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Abstract The correlation dimension (CD) of a time

series provides information on the number of dominant

variables present in the evolution of the underlying

system dynamics. In this study, we explore, using lo-

gistic regression (LR), possible physical connections

between the CD and the mathematical modeling of

risk of arsenic contamination in groundwater. Our

database comprises a large-scale arsenic survey con-

ducted in Bangladesh. Following the recommendation

by Hossain and Sivakumar (Stoch Environ Res Risk

Assess 20(1–2):66–76, 2006), who reported CD values

ranging from 8 to 11 for this database, 11 variables are

considered herein as indicators of the aquifer’s geo-

chemical regime with potential influence on the arsenic

concentration in groundwater. A total of 2,048 possible

combinations of influencing variables are considered as

candidate LR risk models to delineate the impact of

the number of variables on the prediction accuracy of

the model. We find that the uncertainty associated with

prediction of wells as safe and unsafe by LR risk model

declines systematically as the total number of influ-

encing variables increases from 7 to 11. The sensitivity

of the mean predictive performance also increases

noticeably for this range. The consistent reduction in

predictive uncertainty coupled with the increased sen-

sitivity of the mean predictive behavior within the

universal sample space exemplify the ability of CD to

function as a proxy for the number of dominant influ-

encing variables. Such a rapid proxy, based on non-

linear dynamic concepts, appears to have considerable

merit for application in current management strategies

on arsenic contamination in developing countries,

where both time and resources are very limited.
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1 Introduction

Since the large-scale discovery of arsenic contamina-

tion in the alluvial Ganges aquifers of Bangladesh,

numerous studies have been conducted to better

understand the spatial variability of the contamination

scenario (e.g., Biswas et al. 1998; Burgess et al. 2000;

McArthur et al. 2001, 2004; Harvey et al. 2002; Muk-

herjee and Bhattacharya 2002; van Geen et al. 2003;

Yu et al. 2003; Ahmed et al. 2004; Hossain et al. 2006a).

Most of these studies have addressed the ‘spatial’

pattern of arsenic using geo-statistical tools and the

classical notion of linear stochastic dynamics. For

example, in the first country-wide study toward spatial

(horizontal) characterization of the arsenic calamity,

conducted by the British Geological Survey (BGS) in

collaboration with the Department of Public Health
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and Engineering (DPHE) of Bangladesh (hereafter

called ‘BGS-DPHE’), an application of kriging (Journel

and Huijbregts 1978) was reported to provide the ‘best’

estimate of the whole nation’s arsenic field at the

regional scale with limited sampling information. The

BGS-DPHE investigation involved the assumption that

the arsenic concentration could be treated as a ‘region-

alized’ linear stochastic random variable in space.

It must be noted, however, that arsenic in ground-

water is not a purely random occurrence and that

(hidden) order and determinism may also exist, just as

they do in any other natural or man-made phenome-

non. Arguing that there existed profound geological

and geochemical factors, with possible order, control-

ling arsenic contamination dynamics (for details, see

Hossain and Sivakumar 2006; McArthur et al. 2004;

Zheng et al. 2004), we suggest that it was no longer

defensible for the scientific community to continue to

use purely geo-statistical (linear stochastic) approaches

as stand-alone techniques for its spatial interpolation.

Our understanding of the role played by these physical

factors in arsenic contamination of groundwater con-

tinues to be enhanced from recent studies by, for

example, Zheng et al. (2004), Akai et al. (2004) and

Ahmed et al. (2004). Traditional geostatistical tools are

a ‘pattern-filling’ scheme based on the spatial correla-

tion exhibited by two points in space separated by a lag

h. This approach simplifies the spatial patterns mani-

fested by the complex interactions between geology

and time-sensitive fluid flow dynamics (Christakos and

Li 1998). Concerns on the use of purely stochastic

approaches and potential for alternative ones have

been echoed by a few other studies as well (e.g., Fay-

bishenko 2002; Sivakumar 2004a; Sivakumar et al.

2005).

