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Abstract Fault detection is an essential part of the

operation of any chemical plant. Early detection of faults is

important in chemical industry since a lot of damage and

loss can result before a fault present in the system is de-

tected. Even though fault detection algorithms are designed

and implemented for quickly detecting incidents, most

these algorithms do not have an optimal property in terms

of detection delay with respect to false alarm rate. Based on

the optimization property of cumulative sum (CUSUM), a

real-time system for detecting changes in dynamic systems

is designed in this paper. This work is motivated by com-

bining two fault detection (FD) strategies; a simplified

procedure of the incident detection problem is formulated

by using both the artificial neural networks (ANN) and the

CUSUM statistical test (Page–Hinkley test). The design of

a model-based residual generator is intended to reveal any

drift from the normal behavior of the process. In order to

obtain a reliable model for the normal process dynamics,

the neural black-box modeling by means of a nonlinear

auto-regressive with eXogenous input (NARX) model has

been chosen in this study. This paper also shows the choice

and the performance of the neural network in the training

and test phases. After describing the system architecture

and the proposed methodology of the fault detection, we

present a realistic application in order to show the tech-

nique’s potential. The purpose is to develop and test the

fault detection method on a real incident data, to detect the

change presence, and pinpoint the moment it occurred. The

experimental results demonstrate the robustness of the FD

method.
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1 Introduction

Process development and continuous request for produc-

tivity led to an increasing complexity of industrial units. In

order to operate a successful plant or process, continuous

improvement must be made in the areas of safety, quality

and reliability. Improvement in these areas will lead to cost

reductions which help make the plant a viable operation in

a competitive market. Central to the continuous improve-

ment of safety, quality and reliability is the early or pro-

active detection of process faults. Such a tool could allow

to use an on-condition maintenance policy instead of reg-

ular systematic inspections. This would decrease mainte-

nance costs (Kinnaert et al. 2000; Chetouani 2006a).

Components, sensors, and actuators in an automated pro-

cess are often subject to the so-called ‘‘faults’’, which are

defined as unexpected changes or prohibited deviations

from normal conditions. And these faults may lead to

undesired reactions and damages to the plant, personnel, or

the environment. These process abnormalities have sig-

nificant impact, in such a way that hundreds of billion of

dollars are lost by the industry due to poor abnormal sit-

uation management (Huang et al. 2000; Skogestad 2003).

They show that the early detection of faults can prevent the

destruction of equipment and avoid great losses. Also the

availability of the process would thus increase if fitted with

a suitable detection system (Chetouani 2006b).

In order to improve the process performance, reliability,

and safety, many researchers have focused their attention

on the issues of fault detection during the last 2 decades.

Therefore, the development of effective and robust methods
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for fault detection has become an important field of re-

search in numerous applications as can be found from the

related survey papers (Luh et al. 2005), and books (Patton

2000) and (Gertler 1998). The fault detection techniques

can be broadly classified as model-based methods or his-

tory based methods (Dash et al. 2000). Process model-

based methods rely on a fundamental understanding of the

process which includes qualitative methods (fault trees and

signed diagrams) and quantitative methods (when mathe-

matical relations exist to describe the process) (Venkata-

subramanian 2003a; Venkatasubramanian et al. 2003b).

On the other hand, process history-based methods use

large amounts of process history data and can also be

further subdivided into quantitative methods (statistical

techniques) and qualitative methods (qualitative trend

analysis and rule-based) (Venkatasubramanian 2003c;

Dash et al. 2000).

