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Abstract In the nonseparable spatio-temporal context,

several efforts have been made in order to obtain general

classes of spatio-temporal covariances. Our aim in this

paper is to join several approaches coming from different

authors and provide some ideas for the construction of new

models of spatio-temporal covariance and spectral density

functions. On one hand, we build new covariance families

while removing some undesirable features of the previ-

ously proposed models, particularly following Stein’s (in J

Am Stat Assoc 100:310–321, 2005) remark about Gneit-

ing’s (in J Am Stat Assoc 97:590–600, 2002) approach and

about some tensorial product covariance models. We show

some of the theoretical results and examples obtained with

the product or the sum of spatio-temporal covariance

functions or even better with the mixed forms. On the other

hand, we define new models for spectral densities through

the product of two other spectral densities. We give some

characterizations and properties as well as several exam-

ples. Finally, we present a practical modelling of Irish wind

speed data based on some of the space-time covariance

models presented in this paper.

Keywords Irish wind speed data � Matérn model �
Mixed-form covariance � Nonseparability �
Product-sum covariance � Space-time covariance function �
Spectral density function

1 Introduction

Stochastic models describing how processes vary across

space and time are essential to the application of statistics

to a wide range of environmental applications. However,

the structural analysis of such processes is more difficult

than for merely spatial or for temporal ones.

Estimating and modelling the correlation of a space-

time process are principal objectives in geostatistical

analysis. The extension of geostatistical techniques to the

space-time domain in order to provide tools for joint

analysis of the space and time components, is only

apparent because of certain characteristics of spatio-tem-

poral phenomena (Rouhani and Hall 1989).

Because it is often difficult to think about spatial and

temporal variations simultaneously, it is tempting to focus

on the analysis of how the covariances at a single place

vary across time, and how the covariances at a single time

vary across space. If these were the only characteristics that

mattered, then separable models would suffice. Allowing

the merely spatial and temporal covariances to define the

space-time dependence structure is a severe restriction,

however.

In modern literature we can find several approaches to the

construction of nonseparable covariances. In the first con-

tributions the focus is on extending spatial or temporal

methods to spatio-temporal ones, considering the spatio-

temporal dependence separately in most of the cases. These

extension approaches could be classified into two main

categories: the former considers a pure extension of multi-

variate spatial or temporal models, and the latter is based on

considering an univariate spatio-temporal process. Even if

there are many points in common between the two ap-

proaches, some distinctions are necessary in order to see the

opportunity of applying one approach despite to the other.
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Following Stein (2005), separable covariance functions

generally imply that small changes in the locations of

observations can lead to large changes in the correlations

between certain linear combinations of observations. The

source of this discontinuity can be traced to a lack of

smoothness away from the origin of separable functions.

Furthermore, many of the nonseparable space-time

covariance functions proposed in recent works have a

similar lack of differentiability along certain axis and thus

similar properties with their implied correlations. One is

thus led to seek space-time covariance functions that are

smooth everywhere except possibly at the origin. How-

ever, there are other properties, besides smoothness away

from the origin, to consider in developing models for

space-time covariance functions. One desirable such

practical property is to have an explicit expression for the

space-time covariance function or, if that is not available,

at least a fast and accurate algorithm for computing it

numerically.

Before continuing with history of spatio-temporal

modelling, let us introduce some notations necessary to

understand the sequel. Assume that a spatio-temporal

process admits a decomposition of the form

Zðs; tÞ ¼ lðs; tÞ þ dðs; tÞ; ð1Þ

where s in a point lying on R
d Euclidean space (d = 1,2,...),

t is a time parameter which is assumed in this case to vary

continuously on R: Furthermore l(s,t) is some deterministic

trend and d(s,t) is a spatio-temporal process with zero-mean

and variogram structure not necessarily stationary

2cðs1; s2; t1; t2Þ ¼ VarðZðs1; t1Þ � Zðs2; t2ÞÞ: ð2Þ

In the sequel we assume weak stationarity, in order to have

a covariance structure depending only on the spatial and

temporal lags. Besides, nonstationary models are usually

obtained as an extension from stationary forms. Let us

focus now on the previously mentioned categories of

approach to spatio-temporal modelling, strictly depending

on data configuration: whenever the spatial data set is more

dense than the temporal one, usually a multivariate spatial

process is considered (Egbert and Lettenmaier 1986). In the

other case, a multivariate temporal process is considered

(Solow and Gorelik 1986). As previously stated, we

consider from now on weakly stationary spatio-temporal

processes, which is equivalent to assume respectively that

the variogram, or the covariogram, only depends on the

spatial and temporal lag, indeed,

cðsþ h; t þ uÞ � cðh; uÞ;
Cðsþ h; t þ uÞ � Cðh; uÞ;

ð3Þ

where C(.,.) indicates the spatio-temporal covariance

function. Starting from these assumptions several authors

tried to extend basic methodologies to the problems arising

when modelling a spatio-temporal process. For instance,

Dimitrakopoulos and Luo (1994) proposed some geomet-

rically anisotropic models for spatio-temporal data. Guttorp

et al. (1992) proposed some separable covariance struc-

tures, obtained with the tensor product of a spatial and a

temporal covariance (which, in the Gaussian case, is

equivalent to state that the process d(s,t) can be factorized

into d1(s)d2(t), where d1(s) and d2(t) are mutually inde-

pendent). In the same context of separability, Rohuani and

Hall (1989) proposed the so called sum-variogram. Other

approaches are based on the fact that the drift could en-

tirely catch the temporal variability, in order to obtain a

purely spatial random process as d(s,t) = d(s) (Sampson

and Guttorp 1992). In the nonseparable context, several

efforts have been made in order to obtain classes (as gen-

eral as possible) of spatio-temporal covariances. It is worth

citating Jones and Zhang (1997), Cressie and Huang

(1999), Christakos (2000), De Cesare et al. (2001),

Gneiting (2002), Ma (2003), Stein (2005) and Fernández-

Casal (2003). The majority of contributions regard sta-

tionary spatio-temporal covariances assuming isotropy on

space and time. Particularly, Cressie and Huang (1999)