On the premise that the current ensemble of pro-

posed ‘theories’ in scientific literature explaining ar-

senic mobility (e.g., Burgess et al. 2000; McArthur

et al. 2001; Harvey et al. 2002; van Geen et al. 2003)

can, in principle, be mathematically represented as the

cumulative effect of a finite number of dominant pro-

cesses comprising three or more partial differential

equations, Hossain and Sivakumar (2006) verified the

existence of nonlinear deterministic and chaotic dy-

namic behavior in the spatial pattern of arsenic con-

tamination in shallow wells (depth < 150 m) in

Bangladesh. Employing the Grassberger–Procaccia

correlation dimension (CD) algorithm (Grassberger

and Procaccia 1983), their analysis revealed CD values

(i.e., saturation of correlation exponents and a mani-

festation of ‘determinism’) ranging anywhere from 8 to

11 depending on the region and geology (see, for

example, Fig. 1). Their findings suggested that the

arsenic contamination dynamics in space, from a cha-

otic dynamic perspective, was a medium- to high-

dimensional problem. While it is encouraging to note

that the nonlinear CD analysis can reflect the influence

of regional geology (and other factors) on arsenic

contamination dynamics, the usefulness of the CD and

other nonlinear deterministic dynamic techniques to

understand the physics of the actual arsenic contami-

nation phenomenon is far from clear, as explained

next.

It is well known that the CD of (an attractor of) a

time series generally provides information on the

number of variables present in the evolution of the

underlying system dynamics (e.g., Grassberger and

Procaccia 1983; Hao 1984; Fraedrich 1986; Sivakumar

2004b; Hossain and Sivakumar 2006). However, cur-

rent environmental literature is largely insufficient in

the context of providing links between the CD and the

actual physical mechanisms that take place in catch-

ments/aquifers. While some studies have indeed con-

ducted research in this direction, such have essentially

been limited to the verification of the reliability of the

CD estimate, and especially performed using nonlinear

predictions of the respective time series. For example,

Sivakumar et al. (2002c) investigated the reliability of

the CD estimate of the monthly flow data observed at

the Coaracy Nunes/Araguari River watershed in

northern Brazil (see also Sivakumar et al. 2001a), using

nonlinear local- (chaos theory-based) and global-

(artificial neural networks-based) approximation tech-

niques. The study, in fact, focused on the reliability of

the CD in the context of short time series, since the

data size requirement has been the primary subject of

criticism on the reports of low-dimensional chaos in

environmental time series (e.g., Ghilardi and Rosso

1990; Schertzer et al. 2002; see also Sivakumar 2000,

2005; Sivakumar et al. 2002a, for details). Similarly,
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Fig. 1 Relationship between Correlation Exponent and Embed-
ding Dimension for the whole Bangladesh based on BGS-DPHE
(2001) arsenic data from shallow wells (after Hossain and
Sivakaumar 2006)
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nonlinear predictions of time series have served as the

basis, implicitly or explicitly, for verification of the CD

estimate in other studies as well, albeit in different

forms (e.g., Porporato and Ridolfi 1997; Lambrakis

et al. 2000; Sivakumar et al. 2001b, 2002b).

With the encouraging results of their preliminary

analysis (Hossain and Sivakumar 2006) regarding the

nonlinear deterministic nature of arsenic contamina-

tion, we subsequently discuss the potential role the

nonlinear deterministic dynamic and related concepts

can play in improving our understanding of arsenic

contamination patterns in space. They especially

highlighted their potential utility in providing im-

proved cost-effectiveness of environmental manage-

ment in rural and resource-limited settings of

developing countries, such as Bangladesh, Vietnam

and India. In a related development, Serre et al. (2003)

have reported that the spatial interpolation of arsenic

contamination, if approached from the conventional

paradigm of geostatistical mapping, can be challenging

in Bangladesh as most of the variability in arsenic

concentration occurs within short distances (2–5 km).