In recent years, a growing interest in the application of

artificial neural networks to fault detection systems has

been observed (Isermann 2005; Ferentinos 2005). ANNs

have been shown to be extremely suited to model highly

complex and nonlinear phenomena (Subai 2005). The

author used a dynamic fuzzy neural network to analyze

epileptiform discharges in recorded brain waves for patient

with absence seizure. Spectral analysis of the EEG signals

produces information about the brain activities. He shows

that the ANNs may propose a potentially superior tech-

nique of EEG signal analysis to the spectral analysis

methods. In contrast to the conventional spectral analysis

methods, ANNs not only model the signal, but also make a

decision as to the class of signal (Subasi et al. 2005; Subasi

2005). Owing to their inherent nature to model and learn

‘complexities’, ANNs have found wide applications in

various areas of chemical engineering and related fields

(Sharma et al. 2004; Himmelblau 2000). Engell et al.

(2003) discussed general aspects of the control of reactive

separation processes. They used a semi-batch reactive

distillation process. A comparison was carried out between

conventional control structures and model-based predictive

control by using a neural net plant model. Nanayakkara

et al. (2002) presented a novel neural network to control an

ammonia refrigerant evaporator. The objective is to control

evaporator heat flow rate and secondary fluid outlet tem-

perature while keeping the degree of refrigerant superheat

at the evaporator outlet by manipulating refrigerant and

evaporator secondary fluid flow rates. This work is moti-

vated by developing a combination of ANNs and CUSUM

algorithm for process fault detection. The most important

feature of the CUSUM algorithm is its optimization prop-

erty which has been proved by (Lorden 1971) and (Pollak

et al. 1985); that is the mean detection delay derived by

using the CUSUM algorithm is a minimum for a given

false alarm rate. This study also focuses on the develop-

ment, and implementation of a NARX neural model for the

multi-step ahead forecasting of the process dynamics. It is

based on the neural approach for modeling the process

behavior in normal conditions. The performance of this

stochastic model was evaluated using the performance

criteria. Then we examined the abnormal behavior of a

process due to faults in its control parameters. Fault

detection results show that the CUSUM test is a powerful

tool to detect changes in the behavior of the process

dynamics. The modeling procedure, neural prediction,

experimental set-up and FD results are described in the

following sections.

2 Input–output modeling approach

Fault detection methods can be divided into two classes,

depending on the presence or absence of an appropriate

process model; techniques using the state variables and

parameters from a known process model and techniques

using only measurable signals (input and output signals

from the process). Modeling strategies of various kinds by

means of input–output measurements are commonly used

in many situations in which it is not necessary to achieve a

deep mathematical knowledge of the system under study,

but it is sufficient to predict the system evolution (Fung

et al. 2003; Mu et al. 2005). This is often the case in

control applications, where satisfactory predictions of the

system that are to be controlled and sufficient robustness to

parameter uncertainty are the only requirements. In

chemical systems, parameter variations and uncertainty

play a fundamental role on the system dynamics and are

very difficult to be accurately modeled (Cammarata et al.

2002). Therefore, the modeling approach based on input–

output measurements can be applied.

2.1 Neural modelling

Fault detection systems for industrial plants can benefit

from employing empirical models, such as statistical

(Bayesian, nearest neighbours, time series), polynomial,

experts systems, neural networks, evolutionary computa-

tion, fuzzy and neurofuzzy classification methods (Huang

et al. 2006). The classification methods include statistical

methods (Schneiderman et al. 2004; Liu 2003; Yang et al.

2001), artificial neural networks (Isermann 2005) and

support vector machines (Adankon et al. 2007; Cheng

et al. 2007), etc. Artificial neural networks are a type of

massively parallel computer architectures based on brain-

like information encoding and processing models which

exhibit brain like behaviors such as learning, association,

categorization, generalization, feature extraction and opti-

mization. This approach allows bypassing both the exact
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determination of model parameters and of their unpre-

dictable variations, and the achievement of deep physical

knowledge of the process and of its governing equations.

Neural networks are usually used as a particular type of

non parametrical statistical model (Thiria et al. 1997). The

most important and interesting characteristics shared by

most neural networks models are nonlinear modelling

capacity, generic modelling capacity, robustness to noisy

data and ability to deal with high dimensional data.