proposed a spectral approach to obtain spatio-temporal

covariances, and Gneiting’s (2002) work represents the

natural generalization to this approach, obtained using

completely monotone functions and functions whose first

derivative is completely monotone. Stein (2005) puts

emphasis to the spectral approach and to the fact that a

spatio-temporal spectral density must be sufficiently

smooth away from the origin, as well as to the problems of

differentiability away from the origin, introducing some

important criteria allowing to show the differentiability of

the covariance function obtained as Fourier transform of a

certain class of spectral densities. Finally, Fernández-Casal

(2003) extends the Shapiro-Botha approach to flexible

variograms in the spatio-temporal context. In the nonsta-

tionary context, important contributions come from

Christakos (2000), Fuentes and Smith (2001), Fuentes

(2002), Christakos (2002) and Kolovos et al. (2004).

In this paper our aim is to join several approaches

coming from some of these authors and provide key ideas

for the construction of spatio-temporal spectral densities

and covariance functions. In particular, we try to remove

some undesirable features of the previously proposed

models, particularly following Stein’s remark about

Gneiting’s approach and about some tensorial product

covariance models. Specifically, Stein (2005) observes that

models of the type exp (–|x| –|t|), obtained with a tensorial

product of two exponential covariance functions on space
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and time, are not differentiable at the origin and denote a

lack of differentiability along certain axis, which in turn

implies discontinuities of the autocorrelation function away

from the origin. Furthermore, while emphasizing the need

for spatio-temporal covariance functions which are suffi-

ciently smooth away from the origin, Stein (2005) observes

that Gneiting’s approach leads to some undesirable fea-

tures, such as the fact that whatever the lack of smoothness

of C(x,0) for x near zero, it will be shared by C(x,t) for

t „ 0 and x near zero, since C(x,t) is just a rescaling of

C(x,0). Starting from Stein’s recommendation, we propose

here the symmetric version of Gneiting’s assumption, in

which a spatio-temporal covariance function can be

obtained in the following way (generalized version):

Cðh; uÞ ¼ r2

wð uk k2Þd=2
u

hk k2

wð uk k2Þ

 !
; h;uð Þ 2 R

d � R
l;

ð4Þ

with d,l nonnegative integers. Here u(.) is a completely

monotone function defined on [0,¥) and w(.) a positive

function with completely monotone derivative. A valid

spatio-temporal covariance function can also be obtained,

following Gneiting (2002), with the form

Cðh; uÞ ¼ r2

wð hk k2Þl=2
u

uk k2

wð hk k2Þ

 !
; h; uð Þ 2 R

d � R
l;

ð5Þ

Starting with this very simple result, we try to obtain

some nice models simply by using the tensorial product,

the sum or the sum-product (De Cesare’s model 2001) of

Eqs. 5, and 6. Particularly, we show that whenever

choosing the two completely monotone functions to be

proportional to a Matérn–Whittle form, we can obtain

some interesting particular cases allowing to show some

covariance functions that do not depend on negative

exponential structures, which are undesirably not differ-

entiable at the origin.

The plan of the paper is the following. Section 2 de-

scribes some of the new theoretical results about the con-

struction of spatio-temporal covariance functions. We

show some particular examples obtained with the product

or the sum of spatio-temporal covariance functions or

better with the mixed forms, while analyzing some par-

ticular cases. Section 3 defines new models for spectral

densities through the product of two other spectral densi-

ties. We give some characterizations and properties as well

as several examples. Section 4 illustrates practical strate-

gies in order to construct and apply one of the parametric

families presented in this paper to the Irish wind data of

Haslett and Raftery (1989). The paper ends with some

conclusions and discussion.

2 Building spatio-temporal covariance functions

We introduce some theoretical results to build new models

of readily interpretable spatio-temporal covariance func-

tions. Particular examples based on selected models and

parameter settings are presented.

Proposition 1 (Mixed forms) Let C1ðh; uÞ and C2ðh; uÞ
be valid nonseparable spatio-temporal covariance func-

tions with ðh; uÞ 2 R
d � R: Let C3ðhÞ and C4(u) be

respectively valid spatial and temporal covariance func-

tions. Finally, let k12, ki, i = 1,...,4 be nonnegative

constants, and n a natural number. Then

Cðh; uÞ ¼ Ciðh; uÞ þ C3ðhÞ þ C4ðuÞ; i ¼ 1; 2 ð6Þ

Cðh; uÞ ¼ C1ðh; uÞC2ðh; uÞ þ C3ðhÞ þ C4ðuÞ ð7Þ

Cðh; uÞ ¼ C1ðh; uÞ þ C2ðh; uÞ þ C3ðhÞ þ C4ðuÞ ð8Þ

Cðh; uÞ ¼ k12C1ðh; uÞC2ðh; uÞ þ k3C3ðhÞ þ k4C4ðuð ÞÞn

ð9Þ

and

Cðh; uÞ ¼ k1C1ðh; uÞ þ k2C2ðh; uÞ þ k3C3ðhÞð
þk4C4ðuÞÞn

ð10Þ

are valid spatio-temporal covariance functions.

Proof The proof is direct application of the properties of

covariance functions. Specifically, for the sum and product

it is sufficient to recall that covariance functions are closed

under the sum and tensor product operations. Observe that

permissibility of Eqs. 9 and 10 is preserved for n natural

number, but in general they are not valid for n real and

positive.

