible negative estimations do not match the actual

outputs, which are always larger than zero. This time,

negative estimations can be normally set to zero in

practice. This was applied in some computational studies

(Zhang 2004; López et al. 2007; Crujeiras and Fernández-

Casal 2006). However, Cigizoglu et al. (2007) reported that

generalized regression neural network (GRNN) method

could be a good technique to avoid negative estimations

even though it could provide some overestimations for

0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of neurons at hidden layer for the LMA

)
E

S
M(

rorr
E

derauq
S

nae
M

Fig. 4 The dependence between MSE and number of neurons at

hidden layer for the LMA

Table 5 Detailed descriptive statistics of the proposed ANN model subsets

Descriptive statistics ANN subsets

Training Validation Testing

Data statistics

Size 114 56 57

Minimum value (CODRE, %) 0.07 0.11 0.14

Maximum value (CODRE, %) 0.72 0.78 0.76

Range (CODRE, %) 0.65 0.67 0.62

Mean ± standard deviation 0.47 ± 0.15 0.46 ± 0.17 0.47 ± 0.13

Regression variable results (y = ax + b)

Coefficient of multiple determination (R2) 0.9545 0.7336 0.8245

Adjusted coefficient of multiple determination (Ra
2) 0.9541 0.7286 0.8210

Regression Coefficient, RC (a) 0.9173 0.8834 0.7830

Standard error for RC 1.8915 7.2450 4.8811

T-ratio for RC 48.49 12.19 16.05

P value for RC 0.00 0.00 0.00

Constant term, CT (b) 0.0415 0.0394 0.1022

Standard error for CT 9.2729 3.6637 2.4078

T-ratio for CT 4.48 1.08 4.23

P value for CT 0.00 0.29 0.00

Residual statistics

Residual tolerance 1 · 10–10 1 · 10–10 1 · 10–10

Sum of residuals –3.9 · 10–14 –5.94 · 10–15 –8.05 · 10–16

Average residual –3.418 · 10–16 1.06 · 10–16 1.41 · 10–17

Minimum residual –0.095 –0.3270 –0.1190

Maximum residual 0.096 0.1487 0.1218

Residual sum of squares (absolute) 0.1209 0.4127 0.1786

Standard error of the estimate 0.033 0.087 0.057

Durbin–Watson statistics 1.7424 1.4978 1.5871

Stoch Environ Res Risk Assess (2009) 23:13–26 21

123



some parts of the data. They observed that feed forward

back propagation (FFBP), radial basis function (RBF)

and multi linear regression (MLR) methods provided

estimations having negative values for some of data. For

the GRNN method, on the other hand, this problem was not

seen by authors.

A regression analysis of the network response between

the output and the corresponding target was performed.

The linear regression between the network outputs and the

corresponding targets showed that the neural network

outputs (forecasted data) were obviously agreed with the

experimental data. The correlation between ANN testing

outputs and the experimental data is depicted in Fig. 6. The

agreement between testing outputs and the experimental

data is shown in Fig. 7. ANN testing outputs showed a very

small deviation in CODRE with a maximum deviation of

about 0.1218 from the experimental data (R2 = 0.8245).

3.3 Linear-nonlinear study

In this section, the experimental data was also evaluated by

DataFit1 scientific software (version 8.1.69, Copyright �
1995–2005 Oakdale Engineering) and results were com-

pared with neural network outputs and experimental

values. The Levenberg–Marquardt method with double

precision was performed in the linear-nonlinear study. As

regression models are solved, they were sorted automati-

cally according to the goodness of fit criteria.The

experimental data was imported directly from Microsoft1

Excel used as an open database connectivity data source

and regression analysis was performed. Two linear models

INPUT LAYER = [p] HIDDEN LAYER OUTPUT LAYER = [t]

1

2

4

5

CODRE (%) = [t]

5. Alkalinity (mg/L CaCO3) = [p5]
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Fig. 6 The correlation between ANN testing outputs and the

experimental data
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and one exponential model were obtained from the

regression results. Results are summarized in Table 6.