The purpose of this modeling is to establish a reliable

model of the dynamic behavior of a process. This reliable

model enables to reproduce the process dynamics under

different operating conditions in a normal mode. In order to

provide a closer approximation to the process is some sit-

uations, a NARX nonlinear model is employed (Previdi

2002; Qin et al. 1996), which is identified by means of

ANNs. In this study, the NARX neural model used to

describe accurately the process behavior is the classical

Multi-Layer Perceptron (MLP) neural networks (Narendra

et al. 1990; Chen et al. 1989) with one layer of hidden

neurons (Fig. 1). The NARX nonlinear model of a finite

dimensional system (Ljung 1999) with order (ny, nu) and

scalar variables y and u are defined by:

yðtÞ ¼ /ðyðt � 1Þ; . . . ; yðt � nyÞ; uðt � 1Þ; . . . ; uðt � nuÞÞ
ð1Þ

where y(k) is the auto-regressive (AR) variable or system

output; u(k) is the eXogenous (X) variable or system input.

ny and nu are the AR and X orders, respectively. / is a

nonlinear function. For engineering purposes, the neural

network can be thought of as a black box model which

accepts inputs, processes them and produces outputs

according to some nonlinear transfer function (Zaknich

2003).

The MLP neural networks consist in a large number of

highly connected nonlinear simple neurons. Figure 1

shows typical feed-forward network architecture with one

hidden layer. The term ‘feed-forward’ means that the

connections between nodes only allows signals to be sent

to the next layer of nodes and not to the previous (Warnes

et al. 1996). We can differentiate three types of neurons;

input, hidden and output neurons. The input neurons

receive information to be processed. The hidden neurons

which are neither input nor output neurons are used to keep

an internal representation of the problem. The output

neurons give the results of the neural network. The

parameters associated with each of these connections are

called weights. Knowledge of the network is kept in these

weights. The determination of these weights for the node

connections allows the ANN to learn the information about

the system to be modeled. Each hidden and output unit

computes its value as the weighted sum of its inputs, passed

through a nonlinear function. The structure is based on a

result by Cybenko (1989) who proved that a neural net-

work with one hidden layer of sigmoid or hyperbolic tan-

gent units and an output layer of linear units is capable of

approximating any continuous function:

f ðzÞ ¼ 2

1þ e�2z
� 1 ð2Þ

where z is the sum of the weighted inputs and bias term. In

this study, we used the tan-sigmoid transfer function on the

hidden layer and a linear transfer function on the output

layer. The input data are presented to the network via the

input layer. These data are propagated through the network

to the output layer to obtain the network output. The net-

work error (generally the mean square error function) is

then determined by comparing the network output with the

actual output. If the error is not smaller than a desired

performance, the weights are adjusted and the training data

are presented to the network again to determine a new

network error. The aim of this step is to find the appropriate

weights which minimize the cost function. This is usually

done using an iterative procedure. One of the best known

learning mechanisms for neural networks is the back-

propagation algorithm (BPA) (Rumelhart et al.1986). It is

a simple gradient descent technique, which minimizes the

cost function in weight space by modifying the weights in

the opposite direction of the gradient error with respect to

the weights. The BPA is often too slow for practical

problems. Since 1986, a variety of improvements (Hertz

et al. 1991) have been proposed (introduction of a

momentum term, use of conjugate gradient techniques, use

of second order information, etc.). In this study, a back-Fig. 1 Feed-forward network for prediction
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propagation training function for feed-forward networks

using momentum and adaptive learning rate techniques is

used (Vogl et al. 1988). This version of back-propagation

learns quickly compared to classical algorithm and mini-

mizes the chance that the network parameters will become

stuck in a high error minimum. In this algorithm, as with

any other gradient approach, large values of learning rate

will speed up the learning process, but lead to instability,

and convergence can only be expected for small values of

learning rate. The momentum factor is used to damp down

oscillations in the learning process. The latter is repeated

until the network error reaches the desired performance. In

this case the network is then said to have converged and the

last set of weights are retained as the network’s parameters.