It is interesting to note that following Gneiting, expres-

sions 6, 7, 8, 9 and 10 would take the forms

Cðh; uÞ ¼ r2

wð hk k2Þl=2
ui

uj j2

wð hk k2Þ

 !
þ u3 hk k2

� �

þ u4 uj j2
� �

; i ¼ 1; 2 ð11Þ

Cðh;uÞ¼ r2

w2ð hk k2Þl=2w1ð uj j2Þd=2
u1

hk k2

w1ð uj j2Þ

 !
u2

� uj j2

w2ð hk k2Þ

 !
þu3 hk k2

� �
þu4 uj j2

� �
; ð12Þ

Stoch Environ Res Risk Assess (2008) 22 (Suppl 1):S65–S79 S67

123



Cðh; uÞ ¼ r2

w1ð uj j2Þd=2
u1

hk k2

w1ð uj j2Þ

 !
þ r2

w2ð hk k2Þl=2
u2

� uj j2

w2ð hk k2Þ

 !
þ u3 hk k2

� �
þ u4 uj j2

� �
;

ð13Þ

Cðh;uÞ¼ k12

r2

w2ð hk k2Þl=2w1ð uj j2Þd=2
u1

hk k2

w1ð uj j2Þ

 ! 

�u2

uj j2

w2ð hk k2Þ

 !
þk3u3 hk k2

� �
þk4u4 uj j2

� �
Þn;

ð14Þ

Cðh; uÞ ¼ k1

r2

w1ð uj j2Þd=2
u1

hk k2

w1ð uj j2Þ

 ! 

þ k2

r2

w2ð hk k2Þl=2
u2

uj j2

w2ð hk k2Þ

 !
:

þk3u3 hk k2
� �

þ k4u4 uj j2
� ��n

; ð15Þ

where /i(t), t ‡ 0, i = 1,...,4 are completely monotone

functions and wj(t), t ‡ 0, j = 1,2 are positive functions

with completely monotone derivative.

Some comments are necessary at this point. Equations 6

and 7 of Proposition 1 represent the generalization of De

Cesare’s product-sum model (2001), with the great

advantage that we can choose nonseparable spatio-tempo-

ral structures in the sense of Gneiting. Besides, the mar-

ginal structures act separately as a rescaling of the

nonseparable structure on space and time. The completely

monotone functions and functions whose derivatives are

completely monotone can be selected from Tables 1 and 2

in Gneiting (2002). Furthermore other completely mono-

tone functions can be obtained as a Gaussian Scale Mixture

(Gneiting 1997). Finally, the functions u3 and u4 must be

respectively coherent with u1 and u2, as they are respec-

tively chosen to be originary functions of space and time

before creating the nonseparable space-time structures 4

and 5. In summary, in practical terms the procedure would

be the following:

1. Choose u1, u2, w1 and w2. Use these functions to

create nonseparable space-time structures of the type

4 and 5.

2. Use one of the models 11, 12, 13, 14 and 15

implementing separate structures which must be of

the same type of u1 and u2, respectively, for space

and time.

2.1 Particular examples

2.1.1 Example 1

Consider the example (16) in Gneiting, of the form

C1ðh; uÞ ¼
r2

1

2t1�1Cðt1Þ a1 uj j2a1þ1
� �d1þbd=2

� c1 hk k

a1 uj j2a1þ1
� �b=2

0
B@

1
CA

t1

� Kt1

c1 hk k

a1 uj j2a1þ1
� �b=2

0
B@

1
CA; ð16Þ

where h; uð Þ 2 R
d � R: Using the same mixture of

monotone functions and completely monotone ones,

applying 6 we obtain the analogous expression

C2ðh; uÞ ¼
r2

2

2t2�1Cðt2Þ a2 hk k2a2þ1
� �d2þbl=2

� c2 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA

t2

� Kt2

c2 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA; ð17Þ

where h; uð Þ 2 R
d � R and ai, ci, i = 1,2, are nonnegative

scaling parameters on space and time, respectively,

ai 2 (0,1], i = 1,2 is a smoothing parameter on time,

t i > 0, i = 1,2, is a smoothing parameter on space, b 2 [

0,1], di ‡ 0, ri
2 > 0, and Kti

ð�Þ is the modified Bessel

function of the third kind of order ti, i = 1,2.

Imposing t1 = t2 = t and d1 + bd/2 = d2 + bl/2 = e
(indeed, imposing b ¼ 2ðd2�d1Þ

d�l and d2 ‡ d1, d > l,2(d2–

d1) £ d–l), and

Cðh; uÞ ¼ C1ðh; uÞC2ðh; uÞ; ð18Þ

we obtain the following expression, based on expressions

16 and 17,

Cðh; uÞ ¼ k

B
tb=2þe
u;h

a1a2 hk k uj jð Þ
t

Kt
a2 hk k

a1 uj j2a1þ1
� �b=2

0
B@

1
CA

� Kt
a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA; ð19Þ
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where h; uð Þ 2 R
d � R; t = e + b/2 and k ¼ r4

22ðt�1Þ CðtÞð Þ2
with r1

2 = r2
2 = r2. Moreover,

Bu;h ¼ 1þ a1 uj j2a1þa2 hk k2a2þa1a2 uj j2a1 hk k2a2

� �
:

Here we have that a1,a2 are nonnegative scaling parameters

(a1 = c2, a2 = c1). The smoothing parameters on time and

space are, respectively, a1 and a2, both belonging to the

interval (0,1]. Finally, the parameters t > 0 and e > 0

globally control the process, independently of the other

ones, which act locally. Applying Proposition 1, we can

add two separate structures on space and time. For

instance, we could choose a Matérn covariance function

for both space and time, so let us call

MsðhÞ ¼
r2

2

2a2�1Cða2Þ
a2 hk kð Þa2 Ka2

a2 hk kð Þ; ð20Þ

and

MtðuÞ ¼
r2

1

2a1�1Cða1Þ
a1 uj jð Þa1 Ka2

a1 uj jð Þ; ð21Þ

respectively, the purely spatial and temporal covariance

functions. Note that the smoothing parameters here are

called, respectively, a2 and a1, in order to be related to

the local smoothing parameters in Eq. 19. The same is

imposed on the local scale parameters. The aim is to

integrate the local smoothing parameter’s behavior into a

nonseparable context with a separate contribution on

space and time. Besides, relating the global smoothing

parameters of the separate structure to the nonseparable

local ones in Eq. 19 ensures avoiding problems of

monotonicity of the resulting covariance function, ob-

tained as in Eq. 12. Following this approach, a possible

model for h; uð Þ 2 R
d � R could be

Cðh; uÞ ¼ k

Bu;h
tb=2þe

a1a2 hk k uj jð Þ
t

Kt
a2 hk k

a1 uj j2a1þ1
� �b=2

0
B@

1
CA

� Kt
a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CAþMsðhÞ þMtðuÞ:

ð22Þ

Some interesting particular cases of Eq. 19 can be obtained

by setting t = 1/2 and t = 3/2, obtaining the following

expressions for h; uð Þ 2 R
d � R

Cðh; u j t ¼ 1=2Þ / k

Be
u;h

exp � a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

� a2 hk k

a1 uj j2a1þ1
� �b=2

1
CA; ð23Þ

Cðh; u j t ¼ 3=2Þ / k

Be
u;h

exp � a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

� a2 hk k

a1 uj j2a1þ1
� �b=2

1
CAvu;h; ð24Þ

where vu;h¼ð1þa2jjhjjða1juj2a1þ1Þ�b=2þa1jujða2jjhjj2a2þ
1Þ�b=2Þ: Figure 1 shows contour and perspective plots

coming from the spatio-temporal model of Example 1. In

particular, the first column represents the covariance

equation 22 whereas the second column represents

covariance equation 19.

2.1.2 Example 2

Consider the examples (16) and (12) in Gneiting (2002),

taking now one of the covariances in Gneiting’s style and

the other in the class of the symmetric version. The

factorization of the two forms gives the following model

Cðh; uÞ ¼ k

Be
u;h

a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA

t

� exp
�a2 hk k2a2

a1 uj j2a1þ1
� �ba2

0
B@

1
CA

� Kt
a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA; ð25Þ

where h; uð Þ 2 R
d � R and k ¼ r4

2ðt�1Þ CðtÞð Þ and a1 and a2

are nonnegative scaling parameters, a1 and a2 belong to

the interval (0,1] and t and e are the positive global

smoothing parameters. It is interesting to observe that

setting t = 1/2 and t = 3/2 we obtain two particular

cases, respectively
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Cðh; uÞ / r4

Be
u;h

exp � a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

� a2 hk k2a2

a1 uj j2a1þ1
� �ba2

1
CA; ð26Þ

Cðh;uÞ/ r4

Be
u;h

exp � a1 uj j

a2 hk k2a2þ1
� �b=2

� a2 hk k2a2

a1 uj j2a1þ1
� �b=2

0
B@

1
CA

� 1þ a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA; ð27Þ

where h; uð Þ 2 R
d � R:

The corresponding mixed form can be obtained taking

into account that the temporal structure was initially

modelled with a Matérn covariance function and the spatial

one with a negative exponential one, thus

Cðh;uÞ¼ k

Be
u;h

a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA

t

exp
�a2 hk k2a2

a1 uj j2a1þ1
� �ba2

0
B@

1
CA

�Kt
a1 uj j

a2 hk k2a2þ1
� �b=2

0
B@

1
CA

þMtðuÞþexpð�a2 hk ka2Þ:
ð28Þ

Figure 2 shows contour and perspective plots coming from

the spatio-temporal model of Example 2. In particular, the
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Fig. 1 Contour and perspective

plots of the spatio-temporal

covariance functions given by

Eqs. 22 (first column) and 19

(second column) with spatial lag

(h) represented against the

temporal one (u). The common

parameters are the following:

a1 = 1, a2 = 1, a3 = 0.5,

b = 0.9, a1 = 0.9, a2 = 0.2,

t = 1.5 and e = 2
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Fig. 2 Contour and perspective

plots of the spatio-temporal

covariance functions given by

Eqs. 25 (first column) and 28

(second column) with spatial lag

(h) represented against the

temporal one (u). The common

parameters are the following:

a1 = 1.8, a2 = 1, a3 = 0.5,

b = 0.9, a1 = 0.9, a2 = 0.4,

t = 0.5 and e = 2
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first column represents the covariance equation 25 whereas

the second column represents covariance equation 28.