Certainly acknowledging the fact that the traditional

linear stochastic approaches had generally yielded

fairly good and reliable results, we call for a much-

needed change in the current state-of-the-art for spa-

tial interpolation of arsenic contamination, as follows:

‘While there is no structural, or even philosophical,

flaw in using the conventional geo-statistical approach,

there is indeed ample room to argue that the geo-sta-

tistical treatment of arsenic contamination in space as a

regionalized random (or stochastic) variable may con-

stitute only an incomplete analysis of its spatial vari-

ability (even if system-dependent). Incompleteness can

potentially arise from the fact that geo-statistics often

fails to recognize the random looking but deterministic

behavior that may be present due to self-similar (scale-

invariant) factors in the continuum of the sub-surface.’

In essence, we argue for the need to couple/integrate

the linear and nonlinear concepts/tools, whenever and

wherever deemed necessary or appropriate [see also

Sivakumar (2004b) for an example of possible integra-

tion of different concepts/methods for environmental

modeling]. This, however, is easier said than done, since

there is still some convincing needed, going by the

criticisms, on the utility of the relatively new nonlinear

deterministic dynamic concepts for arsenic contamina-

tion and other environmental problems in the first place.

Roughly speaking, the nonlinear analyses and results

need to be verified using the conventional linear tech-

niques, so as to first bring reconciliation between linear

and nonlinear concepts and then to bridge the gap

between them. With particular reference to the study by

Hossain and Sivakumar (2006), this should obviously

start with the verification of the CD values obtained for

the arsenic concentration data using any of the available

linear tools.

In this spirit, we herein explore possible physical

connections between the CD and the mathematical

modeling of risk of arsenic contamination in ground-

water by applying (the linear) logistic regression (LR)

risk assessment technique. Using 11 potentially influ-

encing variables that largely define the geochemical

regime of aquifers and, hence, the variability of arsenic

concentration, we attempt to provide a possible

insightful evidence that the CD can be a proxy for the

number of dominant influencing variables required in

an LR risk model to optimally predict risk of arsenic

contamination at non-sampled wells. To the best of our

knowledge, such an insight, although preliminary,

constitutes an important finding, with potential impli-

cations on the reduction of uncertainty of risk maps

produced from conventional (linear stochastic) para-

digms. Even though we pursue this task primarily from

a data-based perspective, a larger goal of our mission is

to encourage greater interactions with the research

community traditionally engaged in a more mechanis-

tic understanding of arsenic contamination. We believe

that such interactions can play a vital role in the inte-

gration of non-linear deterministic dynamic concepts in

future groundwater management protocols (discussed

in detail later in the paper). In the sections that follow,

we provide a systematic overview of our exploratory

research to understand the value of CD in modeling

risk of arsenic contamination.

2 Study region, data, and CD analysis

We choose to study arsenic contamination over the

entire region of Bangladesh, as had been first surveyed

by the BGS-DPHE (2001) study comprising 3,534

wells. This is conducted in the manner similar to

Hossain and Sivakumar (2006) for estimating the CD

values. The dataset is available (at the time of writing

this manuscript) at http://www.bgs.ac.uk/arsenic/ban-

gladesh/datadownload.htm. Wells deeper than 150 m

(and consistently below the safe limits) are excluded

from the analysis, thus resulting in a set of 3,085 shal-

low wells. While it is possible that such an exclusion of

data based on depth may incur an added bias to our

analyses on the application of CD, we believe, to the

best of our knowledge, that the impact would be

insignificant to alter the overall conclusions of our

study, particularly when our goal is to demonstrate a

proof-of-concept application of CD in deterministic
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modeling. For details on the study region and data, the

reader is referred to the works of Hossain et al. (2006b)

and Hossain and Sivakumar (2006).

The CD method employed by Hossain and Sivakumar

(2006) used the correlation integral or function (Grass-

berger and Procaccia 1983) for distinguishing between

chaotic and stochastic behaviors (more specifically,

between low- and high-dimensional systems). Although,

traditional applications of the phase-space reconstruc-

tion and the Grassberger–Procaccia algorithms have

been limited to data series in the continuum of time (e.g.,

Takens 1981; Theiler 1987; Rodriguez-Iturbe et al. 1989;

Porporato and Ridolfi 1997; Sivakumar et al. 2001b,

2002c, 2005), Hossain and Sivakumar (2006) argued that

there was no compelling logic that disqualified its

application to a data series in space. Their CD analysis

revealed positive evidence regarding medium-to-high

dimensional chaotic dynamics in arsenic contamination

in space, with a country-wide dimension value ranging

between 8 and 11. This subsequently led Hossain and

Sivakumar (2006) to comment subjectively that the

minimum number of variables and hence the number of

dominant processes required to model the spatial

variability of arsenic contamination should also range

from 8 to 11.