2.2 Calculation of the NN output

Though the applicability of neural networks to solve several

nonlinear complex problems has been amply demonstrated,

the time taken to train neural networks can be quite

excessive (Fung et al. 2003). ANNs are trained off-line and

then used for on-line FD. The following steps explain the

calculation of the ANNs output based on the input vector.

1. Assign ŵTðkÞ to the input vector xT(k) and apply it to

the input units where ŵTðkÞ is the regression vector

given by the following equation:

ŵTðtÞ ¼ ½yðt � 1Þ; . . . ; yðt � nyÞ; uðt � 1Þ; . . . ; uðt � nuÞ�
ð3Þ

2. Calculate the input to the hidden layer units:

neh
j ðkÞ ¼

Xp

i¼1

Wh
jiðkÞxiðkÞ þ bh

j ð4Þ

where p is the number of input nodes of the network, i.e.,

p = ny + nu + nb; j is the jth hidden unit; Wji
h is the con-

nection weight between ith input unit and jth hidden unit;

bj
h is the bias term of the jth hidden unit.

3. Calculate the output from a node in the hidden layer:

zj ¼ f h
j ðneth

j ðkÞÞ ð5Þ

where f j
h is the tan-sigmoid transfer function defined by the

Eq. (2).

4. Calculate the input to the output nodes:

netq
l ðkÞ ¼

Xh

j¼1

Wq
ljðkÞzjðkÞ ð6Þ

where l is the lth output unit; W lj
q(k) is the connection

weight between jth hidden unit and lth output unit.

5. Calculate the outputs from the output nodes:

v̂lðkÞ ¼ f q
l ðnetq

l ðkÞÞ ð7Þ

where f l
q is the linear activation function defined by:

f q
l ðnetq

l ðkÞÞ ¼ netq
l ðkÞ ð8Þ

2.3 Back-propagation training algorithm

The error function E is defined as:

E ¼ 1

2

Xq

l¼1

ðvlðkÞ � v̂lðkÞÞ2 ð9Þ

where q is the number of output units and vl(k) is the lth

element of the output vector of the network. Within each

time interval from k to k + 1, the back-propagation (BP)

algorithm tries to minimize the error for the output value as

defined by E by adjusting the weights of the network

connections, i.e., W ji
h and W lj

q. The BP algorithm uses the

following procedure (Eqs. 10–13):

Wh
jiðk þ 1Þ ¼ Wh

jiðkÞ þ aDWh
jiðkÞ � g

@E

@Wh
jiðkÞ

ð10Þ

Wq
ljðk þ 1Þ ¼ Wq

ljðkÞ þ aDWq
ljðkÞ � g

@E

@Wq
ljðkÞ

ð11Þ

where g and a are the learning rate and the momentum

factor, respectively; DWji
h and DW lj

q are the amounts of the

previous weight changes; ¶E/¶Wji
h(k) and ¶E/¶Wlj

q (k) are

given by:

@E

@Wh
jiðkÞ

¼ � zjðkÞð1� zjðkÞÞxiðkÞ
� �

�
Xq

l¼1

ðvlðkÞ � v̂lðkÞÞv̂lðkÞWh
ljðkÞ

h i ð12Þ

@E

@Wq
ljðkÞ

¼ �ðvlðkÞ � v̂lðkÞÞzjðkÞ ð13Þ

The implementation of the ANN for forecasting is as

follows:

1. Initialize the weights using small random values and

set the learning rate and momentum factor for the

ANN.

2. Apply the input vector given by Eq. 3 to the input

units.

3. Calculate the forecast value of the error using the data

available at (k–1)th sample (Eqs. 3–8).

4. Calculate the error between the forecast value and the

measured value.
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5. Propagate the error backwards to update the weights

(Eqs. 10–13).