2.1.3 Example 3

We now choose the following completely monotone

function and function with completely monotone derivative

uiðtÞ ¼ 1þ cit
aið Þ�t; t � 0; i ¼ 1; 2 ð29Þ

with ai 2 (0,1], ci and t strictly positive, and

wiðtÞ ¼ ait
ai þ 1ð Þbi ; t � 0; i ¼ 1; 2 ð30Þ

with ai 2 (0,1] , bi 2 [0,1], ai strictly positive. With

straightforward calculations we obtain

C1ðh;uÞ¼
r2

a2 hk k2a2þ1
� �b1d=2

1þa1

uj j2a1

a2 hk k2a2þ1
� �b1a1

0
B@

1
CA
�t

;

ð31Þ

where h;uð Þ2 R
d�R; and

C2ðh; uÞ ¼
r2

a1 uj j2a1þ1
� �b2d=2

1þ a2

hk k2a2

a1 uj j2a1þ1
� �b2a2

0
B@

1
CA
�t

;

ð32Þ

with h; uð Þ 2 R
d � R:

The tensorial product gives the following structure, for

h; uð Þ 2 R
d � R;

Cðh; uÞ ¼ r2

Be
u;h

1þ a1

uj j2a1

a2 hk k2a2þ1
� �ba1=2

0
B@

þ a2

hk k2a2

a1 uj j2a1þ1
� �ba2=2

þa1a2

uj j2a1 hk k2a2

a2 hk k2a2þ1
� �ba1=2

a1 uj j2a1þ1
� �ba2=2

1
CA
�t

;

ð33Þ

where the interpretation and restriction on parameters is the

same as in the previous Example 1.

2.1.4 Example 4

Consider the examples (16) and (12) in Gneiting (2002).

We propose a closed form of the type

Cðh; uÞ ¼ k1C1ðh; uÞ þ k2C2ðh; uÞð Þn; ð34Þ

where k1, k2 2 (0,1], n a natural number.

Considering directly the case t = 1/2, it is possible to

obtain the following expression

Cðh;uÞ¼ 1

B
1=2
u;h

k1exp
�a2 hk k2a2

a1 uj j2a1þ1
� �b=2

0
B@

1
CA a2 hk k2a2þ1
� �1=2

8><
>:

þk2exp � a1 uj j2a1

a2 hk k2a2þ1
� �b=2

0
B@

1
CA a1 uj j2a1þ1
� �1=2

9>=
>;

n

;

ð35Þ
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Fig. 3 Contour and perspective

plots of the spatio-temporal

covariance functions given by

Eqs. 36 (first column) and 35

(second column) with spatial lag

(h) represented against the

temporal one (u). The common

parameters are the following:

a1 = 1, a2 = 0.7, a3 = 0.5,

b = 0.9, a1 = 0.9, a2 = 0.9,

t = 1 and e = 0.8
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where h; uð Þ 2 R
d � R and t = d1 + bd/2 = d2 + bl/2

(imposing b ¼ 2ðd2�d1Þ
d�l and d2 ‡ d1, d > l,2(d2–d1) £ d–l).

Finally, a mixed form of the type 22 can be easily

obtained

Cðh;uÞ¼ 1

B
1=2
u;h

k1exp
�a2 hk k2a2

a1 uj j2a1þ1ð Þb=2

� �
a2 hk k2a2þ1
� �1=2

þk2exp � a1 uj j2a1

a2 hk k2a2þ1ð Þb=2

� �
a1 uj j2a1þ1
� �1=2

8>>><
>>>:

9>>>=
>>>;

n

þMsðhÞþexpð�a1 uj ja1Þ; h;uð Þ2Rd�R
ð36Þ

Figure 3 shows contour and perspective plots coming from

the spatio-temporal model of Example 4. In particular, the

first column represents the covariance equation 36 whereas

the second column represents covariance equation 35.

3 Building spatio-temporal models

through the spectral density function

There are different ways to define a model for the covari-

ance function of a random field. Under several conditions,

there exists a spectral density function associated to the

spectral distribution function. In this section, we are giving

a particular structure to this density.

Recall that a continuous function C on R
d � R; d 2 N;

is positive definite if and only if it is of the form

Cðh; uÞ ¼
Z

eixthþisudFðx; sÞ; ðh; uÞ 2 R
d � R ð37Þ

where F is the distribution function of a nonnegative and

finite measure onRd � R: If F is absolutely continuous (when

C is integrable), Bochner’s representation is expressed as

Cðh; uÞ ¼
Z

eixthþisuf ðx; sÞdðx; sÞ; ðh; uÞ 2 R
d � R

ð38Þ

where f is a continuous, nonnegative and integrable function.

Our proposal is based on defining a new spectral density

as a product of two spectral densities, as shown in the

following results.

Proposition 2 Let us consider f1; f2 : R! R two spec-

tral density functions, not necessarily different. Consider

a1; a2; b1; b2 2 Rþ; and a; b 2 N even numbers. If the fol-

lowing function

f ðx; sÞ ¼ f1ða1jsja þ b1jjxjjbÞf2ða2jsja þ b2jjxjjbÞ ð39Þ

is integrable, then it is a spectral density.

Proof The proof is simple, as it is based on the prop-

erties of norm functions:

– The functions s fi a1|s|a and x! b1jjxjjb are

continuous for construction, as the powers a, b are even

numbers. So, it is their sum.

– The composition ðx; sÞ ! a1jsja þ b1jjxjjb ! f1ða1jsja
þb1jjxjjbÞ is continuous (because both the first function

and f1 are continuous), and is nonnegative (because f1 is

nonnegative). The same conclusion follows replacing a1,

b1 by a2, b2, respectively.

– Finally, the function f is continuous and nonnegative

because it is the product of two functions with these

properties, and it is integrable by assumption.

The most important characteristic of this model is that it

includes both the separable and nonseparable cases in

the spectral domain, and defines a very general class of

models.

One aspect this model should meet is the differentiability

of the covariance function obtained as Fourier transform of

Eq. 39. This feature can be studied by means of some

properties of its associated spectral density function, when it

exists. This aspect is studied in Stein (2005), and here we

adapt this analysis to the spectral densities defining f.