It is appropriate to mention, at this point, that

questions may be raised regarding the suitability of this

data set for CD analysis. Such questions may be related

to, among others, the data size (insufficient length) and

data quality (presence of noise), as these could

potentially influence the CD estimation (e.g., Neren-

berg and Essex 1990; Schreiber and Kantz 1996). These

issues, and also others, have been and continue to be

extensively discussed and debated in the literature,

including in the environmental sciences [e.g., Ghilardi

and Rosso 1990; Tsonis et al. 1994; Sivakumar et al.

1999, 2001b, 2002a, c; Sivakumar 2000, 2005; Schertzer

et al. 2002; see also Sivakumar (2004a) for a review].

Due to space limitations, and also to avoid unnecessary

deviation from the main focus of our study, we choose

not to discuss such issues, and consequently direct the

reader to the above studies and the numerous refer-

ences therein. We, however, would like to briefly

highlight a few points herein, in regards to the reli-

ability of the CD estimates for this data set reported by

Hossain and Sivakumar (2006).

1. We are convinced that the data size, with 3,085

points, is more than sufficient to obtain reliable CD

estimates of arsenic contamination in space. In this

regard, we are particularly comforted by past

studies that have reported reliable CD estimates

for much smaller data sizes, albeit in the

continuum of time (e.g., Sivakumar 2000, 2005;

Sivakumar et al. 2002a, c).

2. While we do admit that the arsenic concentration

data are likely contaminated with noise (e.g.,

measurement errors), we do not believe that it

significantly influences our CD estimates [see, for

example, Sivakumar et al. (1999)]. Even if it were

to influence, the result would be only an overesti-

mation of CD, not underestimation. Therefore, the

interpretations and conclusions by Hossain and

Sivakumar (2006) regarding medium-to-high

dimensional chaotic pattern would not only stand

the test but also be more solidified.

3. Another factor possibly leading to underestimation

of CD is the presence of a large number of zeros

(or any one particular value) in the data set (e.g.,

Tsonis et al. 1994). Since there are no zeros (or

repetition of a particular value) in the arsenic data

set, this problem is also completely eliminated.

3 Logistic regression

The method of LR has been extensively used in epi-

demiological studies, and more recently, has become a

common technique in environmental research on

modeling risk of groundwater contamination (Twa-

rakavi and Kaluarachchi 2006). Common regression

techniques, such as the classical linear regression, re-

late the response variables to the influencing variables.

LR relates the probability of a response variable to be

greater than a threshold value (i.e., a risk) to a set of

influencing variables (Afifi and Clark 1984; Helsel and

Hirsch 1992). In an LR risk model, regression is linear

between the natural logarithm of the odds ratio for the

probability of response to be less than the threshold

value and influencing variables. Equation 1 mathe-

matically summarizes the LR model used in this study:

ln½p=ð1� pÞ� ¼ logitðpÞ ¼ aþbx ð1Þ

where p is the probability of response to be greater

than the safety threshold, a is a constant, b is a vector

of slope coefficients, and x is a vector of influencing

variables. For more details on the use of LR for

modeling risk of arsenic contamination, the reader is

referred to Twarakavi and Kaluarachchi (2006).