6. Go back to step 2.

For weights initialization, the Nguyen-widrow initiali-

zation method (Nguyen et al. 1990) is best suited for the

use with the sigmoid/linear network which is often used for

function approximation.

3 CUSUM test for detecting changes

For fault detection, important measurable variables,

unmeasurable variables, or parameters which are esti-

mated, are tracked and checked whether they are within a

certain tolerance of their normal values. If the values are

not within the specified tolerance, a fault has been detected

(Chetouani 2006b). Abnormal situations occur when pro-

cesses deviate significantly from their normal regime dur-

ing on-line operation. The area of fault detection is an

important aspect of process engineering. Not only is it

important from a safety viewpoint but also for the main-

tenance of yield and quality in a process. This area has

received considerable attention from industry and acade-

mia alike because of the economic and safety impacts in-

volved (Cheng et al. 2001; Scenna et al. 2000; Wang et al.

1998). Residuals are quantities that are nominally zero but

become nonzero in response to faults (Chetouani 2004).

However, the presence of disturbances, noise, and model-

ling errors causes the residuals to become nonzero and thus

interferes with the detection of faults (Fouladirad et al.

2005). This will lead to a trade-off between a false alarm

rate and a missed detection rate. As a result, the residual

generator needs to be designed so that it is unaffected by

those unknown uncertainties. And robustness to noise and

model uncertainties is the key issue in the application of

model-based fault detection methods (Sharma et al. 2004;

Dash et al. 2000), since modelling errors and noises in

complex engineering systems are inevitable. The CUSUM

test (Hinkley 1971; Basseville 1986) is founded according

the optimization property and is performed as a cumulative

sum test, where jumps in the mean occur at unknown time

instants.

Let cðkÞ ¼ yðkÞ � ŷðkÞ be the sequence of the residuals,

and let e (k) be a white noise sequence with variance r2.

cðkÞ ¼ lðkÞ þ eðkÞ ð14Þ

where l(k) = l0 if k £ r – 1 and l(k) = l1 if k ‡ r
The problem is to detect the change in the mean of the

residual signal c(k), to estimate the change time r and the

mean values l0 and l1 before and after the jump. In this

study, we investigate the case where only l0 is known

which is of interest in practice for the on-line fault detec-

tion. In this case, two approaches may be used (Basseville

1986). The first one consists in running two tests in parallel

corresponding to an a priori chosen minimum jump mag-

nitude d and to two possible directions (decrease or in-

crease in the mean). The corresponding stopping rules are

as follows:

For decrease in the mean of the residual

T0 ¼ 0

Tn ¼
Xn

k¼1

cðkÞ � l0 þ
d
2

� �

Mn ¼ maxðTkÞ
06k6n

Alarm when Mn � Tn � k

8
>>>>>>>><

>>>>>>>>:

ð15Þ

and for an increase in the mean of the residual

U0 ¼ 0

Un ¼
Xn

k¼1

cðkÞ � l0 �
d
2

� �

mn ¼ minðUkÞ
06k6n

Alarm when Un � mn � k

8
>>>>>>>><

>>>>>>>>:

ð16Þ

The detector will set the alarm at the first time n at

which Mn � Tn � k (Eq. 15) for detecting a decrease in the

mean and at the first time n at which Un � mn � k (Eq. 16)

for detecting an increase in the mean of the residual. The

limit k is determined by learning. The statistical threshold k
is selected so that it corresponds to a physical reality of the

process. It must take account of the modelling errors. It is

generally raised in order to avoid to false alarms. The

initial value is calculated by the expression (k = 2*h*r/d)

where h = 2 for normal distributions and r is the standard

deviation of the residual signal (Moatar 1999; Ragot

et al.1990).