Consider a spectral density f ðxÞ ¼ g1ðxÞg2ðxÞ; where

g1; g2 : R3 ! R; x ¼ ðw1;w2;w3Þ0; x ¼ ðx1; x2; x3Þ0 2 R
3

and denote by Dm the partial derivative om

ox
m1
1

ox
m2
2

ox
m3
3

; being

m = m1 + m2 + m3 and m = (m1, m2, m3). Then, parts of

Propositions 4 and 5 of Stein (2005) are adapted here to give:

Proposition 3 Suppose Dl g1, Dlg2 exist and are inte-

grable for l £ k, and the functions wm1

1 wm2

2 wm3

3 Dlg1ðxÞ and

wm1

1 wm2

2 wm3

3 Dlg2ðxÞ are also integrable for l £ k, then DmC

exists, where C is the covariance function associated to f.

Proof The proof is a direct consequence of Proposition 4

in Stein (2005). In order to show what we state, it is only

necessary to see that Dlg1g2 exists for l £ k and

xmDkg1g2 are all of them integrable. Observe that Dlg1g2

is a linear combination of products Dlg1Dsg2; which are

integrable by assumption. Same thing happens for

xmDkg1g2; being a linear combination of products xm1

1 xm3

2

xm3

3 Dlg1ðxÞDsg2ðxÞ; integrable also by assumption. Then,

g1g2 follows assumptions of Proposition 4 of Stein (2005),

and the result is obtained.

Proposition 4 For j = 1, 2, 3, assume ol

owl
j

g1 and ol

owl
j

g2

exist and are integrable for l £ k and jxjn ol

owl
j

g1; jxjn ol

owl
j

g2

are also integrable. We have that for x „ 0, DmC(x) exists

for m = (m1,m2,m3) such that m1 + m2 + m3 £ n.

Proof A similar proof follows for this proposition, based

on Proposition 5 of Stein (2005), together with the facts

that ol

oxl
j

g1g2 is a linear combination of ol

oxl
j

g1
os

oxl
j

g2; and that

jxjn ol

oxl
j

g1g2 is a linear combination of jxjn ol

oxl
j

g1
ol

oxs
j
g2:
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Then, ol

oxl
j

g1g2 and jxjn ol

oxl
j

g1g2 are integrable and Propo-

sition 5 of Stein (2005) can be used, getting the final result.

Note that in our model g1 ¼ f1 � h1; g2 ¼ f2 � h2; where

h1ðxÞ ¼ a1jw3ja þ b1jjðw1;w2Þjjb; h2ðxÞ ¼ a2jw3ja þ b2jj
ðw1;w2Þjjb: The differentiability of g1, g2 is indicated by

means of these four functions. In particular, if the above

indicated partial derivatives exist for f1, f2, h1, h2 the pre-

vious Propositions 3 and 4 can be applied. One simple case

could be using a; b 2 _2; and then, only conditions for f1, f2
should be imposed.

In the following subsection we introduce some examples

built from some of the most widely used models of spectral

densities in geostatistics.

3.1 Particular examples

3.1.1 Example 1

Consider now two different densities associated with two

different covariance functions, but both with a Matérn

structure, with a = b = 1, that is

f ðx; sÞ ¼/1/2ða2
1 þ ða11jsj þ b11jjxjjÞ2Þ�m1�d1

2

� ða2
2 þ ða21jsj þ b21jjxjjÞ2Þ�m2�d2

2 ð40Þ

with d1, d2 = 1,2,3, and with /1, /2 strictly positive

parameters, while the scaling parameters a1, a11, a21, b1,

b11, and b21 must be nonnegative. Finally, the smoothing

parameters m1, m2 are nonnegative. With this structure we

are able to get a separable density function, just by setting

a11 = b21 = 0 or b11 = a21 = 0, as follows:

f ðx; sÞ ¼ /1/2ða2
1 þ b2

11jjxjj
2Þ�m1�d1

2 ða2
2 þ a2

21jsj
2Þ�m2�d2

2

ð41Þ

f ðx; sÞ ¼ /1/2ða2
1 þ a2

11jsj
2Þ�m1�d1

2 ða2
2 þ ðb2

21jjxjj
2Þ�m2�d2

2

ð42Þ

Figures 4 and 5 show some of these examples. Note that

when we work with a linear combination of the norm of the

frequencies, the levels in the contour plots are linear

functions. Other possibility could be to substitute this linear

combination by a quadratic function.

3.1.2 Example 2

Note that most of the cases in the above examples showed

approximately linear functions for the levels of the contour
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Fig. 4 Perspective and contour plots of the spectral density function

given by Eq. 40 corresponding to Example 1 in Sect. 3.1. Horizontal

axis of the contour plots corresponds to |s|, and vertical axis to jjxjj:
Common parameters are /1 = /2 = 1, b11 = a21 = 0. The other

parameters are: first column: a1 = 2, a11 = 1, a2 = 2, b21 = 1,

m1 = m2 = 1/60; second column: a1 = 2, a11 = 3, a2 = 2, b21 = 1,

m1 = 1/60, m2 = 1/60; third column: a1 = 2, a11 = 1, a2 = 6, b21 = 7,

m1 = 1/60, m2 = 1/90, d1 = d2 = 1
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Fig. 5 Perspective and contour plots of the spectral density function

given by Eq. 40 corresponding to Example 1 in Sect. 3.1. Horizontal

axis of the contour plots corresponds to |s|, and vertical axis to jjxjj:
Common parameters are /1 = /2 = 1. The other parameters are: first
column: a11 = 1, b11 = 2, a1 = 1, m1 = 1/120, a21 = 0, b21 = 1, a2 = 1,

m2 = 1/100; second column: a11 = 1, b11 = 2, a1 = 10, m1 = 1/120,

a21 = 0, b21 = 1, a2 = 10, m2 = 1/100; third column: a11 = 1,

b11 = 0.3, a1 = 2, m1 = 1/100, a21 = 2, b21 = 7, a2 = 6, m2 = 1/100,

d1 = d2 = 1
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Fig. 6 Perspective and contour plots of the spectral density function

given by Eq. 40 corresponding to Examples 1 and 2 in Sect. 3.1.