4 The potential influencing variables

Table 1 shows the influencing variables considered

herein for defining the geochemical regime of aquifers.
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These variables were sampled by BGS-DPHE (2001)

in Bangladesh. The minimum and maximum values of

these variables (Table 1) indicate the range of vari-

ability across Bangladesh. The variables chosen are: (1)

depth of wells (m), (2) P (Phosphorus) (mg/L), (3) Fe

(Iron) (mg/L), (4) Ba (Barium) (mg/L), (5) Mg (Mag-

nesium) (mg/L), (6) Ca (Calcium) (mg/L), (7) SO4

(Sulfate) (mg/L), (8) Mean annual precipitation (mm/

day), (9) Si (Silicon) (mg/L), (10) Na (Sodium) (mg/L),

and (11) Mn (Manganese) (mg/L). Although our

choice of variables is primarily dictated by literature

reports on the causes of arsenic mobility (e.g., Welch

et al. 2000; Harvey et al. 2002; van Geen et al. 2003;

McArthur et al. 2004; Zheng et al. 2004) and the

availability of reliable data, we must also point out to

the reader that the selection herein is governed purely

from a data-based and qualitative paradigm. As indi-

cated earlier, the larger goal of our study is to

encourage greater interactions between the research

communities on mechanistic modeling of arsenic con-

tamination and non-linear dynamic analysis. We admit

that such a data-based selection without a deeper

physical regard for the pertinent mechanics and geo-

chemistry of contamination (as appropriate for Ban-

gladesh) may have potential limitations. However, we

also believe that such potential limitations alone

should not hamper our ability to investigate the use-

fulness of the CD value, and particularly so when our

intention is to primarily conduct a preliminary explo-

ration. We believe that if there is a weakness in our

choice of potential influencing variables, as may be

revealed in our results, it only lends greater credibility

to our mission in inviting the research community on

arsenic contamination to interact more closely with the

non-linear deterministic dynamic research community.

As a preliminary step, we first conduct the Spear-

man’s Rank Correlation Coefficient test for these

selected variables to identify their non-linear depen-

dence with arsenic concentration. Because all possible

combinations of influencing variables are considered

during LR modeling of contamination risk (discussed

next), results from the Spearman’s test are not used in

the ranking of the variables according to the order of

influence. The precipitation data are obtained from the

Bangladesh Meteorological Department (BMD) and

Bangladesh Water Development Board (BWDB). The

data are derived from a network of 100 recording

rainfall gauges that registered less than 5% missing

data for the year 2000. The choice of precipitation as

an influencing variable is governed by reports that

groundwater pumping for irrigation and recharge could

be one of the causes of arsenic mobility in the shallow

geologic stratum (see Harvey et al. 2002). Because

recharge data are not readily available for our study, we

choose mean rainfall as a proxy indicator of recharge of

aquifers. For consistency, we select precipitation data

pertaining to the year 2000 when the BGS-DPHE

(2001) survey was completed. The mean annual rainfall

value for each well is computed by the method of

Thiessen Polygons using the ArcGISTM software

(Ormsby et al. 2004).

5 Method of assessment

The dataset is divided randomly into two equal halves,

with one half being employed for LR risk model cali-

bration and the other half for validation. This random

selection procedure is repeated 25 times within a

Monte Carlo (MC) framework to assess the mean

performance of the LR model. Using one-half of each

randomly selected dataset, calibration of the LR model

coefficients, a and b, is performed using ordinary least

squares technique for a safety threshold of 50 ppb

(Bangladesh limit). In the calibration phase, the ‘p’