4 Experimental results

4.1 Experimental device

The reactor-exchanger is a glass-jacketed reactor with a

tangential input for heat transfer fluid. It is equipped with

an electrical calibration heating and an input system. It is

also equipped also with Pt100 temperature probes. The

heating–cooling system, which uses a single heat transfer

fluid, works within the temperature range of –15 and

+200�C. Supervision software allows the fitting of the

parameters and their instruction value. It displays and

stores data during the experiment as well as for its further
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exploitation. The input of the reactor-exchanger u(t) rep-

resents the heat transfer fluid temperature allowing the

heating–cooling of the water. y(t) represents the outlet

temperature of the reactor-exchanger. The process is

excited by an input signal, very rich in frequencies and

amplitudes, in order to have a data set suitable for the

training procedure. The sampling period is fixed to 2 s.

Before starting the training of parameters, the available

data is divided into two separated sets. The first subset is

the training subset which is used for computing the gra-

dient and updating the network weights. The second subset

is the validation set. The first one is sufficiently informative

and covering the whole spectrum. The second one contains

sufficient elements to make the validation as credible as

possible. All data were standardized (zero mean and unity

standard deviation) (Fig. 2).

4.2 Establishment of NARX models

One of the most important features of learning systems is

their ability to generalize to new situations. An early

stopping procedure to stop the learning process was used

for improving generalization. The error on the validation

set is monitored during the training process. The validation

error will normally decrease during the initial phase of

training, as does the training set error. However, when the

network begins to overfit the data, the error on the vali-

dation set will typically begin to rise, the training is stop-

ped, and the weights at the minimum of validation error are

returned. The verification test subset is a set of independent

data used to verify the consistency of the efficiency of the

model. The right number of hidden neurons cannot be

achieved from a universal formula. It is determined by the

user and can vary from zero to any finite number. Networks

with too many parameters tend to memorize the input

patterns, while those with too few hidden parameters may

not be able to simulate a complex system at all. Our initial

model had few parameters, we gradually added hidden

neurons during learning until the optimal result is achieved

in the test subset. To establish a suitable NARX model

order for a particular system, neural networks of increasing

model order can be trained and their performance on the

training data compared using the loss function (or mean

squared error), LF. This function is expressed by the

following equation:

LF ¼ 1

N

XN

i¼1

e2ðtÞ ð17Þ

where eðtÞ ¼ yðtÞ � y
^
ðtÞ represents the prediction error and

N is the data length. In order to select the optimal number

of hidden neurons, tests were performed by varying the

number of neurons between 1 and 15. The minimal number

of inputs is avoided to ensure the model flexibility. Also,

the maximum number of inputs is excluded to avoid the

over-fitting. The training on the database gives the evolu-

tion of the loss function (Figs. 3, 4).

For well-showing the minimum of the LF for each

model according to the number of hidden neurons, the

LF evolution is separated in two different figures. These

Figs. 3 and 4 show the LF evolution according to the

structure of the neural model on the same database. The

Fig. 2 Experimental device:

a reactor-exchanger
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model M ny.nu.nh indicates a neural model with ny

outputs, nu inputs and nh hidden neurons. The M3.2.10

model exhibits the lowest LF. In fact, the optimal result

of the test set is obtained for ten neurons in the hidden

layer, a choice that is justified by the absence of

improvement of the model beyond this value. However,

this model may not be the best choice, because there is a

trade-off between the model complexity (i.e., size) and

accuracy. A small decrease in the LF may be rejected if

it is at the expense of enlarging the model size. Thus,

the decision procedure for selecting a parsimonious

model using the LF consists in deciding for each in-

crease in model order whether any reductions in the LF

are worth the expense of a larger model. The difficult

trade-off between model accuracy and complexity can be

clarified by using model parsimony indices from linear

estimation theory (Ljung 1999), such as Aikeke’s infor-

mation criterion (AIC), Rissanen’s minimum description

length (MDL) and Bayesian information criterion (BIC).