Horizontal axis of the contour plots corresponds to |s|, and vertical

axis to jjxjj: Common parameters are a = b = 2, a = 1 and / = 1.

The other parameters are: first column: a1 = 1, b1 = 1, m = 1/2;

second column: a1 = 0.5,b1 = 0.5, m = 1/100; third column:

a1 = 0.25, b1 = 0.25, m = 1/100
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Fig. 7 Perspective and contour plots of the spectral density function

given by Eq. 40 corresponding to Examples 1 and 2 in Sect. 3.1.

Horizontal axis of the contour plots corresponds to |s|, and vertical

axis to jjxjj: Common parameters are /1 = /2 = 1, b11 = a21 = 0.

The other parameters are: first column: a1 = 2, a11 = 1, a2 = 2,

b21 = 1, m1 = m2 = 1/60; second column: a1 = 2, a11 = 3, a2 = 2,

b21 = 1, m1 = 1/60, m2 = 1/60; third column: a1 = 2, a11 = 1, a2 = 6,

b21 = 7, m1 = 1/60, m2 = 1/90
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Fig. 8 Perspective and contour plots of the spectral density function

given by Eq. 40 corresponding to Examples 1 and 2 in Sect. 3.1.

Horizontal axis of the contour plots corresponds to |s|, and vertical

axis to jjxjj: Common parameters are a = b = 2, /1 = /2 = 1. The

other parameters are: first column: a11 = 1, b11 = 2, a1 = 1, m1 = 1/

120, a21 = 0, b21 = 1, a2 = 1, m2 = 1/100; second column: a11 = 1,

b11 = 2, a1 = 10, m1 = 1/120, a21 = 0, b21 = 1, a2 = 10, m2 = 1/100;

third column: a11 = 1, b11 = 0.3, a1 = 2, m1 = 1/100, a21 = 2, b21 = 7,

a2 = 6, m2 = 1/100
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plots, which could not be a desired feature for a general

model. Here we propose, through Figures 6, 7 and 8, some

further examples based on the tensorial product of two

Matérn structures with a = b = 2.

4 An application to wind speed data

In this section we consider a brief application in order to

show some of the possible strategies that can be chosen for

the implementation of a nonseparable structure.

Data refer to Irish wind speed and have already been

used in other works, particularly in Haslett and Raftery

(1989), Cressie and Huang (1999), Gneiting (2002) and

Stein (2005).

The spatio-temporal data set includes 12 synoptic

meteorological stations during the period 1961–1978. For

every day of the year we have daily means for every

station. Data are available at Statlib. As far as the data

preliminary analysis is concerned, we followed Haslett

and Raftery (1989), so we proceeded with a square root

transformation of the original data in order to stabilize the

variance and obtain marginal distributions which were

approximately normal. Then, we deseasonalized the data

calculating the average of the square roots of the daily

means over all years and stations for each day of the year.

Substraction of that average to the square roots of the

daily means yielded deseasonalized data. After consider-

ing the spatial correlation between stations, we omitted

Rosslare station, as its correlation with the other stations

was considerably lower than correlation between the other

ones. Note that the spatial correlation in this case was

actually a conditional one, as we need to fix a certain

temporal lag. Once the data was deseasonalised, we

considered a subset of the original data, indeed we con-

sidered the eleven stations only during the year 1978.

Nevertheless, the methodology we propose can be ex-

tended to the whole data set, although it can be highly

time computing.

We considered a short-term autocorrelation structure for

the temporal component, as the 11 stations exhibited a

short-term temporal autocorrelation structure. So, we

decided to consider a spatio-temporal structure with tem-

poral lags less than or equal to 3 days. In fact, as it can be

seen in Fig. 9, although the spatial correlation seemed to be

almost decreasing with respect to the spatial distance,

while increasing the temporal lag, we obtained an almost

null covariance from the first spatial lags.

As far as estimation and fitting are concerned, we

decided to follow two procedures in parallel. In the for-

mer, the following steps were included: (a) estimation of

the temporal and spatial structures separately; (b) factor-

ization of the obtained structures in order to have a sep-

arable spatio-temporal covariance; (c) estimation, via

weighted nonlinear least squares (WNLS), of the inter-

action parameter. In the second procedure, we estimated

the spatio-temporal structure globally, using the WNLS.

For the sake of simplicity, from now on we call the first

method SEM, as acronym for Separate Estimation Method,

and the second one as GEM, as acronym for Global
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Fig. 9 Conditional spatial covariances. From up-left to down-right: temporal lags respectively equal to 0, 1, 2, 3
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Estimation Method. The SEM procedure has been

followed by Gneiting (2002), although in our opinion this

procedure is not coherent with the classes he proposes. In

fact, Gneiting’s classes are completely nonseparable, so it

is not possible to start from two separate temporal and

spatial structures and then estimate the spatio-temporal

interaction parameter.