The coefficients (a, b, c, d, e, f, g, h, and i), constant

term (j) and independent variables (x1, x2, x3, x4, x5, x6, x7,

x8 and x9) in terms of original operating variables used in

the best-fit model and regression variable results including

standard error, the t-statistics and the corresponding P

values for each parameter are given in Table 7. The best-fit

model defined as a function of nine process variables

[CODRE = f(HRT, CODi, pH, T, ALK, VFA, DR, OLR,

TSS)] is given in Eq. (5).

CODRE ¼ 2:652� 10�2
� �

HRTþ 1:385� 10�4
� �

CODi

þ 8:167� 10�2
� �

pH

þ 0:116ð ÞTþ �1:797� 10�4
� �

ALK

þ �5:048� 10�4
� �

VFA þ 0:05214ð ÞDR

þ �0:294ð ÞOLRþ �5:63� 10�4
� �

TSS� 4:362

ð5Þ

In linear-nonlinear study, the aim was to investigate the

effects of nine input variables on CODRE values. Hence, a

regression analysis was carried out. Results showed the

significance of each variable. T-ratio represents the ratio of

the estimated parameter value to the estimated parameter

standard deviation. The larger ratio indicates the more

significant parameter in the regression model. Moreover,

the variable with the lowest P value is considered the most

significant. Briefly, T-ratios and P values showed that the

CODi concentration, HRT, operating temperature, TSS

concentration and pH had more importance than the OLR,

alkalinity and VFA concentration for this model structure.

Figure 8 shows the agreement between the regression

model outputs and the experimental data for 227 observa-

tions. Regression model outputs showed a reasonable
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Fig. 7 Agreement between ANN testing outputs and the experimen-

tal data

Table 6 Summary of regression results

Rank Model SEE SR AR RSS R2 Ra
2 NNI DWS

1 a*x1+b*x2+c*x3+d*x4+e*x5+f*x6+g*x7+h*x8+i*x9+j 0.092 –1.08 · 10–12 –4.75 · 10–15 1.84 0.685 0.672 11 1.04

2 Exp(a*x1+b*x2+c*x3+d*x4+e*x5+f*x6+g*x7+h*x8+i*x9+j) 0.095 –0.066 –0.00029 1.94 0.668 0.654 8 1.02

3 a*x1+b*x2+c*x3+d*x4+e*x5+f*x6+g*x7+h*x8+I*x9 0.095 –0.030 –0.00013 1.97 0.662 0.650 3 1.01

SEE standard error of the estimate; SR sum of residuals; AR average residual; RSS residual sum of squares; R2 coefficient of multiple

determination; Ra2 adjusted coefficient of multiple determination; NNI number of non-linear iterations; DWS Durbin–Watson statistics

Table 7 Model components and regression variable results for the best-fit model

Coefficients and constant term ( j ) Independent and original variables Standard error T-ratio P value

a = 2.652 · 10 –2 x1 = HRT: Hydraulic retention time (day) 7.231 · 10–3 3.668 0.00

b = 1.385 · 10–4 x2 = CODi: Influent COD conc. (mg/L) 2.523 · 10–5 5.489 0.00

c = 8.167 · 10–2 x3 = pH: pH values 3.607 · 10–2 2.264 0.02

d = 0.116 x4 = T: Operating temperature (�C) 2.923 · 10–2 3.960 0.00

e = –1.797 · 10–4 x5 = ALK: Alkalinity (mg /L CaCO3) 8.268 · 10–5 –2.173 0.03

f = –5.048 · 10–4 x6 = VFA: Volatile fatty acids (mg CH3COOH/L) 1.361 · 10–4 –3.708 0.00

g = 5.214 · 10–2 x7 = DR: Dilution ratio (%) 6.916 · 10–2 0.754 0.45

h = –0.294 x8 = OLR: Organic loading rate (kg COD/m3/day) 0.170 –1.727 0.09

i = 5.630 · 10–4 x9 = TSS: Total suspended solids (mg/L) 1.699 · 10–4 3.313 0.00

j = –4.362 Constant term 1.115 –3.913 0.00
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CODRE deviations with a maximum deviation of about

0.2845 from the experimental data (R2 = 0.685). Residual

errors the regression model outputs and the experimental

data are shown in Fig. 9. To evaluate the model perfor-

mance, descriptive statistics of the residual errors are given

in Table 8.