The validation phase thus makes it possible to

distinguish the model describing correctly the dynamic

behavior of the process. These statistical criteria are

defined as follows:

AIC ¼ ln
N

2
LF

� �
þ 2nw

N
ð18Þ

MDL ¼ ln
N

2
LF

� �
þ 2nwlnðNÞ

N
ð19Þ

BIC ¼ ln
N

2
LF

� �
þ nwlnðNÞ

N
ð20Þ

where nw is the number of model parameters (weights in a

neural network).

Hence, the AIC, MDL and BIC are weighted functions

of the LF, which penalize for reductions in the prediction

errors at the expense of increasing model complexity (i.e.,

model order and number of parameters). Strict application

of these statistical criteria means that the model structure

with the minimum AIC, MDL or BIC is selected as a

parsimonious structure. However, in practice, engineering

judgment may need to be exercised. The Fig. 5 shows the

evolution of AIC, MDL and BIC criteria according the LF

minimum for each model.

A strict application of the indices would select the

models M2.2.3 and M3.2.10 because they exhibit the

lowest of three indices for all the model structures com-

pared. Based on engineering judgment, the model M2.2.3

would be preferred without significant loss of accuracy.

4.3 Residual analysis

Once the training and the test of the NARX model have

been completed, it should be ready to simulate the system

dynamics. Model validation tests should be performed to

validate the identified model. Billings et al. (1986)

proposed some correlations based model validity tests. In

order to validate the identified model, it is necessary to

evaluate the properties of the errors that affect the pre-

diction of the outputs of the model, which can be defined as
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the differences between experimental and simulated time

series. In general, the characteristics of the error are con-

sidered satisfactory when the error behaves as white noise,

i.e., it has a zero mean and is not correlated (Cammarata

et al. 2002; Billings et al. 1986). In fact, if both these

conditions are satisfied, it means that the identified model

has captured the deterministic part of the system dynamics,

which is therefore accurately modeled. To this aim, it is

necessary to verify that the auto-correlation function of the

normalized error e(t), namely /ee(s), assumes the values 1

for t=0 and 0 elsewhere; in other words, it is required that

the function behaves as an impulse. This auto-correlation is

defined as follows (Zhang et al. 1996; Billings et al. 1986):

/eeðsÞ ¼ Eðeðt � sÞeðtÞ� ¼ dðsÞ 8s ð21Þ

Where e is the model residual. E(X) is the expected value

of X, s is the lag.

This condition is, of course, ideal and in practice it is

sufficient to verify that /ee(s), remains in a confidence

band usually fixed at the 95%, which means that /ee(s)

must remain inside the range � 1:96ffiffiffi
N
p ; with N the number of

testing data on which /ee(s) is calculated. Billings et al.

also proposed tests for looking into the cross-correlation

among model residuals and inputs (Billings et al. 1986).

This cross-correlation is defined by the following equation:

/ueðsÞ ¼ Eðuðt � sÞeðtÞ� ¼ 0 8s; ð22Þ

To implement these tests (21, 22), u and e are normalized

to give zero mean sequences of unit variance. The sampled

cross-validation function between two such data sequences

u(t) and e(t) is then calculated as:

/ueðsÞ ¼

PN�s

t¼1

uðtÞeðt þ sÞ

PN

t¼1

u2
ðtÞ
PN

t¼1

e2
ðtÞ

� �1=2
ð23Þ

If the Eqs. (21, 22) are satisfied then the model residuals

are a random sequence and are not predictable from inputs

and, hence, the model will be considered as adequate.

These correlations based tests are used here to validate the

neural network model. The results are presented in Fig. 6.

In these plots, the dash dot lines are the 95% confidence

bands.

The evolution of the cross-correlation of the NARX

model is inside the 95% confidence bands. In addition, the

NARX cross-correlation is low. This explains the inde-

pendence of the residual signal from the input one. For the

auto-correlation of the NARX neural model, all points are

inside the 95% confidence bands. Therefore, this model is

considered a reliable one for describing the dynamic

behavior of the process. This validation phase is used with

the neural weights found in the training phase. There is a

good agreement between the learned neural model and the

experiment in the validation phase. This result is important

because it shows the ability of the neural network with only

one hidden layer to interpolate any nonlinear function

(Cybenko 1989). Figure 7 shows the difference between

the experimental output and those simulated by the neural

model M2.2.3.