Let us begin with SEM. For the temporal structure we

fitted the following model

CðuÞ ¼ 0:03974613þ 0:4

ð1þ 0:0945329 uj jÞ0:0000001

� exp �0:0945329 uj jð Þ; ð43Þ

where the constant 0.4 is the estimated variance for the

year 1978. For the spatial structure, we obtained

CðhÞ ¼ 0:03974613þ 0:4

ð1þ 0:00325 hk k0:596Þ0:00001

� exp �0:003251164 hk k2�0:596
� �

: ð44Þ

Note that, if we consider the class in Eq. 26, the marginal

structures can be easily calculated

Cð0; uÞ / r2

ð1þ a1 uj ja1Þe
exp �a1 uj jð Þ; ð45Þ

Cðh; 0Þ / r2

ð1þ a2 hk ka2Þe
exp �a2 hk k2a2

� �
: ð46Þ

Estimations obtained in Eqs. 43 and 44 can be, respec-

tively, considered as particular cases of Eqs. 45 and 46. It

is important to observe that the estimated smoothing

parameter is equal in both marginal structures.

The tensorial product of the marginal structures offers

the following separable structure

Cðh; uÞ / r4

Be
u;h

exp �a1 uj j � a2 hk k2a2

� �
; ð47Þ

which is a particular case of Eq. 26 setting the interaction

parameter b identically equal to zero.

Thus, we followed the same procedure for the estimated

structures, obtaining a separable one which can be con-

sidered a particular case of Eq. 26 with no interaction.

A final step regarded the estimation of the interaction

parameter b. For this estimation, we needed to calculate the

empirical spatio-temporal covariances. As we could con-

sider data to be weakly stationary, we used an extension of

the Hawkins and Cressie (1984) robust variogram estimator

to the empirical spatio-temporal covariance. Indeed, we

defined the following expression

Ĉðh; uÞ ¼ r̂2 � 1

jNuðhÞj
X
jNuðhÞj

jd̂tiðsiÞ � d̂tjðsjÞj1=2

0
@

1
A

4,

0:457þ 0:494

jNuðhÞj

� �
;

ð48Þ

where r̂2 is the variance of the process calculated from

data. The problem of estimation of the interaction param-

eter could be solved with a WNLS algorithm, which gave

an interaction parameter b equal to 1 · e–6. Thus, the SEM

Table 1 Fitted values of the paramenters for the two analyzed spatio-

temporal models: SEM and GEM

Parameters SEM GEM

a1 0.09453 0.13258

a2 0.00325 0.00265

a1 1.00000 0.49905

a2 0.59628 0.59840

b 0.0000001 0.09227

e 0.0000001 0.0000001

C0 0.03974 0.03616
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Fig. 10 Purely temporal (left) and spatial (right) covariance

estimation (points) and fitted model (solid line) for the SEM
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method showed no interaction between space and time. We

believe that this no-interaction model was partially due to

the fact that we used a subset of data, while detrendization

and deseasonalization were performed with respect to the

whole data set. This fact could have caused an overs-

moothing of the data.

As the product of the estimated marginal structures gave

a spatio-temporal form which was compatible with the

class 26, another possibility was to estimate globally all the

parameters of the spatio-temporal structure with a unique

algorithm, in order to see if in some ways the hypothesis of

no interaction between space and time could be accepted.

Thus, we performed the GEM method.

As far as estimation of the empirical covariance was

concerned, we used formula 48 as in the previous procedure.

We implemented the WNLS algorithm with respect to the

parametric class in Eq. 26. Finally, we got an estimation of

the seven parameters which is summarized, together with the

results regarding the SEM procedure, in Table 1.

As we can see from Table 1, both SEM and GEM still

provided a non-smoothed model, as e was practically zero.

The nugget effect was almost 1/10 of the total variance,

and the local spatial smoothing parameters were almost

equal. As far as differences were concerned, the SEM local

temporal smoothing parameter a1 was twice the corre-

sponding parameter calculated with GEM. The most

important difference was given by the fact that GEM pro-

vided a non-null interaction parameter b, while SEM

highlighted a non-interaction model.

In Fig. 10 the temporal and spatial covariance estimation

and corresponding fitted functions are shown for the SEM

model. Although fitting was quite good, it was highlighted a

poor fitting of the short range dependence, as we could see

in the first lags. Estimation and fitting for the GEM method

are shown in Fig. 11. In this case, the fitting seemed quite

good as far as the microscale component was concerned.

In order to further compare the two methods, we per-

formed a cross-validation procedure and calculated the

CRV3 quantity (Huang and Cressie 1996) as a measure of

goodness of prediction, resulting in 0.752 for SEM and

0.602 for GEM. So, cross-validation selected GEM as a

better spatio-temporal model based on a nonseparable

structure. Thus, it seems that the SEM, which corresponds

to the one used in Gneiting (2002), could hide the inter-

action between the merely spatial and temporal structures,

as highlighted by the use of our GEM. This confirms our

initial feeling at the beginning of our analysis, in which a

model taking into account the interaction between the

marginal structures should outperform other types of

models [as those used by Gneiting (2002) and Stein

(2005)]. In this sense, our strategy by using the GEM

model provides a more refined solution to this problem.

5 Conclusions and discussion

In this paper we have presented some new classes of

covariance functions which can be implemented with

simple procedures. The former proposal regards covariance

functions obtained as sum-product of nonseparable space-

time covariances, to which a merely spatial and/or tem-

poral component can be added in order to modify the level

of smoothness of the associated process. Observe that with

this procedure we can obtain closed forms which are very

flexible and easy-to-build. On the other hand, we cannot

determinate analytically the level of differentiability asso-

ciated to these new covariances. This drawback is covered

by the second proposal, in which we build spectral densi-

ties whose Fourier pair, following Stein (2005), is infinitely

differentiable away from the origin.

One of the covariance functions presented is used to

model the nonseparable spatio-temporal structure of the Irish

wind speed data. The analysis highlights that preferably the

parameters characterizing the spatial and temporal depen-

dence has to be estimated jointly, in order to avoid the loss of

information about the interaction between space and time.
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