values in Eq. 1 are assigned 0–1 binary values

depending on the measured concentration of arsenic

(p = 1 for exceeding the safety threshold; p = 0 for

being below the threshold). During the validation

phase, the LR model is assessed in terms of its ability

to successfully predict contamination in 0–1 binary

terms according to the safety threshold at non-sampled

wells (i.e., over the other half of the dataset not used in

calibration of the LR risk models). For this, we employ

the notion of contamination risk associated with a pre-

assigned probability (i.e., in this case, p = 0.9). For

example, if the well is predicted by the LR risk model

as unsafe with p = 0.85 for a given safety threshold,

then that well would be flagged uncontaminated

according to the high risk criterion of p = 0.9. The

Table 1 The selected influencing variables for Logistic Regres-
sion Modeling

Variable Mean Minimum Maximum

Well depth (m) 60.550 0.600 362.000
Ba (ppb) 87.340 2.000 1360.000
Ca (mg/L) 51.590 0.100 366.000
Fe (mg/L) 3.353 0.005 61.000
Mg (mg/L) 20.750 0.040 305.000
Mn (mg/L) 0.555 0.001 9.980
Na (mg/L) 88.936 0.700 2700.000
P (mg/L) 0.765 0.100 18.900
Si (mg/L) 20.519 0.030 45.200
SO4 (mg/L) 5.917 0.200 753.000
Annual precipitation (cm) 86.001 25.350 596.140
As (ppb)1 55.205 0.500 1660.000

1 Arsenic (As) is the dependent variable in the LR risk model
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predictive power of the LR risk model for a given

number of influencing variables is quantified by the

probability of successful detection of a well’s status as

contaminated or uncontaminated at untested well

locations. It should be noted that the pre-assignment of

a probability value to denote risk category as high(low)

is purely subjective and will linearly scale up(down) the

predictive behavior of LR model without altering the

response pattern to the number of influencing vari-

ables. Hence, such a subjective assignment is consid-

ered acceptable within the overall scheme of our study

as the objective is to delineate the impact of the

number of potentially influencing variables and not on

the LR risk model performance per se.

The specific question we explore, using LR, in our

study is: ‘Is CD a reliable proxy for the number of

dominant variables required to predict risk of arsenic

contamination in groundwater?’ We consider all pos-

sible combinations of influencing variables from the

total set of 11 as candidate LR models. This results in

2,048 LR risk models being evaluated. Each evaluation

is repeated 25 times within the MC framework and the

mean and range of LR model prediction assessed. For

a given number of influencing variables, the mean

signified the most probable LR model performance

while the range is an indicator of predictive uncertainty

to expect. It is important to note that the predictive

uncertainty (or range) has important implications for

model complexity and parameter optimization. The

wider the uncertainty, the more challenging naturally

would be the optimization to converge to the best LR

model configuration. We discuss this in more detail in

the next section.

6 Results and discussion

Figure 2 shows the variation of probability of success-

ful detection of wells, or the fraction of validation set

wells correctly detected (as contaminated/uncontami-

nated at the 50 ppb limit) as a function of the total

number of influencing variables (Table 1) in the LR

model. Basically, the terms ‘contaminated/uncontami-

nated’ or ‘unsafe/safe’ refer to the wells with arsenic

concentration exceeding/less than 50 ppb. The mean

predictive ability (shown in red circles, Fig. 2) of the

LR risk model, while remaining insensitive to number

of influencing variables in the ranges of 1–7 variables,

is found to noticeably increase in sensitivity when the

number of variables is greater than 7. A systematic

reduction in the predictive uncertainty is also observed

as the number of variables is increased from 7 to 11

(see Fig. 3). The probability of successful detection is

shown for the mean of the 25 MC simulations on the

y-axis of Fig. 2. Finally, we observe the best performance

of the LR model when the number of influencing

variables is 11. (Note that the lines all converge here to

a point when the number of variables is 11 because the

total number of possible LR model combinations is

one. This observation should not be construed as an

indication of no uncertainty for an LR model with 11

variables, but rather as an indication of the last point of

complex modeling within a set of 11 variables where

only one possible model can be constructed). As

evident from Figs. 2, 3, an a priori inclusion of CD

value in assigning the minimum LR model complexity

appears to guarantee global optimization of the model

configuration with a considerably higher degree of

Fig. 2 Variation of fraction of wells correctly classified by LR
model as safe/unsafe (i.e., probability of successful detection)
with the number of influencing variables. The larger black circles
with dashed line in the middle indicate mean values. The upper
and lower dashed lines in black indicate the range of 25 Monte
Carlo realizations for a given number of variables
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Fig. 3 Predictive uncertainty in terms of probability of success-
ful detection (i.e., the range between upper and lower limits in
Fig. 2) as a function of the number of influencing variables.
(Note: the value when the number of influencing variables is 11
should be ignored.)
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success. This empirical observation indicates consis-

tency with the CD concept, according to which the

inclusion of any additional variable deemed influential

on the dynamics should yield either an improvement or

simply no change (unless otherwise significantly influ-

enced by noise) [see also, for example, Sivakumar et al.