After analyzing this figure, it emerges that the NARX

model M2.2.3 ensures satisfactory performances as it is

indeed able to correctly identify the dynamics of the

reactor-exchanger. The main advantage of the proposed

neural approach consists in the natural ability of neural

networks in modeling nonlinear dynamics in a fast and

simple way and in the possibility to address the process to

be modeled as an input–output black-box, with little or no

mathematical information on the system.

4.4 Fault detection results

In order to develop the fault detection system, some fault

scenarios which were to be detected had to be chosen. It

was decided to attempt to detect two faults:

Fault1: A sudden increase in the flow rate of the cooling

from 1.5 kg s–1 to 3.5 kg s–1, F1

Fault2: A sudden decrease in the flow rate of the cooling

from 1.5 kg s–1 to 0.5 kg s–1, F2.

These faults introduce deviations in comparison with

the normal behavior of the process. Figure 8 shows the

temperature difference (D (Tnormal–Tfault)) which results

from the fault’s effect. We notice that the fault F1 which

occurs at 1,500 s causes a slight increase in the dynamics

of the process. This slight increase should be detected by

the CUSUM test because it exceeds the tolerated thresh-

old of 1 �C regarded as a critical temperature threshold in

practice. Nevertheless, the fault F2 which occurs also at

1,500 s causes a large drift which can sometimes exceed

3 �C.

The CUSUM test (Fig. 9) consists in fixing a priori a

minimum jump magnitude d to be detected, and running

two tests in parallel, because the ‘direction’ of the jump is

not known a priori (increasing or decreasing mean). The

statistical application of the CUSUM test gives the results

schematized in Fig. 9. The statistical threshold k allows to

delimit two distinct regions; the first region is called the

safety region and is where the test evolution is considered

acceptable. The second region is not acceptable (fault re-

gion) and is where the test evolution exceeds the statistical

threshold k. It is noted that the fault F1 causes an increase

in the mean of the residual signal exceeding the threshold

Un � mn � k at 1,898 s. The time delay in detection, which

346 Stoch Environ Res Risk Assess (2008) 22:339–349
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is calculated as the difference between the occurrence time

of the fault and the time of its detection, is 398 s. There-

fore, the temperature difference between the normal

mode and abnormal one is D (Tnormal–TF1) = 1.1 �C.

Concerning the fault F2, the high decrease in dynamics

involves a decrease of the mean ðMn � Tn � kÞ which

is detected at 1,706 s representing a temperature

D (Tnormal–TF2) = 1.2 �C. Also, let us notice that the

evolution of the detection criterion is positive in both cases

of the dynamics evolution.

5 Conclusion

With the rising demands of product quality, effectiveness

and safety in modern industries, the research on fault
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detection for dynamic systems has received more and

more attention and has developed quickly. This research

has addressed the combination of ANNs and CUSUM

statistical test for robust fault detection. A black-box

model-based strategy for fault detection is proposed. The

experiments are performed on a process such as a reactor-

exchanger set-up. Our results show that the one-Layer

Perceptron network provides promising assignments to

normal and faulty states of the investigated reference

process. The prediction of the dynamic behavior by the

neural net can be improved by using all experimental

information. Then, the application of neural networks to

identify abnormal states in this process has been investi-

gated. The example of cooling breakdowns shows that a

network which is trained with data of these faults and

other data of the real plant will properly classify the real

operating states and identify faults. The flow rate faults

are detected via detection of abrupt positive jumps in the

residual signal using a ANNs/CUSUM detector. The

analysis of the detection test shows that the proposed fault

detection method is robust against faults. In conclusion,

the combination of the MLP network and CUSUM test

could promptly detect fault conditions in such nonlinear

processes.
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