3.4 Comparison of models

Results of stochastic modeling studies showed that the

ANN model produced smaller deviation and exhibited a

better predictive performance on forecasting of CODRE

values, compared to regression model outputs. Minimum

and maximum residuals between regression model outputs

and the experimental data were determined to be –0.2539

and 0.2845, respectively. However, ANN testing outputs

showed a smaller deviations from the experimental data

with a minimum and maximum residuals of –0.1190 and

0.1218, respectively. Although R2 was found about 0.685

for the regression model, the correlation coefficient between

ANN testing outputs and measured values was calculated to

be 0.8245, which can be regarded a good fit. This can be

attributed to the advantage of ANNs on complex interac-

tions between the inputs and the output, without requiring a

mathematical model and any prior knowledge of a solution

(Stanley 1988; McCann 2005). Similarly, Roth (1988) and

Stevenson (1991) emphasized that ANN techniques could

be a good alternative to statistical and theoretical techniques

and also iterative problems because of their speed and

capability of learning, robustness, predictive capabilities,

non-linear characteristics, non-parametric regression capa-

bilities, generalization properties and easiness of working

with high-dimensional data. Figure 10 shows a head-to-

head comparison of performance for experimental data,

ANN testing outputs and regression model outputs.
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Table 8 Descriptive statistics

of the residuals errors

Ya actual data point; Yp

predicted values; n number of

data points or observations; r
standard deviation of data point;

p number of parameters or

variables in the regression

model

Residual statistics Calculation Regression results

Residual tolerance Ya � Yp

� �
1 · 10–10

Sum of residuals
Pn
i¼1

Ya � Yp

� �
–1.08 · 10–12

Average residual

Pn

i¼1

Ya�Ypð Þ
n –4.75 · 10–15

Residual or error sum of squares (Absolute) SSE ¼
Pn
i¼1

Ya � Yp

� �2
1.842

Residual or error sum of squares (Relative) SSER ¼
Pn
i¼1

Ya � Yp

� �2 1
r2

h i
1.842

Standard error of the estimate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

Ya�Ypð Þ2

n�p

s
¼

ffiffiffiffiffiffiffiffiffi
SSE
n�p

q
9.21 · 10–15
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4 Conclusions

The real cotton textile wastewater diluted with domestic

wastewater was satisfactorily treated by means of high-rate

anaerobic processes, specifically with the use of UASB

reactors. UASB reactors showed a remarkable performance

on total COD removals with a maximum treatment effi-

ciencies of 60 and 80% for the corresponding HRTs of 4.5

and 9.0 days, respectively. The ANN model used in this

study showed a precise and an effective prediction of

CODRE values with a saticfactory correlation coefficient

of 0.8245 for nine different process parameters. The LMA

was found as the best of 11 BP algorithms. The optimal

neuron numbers for the LMA were determined to be 12

with a MSE of 0.0223/0. Regression variable results

including T-ratios and P values showed that influent COD

concentration, HRT, operating temperature, TSS concen-

tration and pH were found to be more important than

organic loading rate, alkalinity and VFA concentration on

CODRE values for this model structure.

Even though the hydraulic characteristics of the anaer-

obic process is very complicated, a number of attempts in

developing prediction models can help to develop a better

understanding of the process. Choosing the most appro-

priate model representing the extension of the experimental

data can help to recognize possible technical faults and to

reduce operating costs of plants in the planning stage.

Therefore, ANN outputs can be evaluated for different

operating data before transferring the concepts to a full

scale plant. Based on the ANN predictions on CODRE

values, effluent water quality will be evaluated in a speedy

and practical manner with respect to discharge standards.

In addition, imposed organic and hydraulic loading rates

will be selected accurately depending on the desired

treatment efficiency. In some cases, it should be noted that

the effluent quality in terms of COD obtained may not be

meet with the effluent discharge standards depending

on the variations in feeding wastewater characteristics.

Therefore, a post-treatment is needed to guarantee the

desired effluent quality. From this point of view, ANN

predictions on CODRE values will also helps the control

engineer to determine the required loading capacity on the

subsequent treatment units. This will help to reduce oper-

ating costs of plants in the planning stage.

On the basis of the advantages of ANNs pointed in this

study, the future study will be focused on modeling of

UASB system treating different types of real textile

wastewaters such as polyester and wool textile manufac-

turing. Furthermore, different input variables will be tested

to observe the effects of each model component on

CODRE values.
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