(2001b, 2002c)]. Overall, this preliminary finding seems

to offer credence to the hypothesis that an acceptable

number of variables to model the risk of arsenic con-

tamination should range from 7 or 8 to 11 [The LR

results also seem to strengthen our earlier point that

the CD estimates reported by Hossain and Sivakumar

(2006) may only be an overestimation due to the

presence of noise, if any, and not an underestimation].

Currently, there are a number of maps available that

characterize the probability of arsenic contamination

in non-sampled regions based on kriging [see BGS-

DPHE (2001) and McArthur et al. (2001), for exam-

ple]. Preliminary findings of our study imply that an

injection of the chaotic dynamic approach of LR

modeling with variables equaling the CD could expe-

dite refinement of the map toward reduction of

uncertainty in risk of contamination at non-sampled

locations than what would have otherwise been possi-

ble by the kriging method alone. Although CD does

not offer any physical insight on the variables that need

to be chosen or the nature of their integration in risk

assessment models, prior knowledge as a proxy for an

acceptable number of variables required can be a

valuable information that can potentially save consid-

erable time during a rapid assessment of arsenic con-

tamination for remediation management.

7 Conclusion

While applications of nonlinear dynamic concepts,

such as the CD method, are gaining momentum in

environmental sciences, their usefulness to understand

the actual physical mechanisms occurring in our

catchments and aquifers remains unclear. With the

encouraging results reported recently by Hossain and

Sivakumar (2006) regarding the possible nonlinear

deterministic nature of arsenic contamination phe-

nomenon in Bangladesh (with CD values ranging from

8 to 11), we herein have explored the possible physical

connection between the CD and the mathematical

modeling of risk of arsenic contamination in ground-

water. We considered the LR model, with an aim to

link the nonlinear CD technique with a linear analysis

technique. Using 11 potential influencing variables that

largely dictate the variability of arsenic concentration,

we observed that the CD may function as an accept-

able proxy for the number of variables required in the

LR model to accurately predict arsenic contamination

at non-sampled wells. Given this preliminary finding,

we believe it is time we considered more comprehen-

sive investigations to assess the true merit of non-linear

deterministic paradigms in conjunction with the more

conventional linear stochastic methods, such as kriging,

for reducing uncertainty of risk mapping for ground-

water contamination in resource poor countries.

This study is not without its share of limitations. The

two primary limitations that should be highlighted

herein, so that findings from this study are not quoted

out of context, are: (1) selection of potential influenc-

ing variables from a purely data-based paradigm; and

(2) maximum number of influencing variables being

only 11 and barely exceeding the range of CD values.

An earlier section (on ‘The potential influencing vari-

ables’) in this paper has already discussed in detail the

first limitation with a qualified disclaimer. On the sec-

ond limitation, we unconditionally recognize that the

value of CD could have been more convincingly

demonstrated had more than 11 potential influencing

variables been analyzed. However, inclusion of a

higher number of variables is easier said than done,

since there is paucity of quality-controlled data in a

rural setting like Bangladesh. For example, an influ-

encing variable such as soil cover is expected to influ-

ence recharge and to ultimately affect the water table

fluctuations, which may consequently be responsible

for the mechanism that mobilizes arsenic (Twarakavi

and Kaluarachchi 2006). However, such data are hard

to obtain for the case of Bangladesh on a large scale.

We believe that inclusion of a larger set of geochemical

data is an important area of future study where we, as

members of the non-linear deterministic community,

should depend on effective feedback from the com-

munity engaged in mechanistic understanding of ar-

senic contamination in order to secure a more

complete and appropriate dataset for CD integration.

It must be noted, therefore, that more detailed studies

are needed to verify the true limitations and strengths

of the CD approach to designing LR models for rapid

assessment of risk of arsenic contamination. Investi-

gations in this direction are already underway, details

of which will be reported elsewhere.
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